PAPER-1 PAGE-1/2

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2020

Course: RESERVOIR ENGINEERING – II

Program: B. Tech (Applied Petro. Engg. with Gas Spl.)

Course Code: PEAU4014

Instructions: Assume any missing information.

Semester: VI, AcYear-2019-20

Time: 03 hrs.

Max. Marks: 100

Number of pages: -Two (2)

SECTION A (20 MARKS)

THIS SECTION CONTAINS FIVE (5) QUESTIONS. ALL QUESTIONS ARE COMPULSORY

S. No.	Statement of question	Marks	CO
Q 1	Complete the following sentences: (i) In the depleted drive, the liberated gas will be segregating vertically only if	4	CO1
Q 2	Enlist any four (4) favorable properties for oil recovery from an oil reservoir. The reservoir has Gravity- Drive mechanism.	4	CO1
Q 3	Indicate any four (4) Operations related with the time dependency of various operations effecting the life cycle of Oil & Gas fields.	4	CO2
Q 4	Discuss any four (4) Production forecast uncertainties of Oil Industry.	4	CO-2
Q 5	Describe briefly the Data Analysis Phase of Oil &Gas Field development	4	CO3

SECTION B (40 MARKS)

THIS SECTION CONTAINS FOUR (4) QUESTIONS. ALL QUESTIONS ARE COMPULSORY

S, No.	Statement of question	Marks	CO
Q 1	"Oil & Gas Field Development (OGFD) is a unique requirement of oil industry" Enlist the salient features of OGFD proposal.	10	CO4
Q 2	Write a brief note on Gas Well Monitoring with special reference to Deliverability and Gas Losses.	10	CO4

PAPER-1 PAGE-2/2

Q 3	Discuss the characteristics of Gas Cap Expansion Drive Mechanism and describe the essential conditions under which the modified material balance equation is used as performance prediction tool.	10	CO5				
Q 4	an estimated water influx constant of 130 bbl/day/psi. Calculate the cumulative wat influx after 100, 200, 300, and 400 days Following additional data may be used:						
	t, days P, psi 0 3500 (p _i						
	100 3450						
	200 3410	10	COL				
	300 3380	10	CO6				
	400 3340						
	Calculate the drive Indices of a reservoir has been under water flooding and obtained following data after 500 days of water flooding: $W_e = 1,773 \times 10^6 \text{ bbl.} N_p = 1,559,000 \text{ STB} P = 2264 \text{ Psi.} G_p = 9,866 \times 10^8 \text{ SCF.}$ The following reservoir parameters apply when the pressure is 2264 psi; $B_o = 1.308 B_g = 0.0008545 \text{ res. bbl.} / \text{STB}, R_s = 612 \text{ SCF.} / \text{STB}$						
	SECTION-C(40 MARKS) THIS SECTION CONTAINS TWO (2) QUESTIONS. ALL QUESTIONS ARE COMP	PULSORY	7				
S,No.	Statement of question	Marks	CO				
Q 1	(a) Discuss the merits and de-merits of Volumetric and Material Balance Equation, especially when these are used are used at any stage of depletion of Gas Reservoir.(b) A volumetric gas reservoir has the following production history and following data is also available:						
	Time, t Reservoir pressure, p Cumulative production, G _p years psia z MMMscf						
	0.0 1798 0.869 0.00 0.5 1680 0.870 0.96 1.0 1540 0.880 2.12 1.5 1428 0.890 3.21 2.0 1335 0.900 3.92	20	CO6				
	Φ =13% S _{wi} = 0.52% A= 1060 acres h = 54 ft. T 164 ° F Calculate the gas initially in place volumetrically and from the MBE.						
Q 2	Discuss depletion of Condensate Reservoir Under any two following conditions; (i) Natural depletion (ii) Injection of gas (iii) Water drive OR Discuss the Economic Share and Operational Activities related to hydrocarbon reservoir management.	20	CO6				