

## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

## **END Semester Examination, July 2020**

**Programme Name:** B.Tech., APE GAS

Semester : VI

Course Name : Well Logging Analysis and Well Testing

Time : 3 hrs

Course Code : PEAU 3015

Max. Marks: 100

Nos. of page(s) : 1

**Instructions:** 1. The answers are to be hand written on a paper, scanned (or snapshot) and uploaded (as single file) in the submission link on blackboard platform only.

2. Write Name, Roll Number and Page Numbers on all pages. Write Roll Number as file name.

3. The online test is open book based exam.

| L |     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . The omme     | test is oper | i dook t | aseu exan                 | .l.           |           |                     |        |            |              |     |
|---|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|----------|---------------------------|---------------|-----------|---------------------|--------|------------|--------------|-----|
|   | SNo | SNo Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |              |          |                           |               |           |                     |        | N          | <b>Aarks</b> | CO  |
|   | Q 1 | 1 Demonstrate with neat diagram the working principle of Induction log.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |              |          |                           |               |           |                     |        |            | 15           | CO1 |
|   | Q 2 | 2 Illustrate with neat diagram the functional components of Drill Stem Testing (DST) tool.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |              |          |                           |               |           |                     |        |            | 15           | CO2 |
|   |     | <ul> <li>a. Derive for pressure transient expression for multi-rate flow test in infinite-acting reservoir for slightly compressible liquids.</li> <li>b. Production rate during a 48-hours drawdown test declined from 1580 to 983stb/day. Rate and pressure data appear in Table below. Reservoir, PVT, and rock data are: P<sub>i</sub> = 2906 ps μ<sub>o</sub> = 0.6 cP, β<sub>o</sub> = 1.270 rb/stb, h = 40 ft, Φ = 12%, C<sub>t</sub> = 17.5 x 10<sup>-6</sup>, and r<sub>w</sub> = 0.29 ft Estimate the permeability, k and skin factor, S.</li> </ul> |                |              |          |                           |               |           |                     |        | ite<br>si, |              |     |
|   |     | Tim<br>(hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rate (stb/day) | <b>A</b> 0,  | (hr)     | Flow<br>Rate<br>(stb/day) | · <b>1</b> 0, | Time (hr) | Flow Rate (stb/day) | (psig) |            |              |     |
|   | Q 3 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1580           | 2023         | 6.55     | 1440                      | 1834          | 19.2      | 1160                | 1771   | 1          | 10+25        | CO3 |
| ' | ŲJ  | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1580           | 1968         | 7        | 1440                      | 1830          | 20        | 1160                | 1772   | 1          | 10743        | COS |
|   |     | 1.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1580           | 1941         | 7.2      | 1440                      | 1830          | 21.6      | 1137                | 1772   |            |              |     |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |          |                           |               |           |                     |        |            |              |     |

2.4 7.5 8.95 28.8 3.45 9.6 3.98 33.6 4.5 14.4 4.8 36.2 5.5 6.05 

Deduce the pressure transient equation for flow of compressible gases through porous medium from the following diffusivity equation developed using the pressure-squared approach given by,

$$\frac{\partial^2 p^2}{\partial r^2} + \frac{1}{r} \frac{\partial p^2}{\partial r} = \frac{\phi \overline{\mu}_g}{kp} \frac{\partial p^2}{\partial t}$$

a. With the reservoir initially at constant pressure, i.e.,  $p^2=p_r^2$  ( $\partial$ +t=0) for  $r_w \le r \le r_e$ 

35 CO4

b. The wellbore boundary condition is

Q 4

$$r \frac{\partial p^{2}}{\partial r} \bigg|_{well} = \frac{q\mu_{g}p}{\pi kh} = \frac{q_{sc}\overline{\mu}_{g}}{\pi kh} \frac{p_{sc}T_{R}\overline{z}}{T_{sc}}$$
 for  $t > 0$ ;  $\partial A$ 

c. The pressure at the outer boundary (radius = infinity) is the same as the initial pressure for t > 0, i,e.,  $p^2 \to p_r^2$  as  $r \to \infty$  for  $t \ge 0$ .