Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, July 2020

Course: Information Theory and Coding Program: B. Tech Electronics and Communication Engineering Course Code: ECEG 3025

Semester: VI Time 03 hrs. Max. Marks: 100

Instructions:

- 1. Attempt all the questions (Theory, Numerical, Case study etc.) on A4 size blank sheets.
- 2. Attempt all questions serially as per question paper.
- 3. Answer should be <u>neat and clean</u>. Draw a free hand sketch for circuits/tables/schematics wherever required.
- 4. Scan the whole answer script and check the resolution carefully before upload on the blackboard. Note that answer scripts will be considered for evaluation only through Blackboard. No other mode of submission is acceptable.
- 5. You are expected to be honest about each attempt which you make to progress in life

SECTION A [40 Marks]

S. No.																						Marks	CO
Q 1	Find	v V V V R the	Ra I G I I R	B G B B O	w [R O B G O	R R B V G	Y R G I G	G G G B Y	 V Y Y B V 	I Y B V	R G Y V I	R G V I	R Y O V B	V I V B	I B R G Y	G Y R G O	Y B R O G	O Y R Y O	0 0 1 G	B B I G	Y Y V R R	10	CO3
Q 2	of 75 a ma	Find out the channel capacity of a 4 kHz line having a signal and noise power to be of 75W and 6dB respectively. If telephone channel (of bandwidth 100N kHz) support a maximum capacity of 5.1 kbps. Determine the minimum value of SNR supported by the channel. Here N is the last two numerical digit of your enrollment number.												CO4									

NOTE : The submission time of the Question Paper Answer Sheet is 24 Hhrs from the scheduled time (exceptional provision due to extraordinary circumstance due to COVID-19 and due to internet connectivity issues in the farflung areas).

No Submission will be entertained after 24 Hrs

Q 3	In a facsimile transmission of a picture, there are 2.25 M pixels per frame. For good reception, 12 equal probable brightness levels are necessary. Determine the channel bandwidth required to transmit one picture in every 3 minutes, the signal to noise ratio is 30 dB. If the signal to noise ratio requirement increases to 40 dB, calculate the bandwidth required for the transmission of the picture. Also state the trade off between bandwidth and SNR by comparing the results.	10	CO4
Q 4	 A message signal is given as: m(t) = 3 Cos 1000πt. Determine (a) The signal to quantization noise ratio when this is quantized with 512 levels. (b) How many bits of quantization is required to achieve a SQR of at least 40 dB. 	10	CO1
	SECTION B [60 Marks]		
Q 5	State and prove Shannon channel capacity theorem.	10	CO2
Q 6	Draw the AMI, B8ZS, B6ZS and HDB3 line coding waveform (voltage) for the binary sequence 11100000000101 and 1010000000000110111.	10	CO 1
Q 7	A source X has seven symbols represented as x_1 , x_2 , x_3 , x_4 , x_5 , x_6 and x_7 with $P(x_1) = 0.37$, $P(x_2) = 0.33$, $P(x_3) = 0.16$, $P(x_4) = 0.07$, $P(x_5) = 0.04$, $P(x_6) = 0.02$ and $P(x_7) = 0.01$. Construct the Shannon-Fano code.	10	CO2
Q 8	The generator matrix for a (6, 3) block code is given below. Find all the code vectors for this code $\begin{bmatrix} 1 & 0 & 0 & : & 0 & 1 & 1 \\ 0 & 1 & 0 & : & 1 & 0 & 1 \\ 0 & 0 & 1 & : & 1 & 1 & 0 \end{bmatrix}$	10	CO3
Q 9	A rate 1/3 convolution encode has generating vectors as $V_1 = (1 \ 0 \ 1)$ and $V_2 = (1 \ 1 \ 1)$. Draw the trellis and code tree diagram.	10	CO3
Q 10	The generator polynomial of a (7, 4) cyclic code is $G(p) = p^3 + p^2 + 1$. Determine the code vectors of first 10 message using systematic cyclic code .	10	CO3

NOTE : The submission time of the Question Paper Answer Sheet is 24 Hhrs from the scheduled time (exceptional provision due to extraordinary circumstance due to COVID-19 and due to internet connectivity issues in the farflung areas).

No Submission will be entertained after 24 Hrs