	r	
	ame:	
Τ.	ame.	

Enrolment No:

Semester: VI

Time 03 hrs.

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, July 2020

Course: Fire Engineering III (Material & Fire Control)

Program: B Tech- Fire & Safety Engineering

Course Code: HSFS 3009 Max. Marks: 100

Instructions: Attempt All Questions.

МС	Lightweight aggregate mainly consisting of	Expanded Clay	Incor rect	Shale	Incor rect	Slag	Incorr ect	All	Corre ct
МС	Siliceous aggregate, mainly consisting of	Silica	Corre ct	Sand	Incor rect	Soil Content	Incorr ect	None	Incorr ect
TF	If the roof panels are covered with gypsum board, the thickness of the gypsum board need to be converted to an equivalent thickness.	TRUE	Corre ct	FALSE	Incor rect				
MC	The equivalent thickness depends on the thickness of the and the type of	Board, Density	Incor rect	Gypsum board, Concrete	Corre ct	Types of Board, Filler Material	Incorr ect	All	Incorr ect
MC	If the gypsum board covers a siliceous or carbonate concrete, the equivalent thickness is times the thickness of the gypsum board.	3	Corre ct	2	Incor rect	1	Incorr ect	1.5	Incorr ect
MC	If the gypsum board covers a sand-lightweight or lightweight concrete, the equivalent thickness istimes the thickness of the gypsum board.	3	Incor rect	2 1⁄4	Corre ct	2	Incorr ect	None	Incorr ect
TF	Clay masonry units are larger than a brick and made of either clay or shale	TRUE	Corre ct	FALSE	Incor rect				
МС	Fire resistance rating of masonry block can be determined based on the	Aggregate type	Incor rect	Equivalent thickness	Incor rect	Cavity fill	Incorr ect	All	Corre ct
TF	The equivalent thickness of the masonry unit is determined by dividing the net volume by the surface area of the unit.	TRUE	Corre ct	FALSE	Incor rect				

TF	Fire resistance rating of unprotected structural steel depends on the W/D of the column.	TRUE	Corre ct	FALSE	Incor rect				
MC	Chemical changes in wood are are specific to wood	Decomposit ion and Charring	Corre ct	Charring	Incor rect	Dryness	Incorr ect	All	Incorr ect
MC	Spalling happens in concrete are theeffects.	Physical	Corre ct	Chemical	Incor rect	Physical & Chemica	Incorr ect	All	Incorr ect
MC	Decomposition and Charring may happens in the building material such as	Concrete	Incor rect	Steel	Incor rect	Wood & Plastics	Corre ct	All	Incorr ect
МС	Thermal conductivity determines the in the materials	Rate of heat transfer	Corre ct	Rise in Temp	Incor rect	Moluec ular Displace ment	Incorr ect	All	Incorr ect
MC	Specific heat determines the of a material for a given rise in temperature	Rate of heat transfer	Incor rect	Heat absorption capacity	Corre ct	Both	Incorr ect	None	Incorr ect
MC	determines the temperature distributions that will exist in a material at various points in time during a fire.	Thermal Conductivit y	Incor rect	Thermal Capacity	Incor rect	Thermal Diffusivi ty	Corre ct	Specific Heat Capacity	Incorr ect
MC	The stiffness of a material is defined as the force required for a unit deformation, measured by the	Young's Modulus of Elasticity	Corre ct	Thermal Capacity	Incor rect	Thermal Diffusivi ty	Incorr ect	All	Incorr ect
TF	Creep is the strain (i.e. deformation per unit length) that occurs in materials with time.	TRUE	Corre ct	FALSE	Incor rect				
TF	Most materials the creep rate decreases significantly at high temperatures	FALSE	Corre ct	TRUE	Incor rect				
TF	Thermal expansion is measured by the strain induced by unit degree rise in temperature.	TRUE	Corre ct	FALSE	Incor rect				
MC	The rate of heating of steel depends upon the parameters of	Thermal Conductivit y	Incor rect	Specific Heat	Incor rect	Density	Incorr ect	All	Corre ct
MC	Phase changes occurs in steel at and above temp	430∘C	Incor rect	540∘C	Incor rect	630∘C	Incorr ect	730∘C	Corre ct

TF	The thermal properties of concrete depend upon the aggregate type used, due to chemical changes (crystal structure) in aggregate compounds.	TRUE	Corre ct	FALSE	Incor rect				
МС	Types of aggregates are	Siliceous aggregates	Incor rect	calcareous aggregates	Incor rect	lightwei ght aggregat es	Incorr ect	All	Corre ct
TF	The thermal diffusivity of Low Weight Concrete is only slightly above than Normal Weight Concrete.	FALSE	Corre ct	TRUE	Incor rect				
TF	The coefficient of thermal expansion of concretes is of the same order as of steel.	TRUE	Corre ct	FALSE	Incor rect				
TF	The strength loss in concrete is slow because of the low thermal diffusivity.	TRUE	Corre ct	FALSE	Incor rect				
MC	The intensity of spalling generally depends upon the type of	Aggregates used	Incor rect	Compressiv e Strength	Incor rect	Both	Corre ct	Mechan ical Loading	Incorr ect
MC	Grey color of concrete may appear at the temp	340∘C	Incor rect	300∘C	Corre ct	440∘C	Incorr ect	None	Incorr ect
TF	Compressive strength reduces at a higher rate than tensile strength.	TRUE	Corre ct	FALSE	Incor rect				
TF	Timber does not expand on heating like steel and concrete and therefore does not threaten adjoining masonry in the same manner.	TRUE	Corre ct	FALSE	Incor rect				
МС	The masonry failures due to	High walls with low slenderness ratio	Incor rect	Lack of lateral support	Incor rect	Differen tial heating due to a progress ive pre-flashove r fire	Incorr ect	All	Corre ct
MC	Masonry can also suffer integrity failure when are excessive.	Fire loads	Incor rect	Fire Load Density	Incor rect	Both	Corre ct	None	Incorr ect
TF	Bricks can withstand temperatures of around a 1000°C and they melt at about 1400 °C	TRUE	Corre ct	FALSE	Incor rect				

TF	Non-absorbing oxygen by creating smothering atmosphere round the flames is the method used to extinguish the fire in class B.	FALSE	Corre ct	TRUE	Incor rect				
MC	Fire-fighting medium for class E fire is to be	Non- coductive	Incor rect	Non- Magnetic	Incor rect	Both	Corre ct	None	Incorr ect
MC	Thematerials will lose their mechanical strength and their physical shape very quickly when heat is applied	Thermosetti ng	Incor rect	Thermoplas tic	Corre ct	Resins	Incorr ect	Binders	Incorr ect
MC	Maximum temperature of softening & decomposition of thermoplastic is about	300-400oC	Corre ct	300-500oC	Incor rect	140- 250oC	Incorr ect	None	Incorr ect
MC	Theformed by rolling and has an embedded wire mesh to prevent shattering and to withstand fire exposure	Wired Glass	Corre ct	Float Glass	Incor rect	Laminat ed Glass	Incorr ect	Temper ed Glass	Incorr ect
MC	When a window pane of ordinary float glass is first heated, it tends to crack when the glass reaches a temperature of about	250 - 350ºC	Incor rect	150 - 200ºC	Corre ct	450 - 550ºC	Incorr ect	150 - 350ºC	Incorr ect
MC	A 3 mm window glass will break when exposed to temperature around degree.	240	Corre ct	340	Corre ct	440	Incorr ect	540	Incorr ect
MC	Double-glazed windows using 6 mm glass can be expected to break out at about	300	Incor rect	400	Incor rect	500	Incorr ect	600	Corre ct
MC	The condition of a fire, which is related to the maximum temperature reached and to the duration of burning is called	Fire Intensity	Incor rect	Fire Severity	Corre ct	Fire Fire Load	Incorr ect	Fire Density	Incorr ect
MC	Based on the amount of air available, different fire behaviors are noticed are called as	Ventilation Contrpl Fire	Incor rect	Fuel control fire	Incor rect	Both	Corre ct	None	Incorr ect
MC	The transition from ventilation controlled fire to fuel controlled fire takes place approximately at a fire load per unit window opening offor a fire with wood crib as combustible material.	100 kg/m²	Incor rect	120 kg/m²	Incor rect	260 kg/m²	Incorr ect	160 kg/m²	Corre ct
MC	The transmission of fire from a building to another building can be due to the transmission of heat by	Conduction	Incor rect	Convection	Incor rect	Radiatio n	Incorr ect	All	Corre ct
TF	The flying bands can create secondary fires if the surfaces of the receiving buildings have inferior fire characteristics with respect to ignitability, flame prevention and flame spread	TRUE	Corre ct	FALSE	Incor rect				
MC	The amount of heat radiated from the surface of a building depends on	Degree of Compartme ntation	Incor rect	Fire load in Compartme ntation	Incor rect	Area of Opening of wall	Incorr ect	All	Corre ct
TF	If fuel load is in excess of 150 kg/m ² , then the fire will become ventilation controlled fire	TRUE	Corre ct	FALSE	Incor rect				

TF	Floor Area Ratio (FAR) is the ratio of the total covered area (plinth area) on all the floors to the plot area	TRUE	Corre ct	FALSE	Incor rect				
MC	Dikes, Mounds, Embankments, Ditches, Drains, Diaphragms are	Local Partition	Corre ct	General Partition	Incor rect	Both	Incorr ect	None	Incorr ect
TF	Area of combustible is larger than fire areas	FALSE	Corre ct	TRUE	Incor rect				
MC	While calculating area of combustible, Beta is	Rate of combsution	Incor rect	Volume co- efficient	Corre ct	Co- efficient of fire resistan ce	Incorr ect	All	Incorr ect
TF	Fire separation between buildings is intended to prevent the spread of fire to adjacent buildings and installations as well as to provide insufficient space for the fire fighting operation.	FALSE	Corre ct	TRUE	Incor rect				
MC	The safety condition can be expressed by the equation $q_{\rm t}$ £ $q_{\rm min}$ for asafe distance from intensity of radiation	TRUE	Corre ct	FALSE	Incor rect				
MC	Fire walls, floors, screens and fire separations are	Local Partition	Incor rect	General Partition	Corre ct	Both	Incorr ect	None	Incorr ect
MC	Screens can be of types	Fixed	Incor rect	Portable	Incor rect	Both	Corre ct	None	Incorr ect
MC	Effectiveness of screens depends on	Surface Area	Incor rect	Distance between walls	Incor rect	Thermal conducti vity	Incorr ect	All	Corre ct
TF	Heat transferred to a structural element in a real fire is greater than in the furnace even if the real fire produces the temperature time curve specified for the standard test	TRUE	Corre ct	FALSE	Incor rect				
TF	Thermal density in any structural fire is inversely propotional to surface area of structure	Flase	Corre ct	TRUE	Incor rect				
TF	Coefficient of fire resistance is inversely propotional to duration of fire.	TRUE	Corre ct	FALSE	Incor rect				
TF	While calculating duration of fire, densities of combustible material is inversely proportional to specific heat of fire.	TRUE	Corre ct	FALSE	Incor rect				
MC	Occupancies of fire load less than or equal to 275000 kcal / m2 can be considered under the categories of	Low Fire Load	Corre ct	Moderate Fire Load	Incor rect	High Fire Load	Incorr ect	None	Incorr ect

MC	Occupancies of Fire Load > 275000 but < 550000 kcal / m ² will be categorised under the	Low Fire Load	Incor rect	Moderate Fire Load	Corre ct	High Fire Load	Incorr ect	None	Incorr ect
TF	Ridges are usually made by projecting the fire walls and floors	TRUE	Corre ct	FALSE	Incor rect				
МС	Fire stops include	Itumuscent	Incor rect	Mortars	Incor rect	Silicone	Incorr ect	All	Corre ct
МС	openings are to be protected by vertical enclosures with the FRR hrs	1	Incor rect	2	Corre ct	3	Incorr ect	None	Incorr ect
MC	doors are used in places where the friction between the moving parts may cause danger like the door for the storage of explosives.	Solid	Incor rect	Spark Proof	Corre ct	Fire Resistan ce	Incorr ect	All	Incorr ect
MC	Door casings are covered with steel	Galvanized	Corre ct	Mild	Incor rect	Both	Incorr ect	stainless	Incorr ect
МС	Usually metallic doors can be considered as doors.	Non- combustible	Corre ct	Combustibl e	Incor rect	Both	Incorr ect	None	Incorr ect
МС	Minimum thickness of steel plate door is	3 mm	Incor rect	5 mm	Incor rect	6 mm	Corre ct	All	Incorr ect
МС	Maximum area of composite fire door ismetre square	3.2	Incor rect	4.2	Incor rect	5.2	Corre ct	None	Incorr ect
МС	Maximum height of composite fire door ismetre	2.74	Corre ct	3.74	Incor rect	3.5	Incorr ect	All	Incorr ect
МС	Maximum width of compostite fire door ismetre	1.44	Incor rect	2.44	Corre ct	3.44	Incorr ect	4.44	Incorr ect
MC	Spacing of hinges should not be more than mm for metal covered door	600	Incor rect	700	Incor rect	800	Incorr ect	900	Corre ct
TF	The bolts and latches shall be so arranged that the door can be opened from either sides.	TRUE	Corre ct	FALSE	Incor rect				
TF	The effectiveness of partitioned fire areas in preventing the spread of fire depends on the efficient design of fire area itself.	TRUE	Corre ct	FALSE	Incor rect				
TF	Connecting structures are required to be constructed with non-combustible materials	TRUE	Corre ct	FALSE	Incor rect				
MC	A horizontal projection of floor by about helps in preventing the spread of fire to upper floors	1 Mtr	Incor rect	1.12 Mtr	Incor rect	1.2 Mtr	Corre ct	1.5 Mtr	Incorr ect
МС	The density of Silicate fiber boards vary from kg/m³ to= kg/m³	300, 800	Incor rect	400, 900	Incor rect	180, 1300	Incorr ect	All	Corre ct

TF	Calcium Silicate Board can be used as indoor partition boards	TRUE	Corre ct	FALSE	Incor rect				
МС	Organic mineral content included upto% in calcium silicate boards	3 to 10	Corre ct	7 to 10	Incor rect	3 to 15	Incorr ect	All	Incorr ect
MC	CaSO ₄ .2H ₂ O is	calcium sulphate dihydrate	Incor rect	Gypsum	Incor rect	both	Corre ct	Perlite	Incorr ect
MC	Thickness of gypsum board varies between mm to mm.	1, 13	Incor rect	9.5, 25	Corre ct	5, 20	Incorr ect	All	Incorr ect
MC	Protective devices are	Sprinklers	Incor rect	Drenches	Incor rect	RCC frames	Incorr ect	All	Corre ct
МС	In this equestion T- To = 345 log10 (8t+1), t is	Furnace temp	Incor rect	Initial temp	Incor rect	Time	Corre ct	None	Incorr ect
МС	Test procedure described in the IS Code	3409	Incor rect	3309	Incor rect	3809	Corre ct	3709	Incorr ect
TF	Heat transferred to a structural element in a real fire is greater than in the furnace	TRUE	Corre ct	FALSE	Incor rect				
МС	Fire resistance test on separating elements of building, the code recommends an over pressure of	10 ± 5 Pa	Incor rect	1 N/m²	Incor rect	Both	Corre ct	None	Incorr ect
TF	The furnaces are fire chambers equipped with heating and mechanical loading devices for the test specimen	TRUE	Corre ct	FALSE	Incor rect				
TF	it is not recommended to eliminate the creep deformations during testing	FALSE	Corre ct	TRUE	Incor rect				
MC	In case of a separating element, its and integrity are to be observed	Load Bearing	Incor rect	Fire Load	Incor rect	Insulatio n Capacity	Corre ct	Heating	Incorr ect
МС	For separating elements are essential	Integirity failures	Corre ct	Joints	Incor rect	Holes	Incorr ect	All	Incorr ect
МС	During integrity test, cotton pads are placed on the unexposed surfae at the distance of	20 mm-30 mm	Corre ct	10 mm-20 mm	Incor rect	30 mm- 40 mm	Incorr ect	None	Incorr ect
TF	During failure criteria for insulation capacity, the sustained flaming with a duration of at least 10 seconds appears on the unexposed face	TRUE	Corre ct	FALSE	Incor rect				
TF	The dimensions of the critical cross-sectional area are called the critical dimensions	TRUE	Corre ct	FALSE	Incor rect				

TF	The duration of a fire in a compartment cannot be considered as the basis of deciding the fire resistance limit of structures	FALSE	Corre ct	TRUE	Incor rect				
MC	In the formula q = z βc Qe n, z is	Coefficient of incomplete chemical combustion	Incor rect	0.9 for liquid hydrocarbo n	Incor rect	Both	Corre ct	0.79- 0.90 for solid combus tibles	Incorr ect
МС	Specified limit of fire resistance in hours is	k _o	Incor rect	Ls	Corre ct	Both	Incorr ect	None	Incorr ect
MC	During hot & cold cycles of soaking, elements are immersed under for a maximum period ofhours.	10	Incor rect	12 hrs	Incor rect	20	Incorr ect	24	Corre ct