

NOTE : The submission time of the Question Paper Answer Sheet is 24 Hhrs from the scheduled time (exceptional provision due to extraordinary circumstance due to COVID-19 and due to internet connectivity issues in the farflung areas).
No Submission will be entertained after 24 Hrs

Q 3	In a facsimile transmission of a picture, there are 2.25 M pixels per frame. For good reception, 12 equal probable brightness levels are necessary. Determine the channel bandwidth required to transmit one picture in every 3 minutes, the signal to noise ratio is 30 dB . If the signal to noise ratio requirement increases to 40 dB , calculate the bandwidth required for the transmission of the picture. Also state the trade off between bandwidth and SNR by comparing the results.	10	CO4
Q 4	A message signal is given as: $\mathrm{m}(\mathrm{t})=3 \operatorname{Cos} 1000 \pi \mathrm{t}$. Determine (a) The signal to quantization noise ratio when this is quantized with 512 levels. (b) How many bits of quantization is required to achieve a SQR of at least 40 dB .	10	CO1
SECTION B [60 Marks]			
Q 5	State and prove Shannon channel capacity theorem.	10	CO2
Q 6	Draw the AMI, B8ZS, B6ZS and HDB3 line coding waveform (voltage) for the binary sequence 11100000000101 and 101000000000000110111 .	10	CO 1
Q 7	A source X has seven symbols represented as $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{X}_{5}, \mathrm{X}_{6}$ and x_{7} with $\mathrm{P}\left(\mathrm{x}_{1}\right)=0.37, \mathrm{P}\left(\mathrm{x}_{2}\right)=0.33, \mathrm{P}\left(\mathrm{x}_{3}\right)=0.16, \mathrm{P}\left(\mathrm{x}_{4}\right)=0.07, \mathrm{P}\left(\mathrm{x}_{5}\right)=0.04, \mathrm{P}\left(\mathrm{x}_{6}\right)=0.02$ and $\mathrm{P}\left(\mathrm{x}_{7}\right)=0.01$. Construct the Shannon-Fano code.	10	CO 2
Q 8	The generator matrix for a $(6,3)$ block code is given below. Find all the code vectors for this code $\left[\begin{array}{lllllll} 1 & 0 & 0 & : & 0 & 1 & 1 \\ 0 & 1 & 0 & : & 1 & 0 & 1 \\ 0 & 0 & 1 & : & 1 & 1 & 0 \end{array}\right]$	10	CO3
Q 9	A rate $1 / 3$ convolution encode has generating vectors as $\mathrm{V}_{1}=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)$ and $\mathrm{V}_{2}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$. Draw the trellis and code tree diagram.	10	$\mathrm{CO3}$
Q 10	The generator polynomial of $a(7,4)$ cyclic code is $G(p)=p^{3}+p^{2}+1$. Determine the code vectors of first 10 message using systematic cyclic code.	10	CO3

NOTE : The submission time of the Question Paper Answer Sheet is 24 Hhrs from the scheduled time (exceptional provision due to extraordinary circumstance due to COVID-19 and due to internet connectivity issues in the farflung areas).
No Submission will be entertained after 24 Hrs

