Name: Enrolment No:		1 UPES UNIVERSITY WITH A PURPOS		
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, JUNE 2020				
Course: Process Optimization Program: Chemical Engineering: B.Tech. CERP Course Code: CHCE 3020/CHEG 455 No. of Pages: $1+3$		Semester: Time: Max. Marks:	VI 03 hrs . 100	
Instructions: In this Open $\operatorname{Book}(\underline{S})$ and Notes Exam, you are allowed any number of books, all handouts provided (including your textbook in xeroxed form), your own class notes and solutions to assignment problems, etc. (Obviously, now)				
PLEASE RETURN THE FILLED TABLES IN PROBLEM 2 OF THIS QUESTION PAPER AND SUBMIT THE SCAN OF ONLY THIS PAGE (WITH CALCULATIONS IN YOUR ANSWER SCRIPTS)				
Also, please show all intermediate steps to earn full credit.				
SECTION A: (Open Books Exam) XXX				
S. No.				CO
Q	XXX			CO1
SECTION B: (Open Books Exam) XXX				
Q	XXX			CO4
SECTION C: ALL THREE QUESTIONS HERE ARE COMPULSORY [TOTAL: 100 Points)				

Q. 1 We wish to optimize the following problem using particle swarm optimization (PSO) with two particles (SHOW YOUR CALCULATIONS IN YOUR ANSWER SCRIPTS AND SUBMIT ITS SCANNED COPY):

Minimize $f\left(x_{1}, x_{2}\right) \equiv\left(x_{1}-5\right)^{2}+\left(x_{2}-3\right)^{2}$
subject to the bounds:
$0 \leq x_{1} \leq 9$
$0 \leq x_{2} \leq 9$

Continued...
(a) Fill up Table 1.

Table 1: Initial, (0) ${ }^{\text {th }}$, solutions

Particle No., \boldsymbol{j}	$x_{\mathbf{1}, \boldsymbol{j}}^{(\mathbf{0})}$	$\boldsymbol{x}_{2, \boldsymbol{j}}^{(\mathbf{0})}$	$\boldsymbol{I}_{\boldsymbol{j}}^{(\mathbf{0})}$
$\mathbf{1}$			
$\mathbf{2}$			

b) Use each of the initial velocities, $V_{i, j}^{(0)}$, as 0 . Fill up Table 2 below (using constant values of $w=0.6, k_{1}=k_{2}=5$) [some values may need to be copied from Table 1]. Random numbers with a seed of 0.88876 are provided IN THE TEXT

Table 2:

Part. No., \boldsymbol{j}	$\boldsymbol{V}_{\mathbf{1}, \boldsymbol{j}}^{\mathbf{0}}$	$\boldsymbol{V}_{2, \boldsymbol{j}}^{\mathbf{0}}$	$\boldsymbol{x}_{\mathbf{1}, \boldsymbol{j}}^{\mathbf{0}}$	$\boldsymbol{x}_{\mathbf{2 , j}}^{\mathbf{0}}$	I_{j}^{0}	Pbest $_{1, j}^{0}$	Pbest $_{2, j}^{0}$	Gbest $_{1, j}^{0}$	Gbest $_{2, j}^{0}$
$\mathbf{1}$	0	0							
$\mathbf{2}$	0	0							

Q. 2 Consider the (same) function, $f\left(x_{1}, x_{2}\right)$, to be minimized:

Minimize $f\left(x_{1}, x_{2}\right) \equiv\left(x_{1}-5\right)^{2}+\left(x_{2}-3\right)^{2}$
subject to the bounds:
$0 \leq x_{1} \leq 9$
$0 \leq x_{2} \leq 9$
We wish to use Simulated Annealing to solve this problem.
(a) Write the expression (with numbers substituted) between u_{i} and x_{i}
(b) Generate an initial point, $u_{j}^{0}, j=1,2$
(c) Convert to $x_{j}^{0}, j=1,2$
(d) Evaluate the corresponding objective function, f^{0}.
(e) Using $s_{j}^{0}=0.5, j=1,2$, evaluate the next set of values, $u_{j}^{1}, j=1,2$ and $x_{j}^{1}, j=1,2$
(f) Find f^{1}
(g) Using $\mathrm{T}=30$, find out if this new point is to be accepted or not.
(30 Points)
Q. 3 We would like to solve a modified TSP (Travelling Salesman) problem discussed in the (BB) Lecture, with Headquarter as Node 1, and four additional nodes/shops numbered 2, 3, 4 and 5, as shown in the diagram below, using Single-Objective BINARY-CODED GA. CO3, 5

Develop the algorithm you would use to minimize the total distance covered by the salesman from Node 1 and back to node 1 but with and additional step that the salesman has to get back to node 1 after every node which is an even number (to pick up material at the headquarters, point 1 , as well as to report to the headquarters of what has happened at the last few nodes). The coordinates, $x_{\mathrm{i}}, y_{\mathrm{i}}$, are given for each node and the distance between the $i^{\text {th }}$ and $j^{\text {th }}$ nodes is d_{ij}.
(40 Points)

