

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Examination, July 2020

Programme: B.Tech Mechanical Engg / ADE Course Name: Applied Numerical Techniques Course Code: MATH3001 No. of page/s: Semester : VI Max. Marks : 100 Attempt Duration : 3 Hrs.

Note:

- 1. Read the instruction carefully before attempting.
- 2. This question paper has two section, Section A and Section B.
- 3. There are total of six questions in this question paper. One in <u>Section A</u> and five in <u>Section B</u>
- 4. Section A consist of multiple choice based questions and has the total weightage of 60%.
- 5. <u>Section B</u> consist of long answer based questions and has the total weightage of 40%.
- 6. The maximum time allocated to <u>Section A</u> is 90 minutes.
- 7. <u>Section B</u> to be submitted within 24 hrs from the scheduled time i.e. if the examination starts at 10:00 AM, the long answers must be submitted by 09:59:59 AM next day. Similarly, if the examination starts at 2:00 PM it must be submitted by 01:59:59 PM next day. (*Exceptional provision due extraordinary circumstance due to COVID-19 and due to internet connectivity issues in the far-flung areas*).
- 8. No submission of <u>Section B</u> shall be entertained after 24 Hrs.
- 9. <u>Section B</u> should be attempted after <u>Section A</u>
- 10. <u>The section B</u> should be attempted in blank white sheets (hand written) with all the details like programme, semester, course name, course code, name of the student, Sapid at the top (as in the format) and signature at the bottom (right hand side bottom corner)
- 11. Both section A & B should have questions from entire syllabus.
- 12. The COs mapping, internal choices within a section is same as earlier

(b) Lagra	l data? (Se	lect all tha			С			
(b) Lagra	on Gregor							
(b) Lagra		(a) Newton Gregory forward interpo						
	(a) Newton Gregory forward interpolation formula(b) Lagrange interpolation formula(c) Newton divided difference interpolation formula							
(c) Newt								
(d) Newto	on Gregor	y backward	l interpolati	on formula				
The value of $\nabla^3 y$	v_3 from the	e following	data is		2			
	26	265	27	2 75	C			
X	2.0	2.05	2.7	2.75				
У	32.5980	34.4750	36.4470	38.5210				
(b) 0.092 (c) 0.007 (d) None of these								
Consider the foll	owing tabl	le			2			
x ;	$x_0 \qquad x_1$	<i>x</i> ₂ <i>x</i>	3		C			
<i>y</i> 2	$y_0 y_1$	<i>y</i> ₂ <i>y</i>	3					
While finding $\frac{dy}{dx}$ at the tabulated point x_0 using the first derivative formula derived from Newton-Gregory forward interpolation, the coefficient of $\Delta^3 y_0$ is								
(b) $-\frac{1}{3h}$ (c) $\frac{1}{3h}$	of these							
	x y (a) 0.085 (b) 0.092 (c) 0.007 (d) None Consider the foll x y Consider the foll While finding $\frac{dy}{dx}$ formula derived coefficient of Δ^3 (a) $\frac{1}{2}$ (b) $-\frac{1}{3h}$ (c) $\frac{1}{3h}$	$\begin{array}{c c} x & 2.6 \\ \hline y & 32.5980 \end{array}$ (a) 0.085 (b) 0.092 (c) 0.007 (d) None of these Consider the following table $\begin{array}{c} \hline x & x_0 & x_1 \\ \hline y & y_0 & y_1 \end{array}$ While finding $\frac{dy}{dx}$ at the table formula derived from New coefficient of $\Delta^3 y_0$ is (a) $\frac{1}{2}$ (b) $-\frac{1}{3h}$	x2.62.65y32.598034.4750(a) 0.085(b) 0.092(c) 0.007(d) None of theseConsider the following table \overline{x} x_0 x_1 x_2 x_1 y y_0 y_1 y_2 y While finding $\frac{dy}{dx}$ at the tabulated poin formula derived from Newton-Gregor coefficient of $\Delta^3 y_0$ is(a) $\frac{1}{2}$ (b) $-\frac{1}{3h}$ (c) $\frac{1}{3h}$ (a) $\frac{1}{2h}$	y = 32.5980 = 34.4750 = 36.4470 (a) 0.085 (b) 0.092 (c) 0.007 (d) None of these Consider the following table $\frac{x = x_0 = x_1 = x_2 = x_3}{y = y_0 = y_1 = y_2 = y_3}$ While finding $\frac{dy}{dx}$ at the tabulated point x_0 using the formula derived from Newton-Gregory forward is coefficient of $\Delta^3 y_0$ is (a) $\frac{1}{2}$ (b) $-\frac{1}{3h}$ (c) $\frac{1}{3h}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			

Section – A (Attempt all the questions)

(d)	While evaluating $\int_{1}^{3} \frac{1}{1+x^{2}} dx$ with step size $h = 0.2$ which of the	2M					
	following methods cannot be applied?	CO2					
	(a) Trapezoidal rule						
	(b) Simpson's $\frac{1}{3}$ rule						
	(c) Simpson's $\frac{3}{8}$ rule						
	(d) None of these						
(e)	While solving a transcendental equation $f(x) = 0$, if $f(a)$. $f(b) < 0$	2M					
	in the interval $[a b]$, then the equation has	CO3					
	(a) exactly one root in [a b]						
	(b) at least one root in [a b]						
	 (c) no root in [a b] (d) None of these 						
(f)	The fixed point iteration method defined as $x_{n+1} = \emptyset(x_n)$ converges in the interval $I = [a \ b]$ if	2M					
		CO3					
	(a) $ \emptyset'(x) = 0$ in I (b) $ \emptyset'(x) < 1$ in I						
	(c) $ \phi'(x) > 1$ in I						
	(d) None of these						
(g)	Which of the following is a diagonally dominant system?	2M					
	(a) $27x + 6y - z = 85; 6x + 15y + 2z = 72; x + y + 54z = 110$	CO4					
	(b) $3x - 4y - z = 40$; $x - 2y + 12z = -86$; $x - 6y + 2z = -32$						
	(c) $4x = 2y - z - 1$; $x + z = -4$; $3x - 5y + z = 3$ (d) None of these						
(h)	[2 3 1]	2M					
(11)	While decomposing the matrix $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ as a product <i>LU</i>						
	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} p & q & r_1 \end{bmatrix}$	CO4					
	where $L = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix}$ and $U = \begin{bmatrix} p & q & r \\ 0 & s & t \\ 0 & 0 & u \end{bmatrix}$, the <i>L</i> matrix is obtained						
	as LD C IJ LO U U						
	r 1 0 01						
	(a) $L = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 3/2 & -7 & 1 \end{bmatrix}$						
	[3/2 -7 1]						

	(b) $L = \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ -3/2 & 7 & 1 \end{bmatrix}$ (c) $L = \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ 3/2 & 7 & 1 \end{bmatrix}$ (d) None of these	
(i)	Given $3\frac{dy}{dx} + 5y^2 = \sin x$, $y(0.3) = 5$. Using a step size $h = 0.3$, the	2M
	value of $y(0.9)$ using Euler's method is most nearly	CO5
	(a) -35.318 (b) -36.458 (c) -600.213 (d) None of these	
(j)	What are the methods to solve ODE? (Select all that apply)	2M
	(a) Finite difference method(b) Taylor series method(c) Runge-Kutta method(d) Euler method	CO5
(k)	The Picard's solution in two approximations of the equation	2M
	$\frac{dy}{dx} = x - y, \ y(0) = 1 \text{ is}$ (a) $1 - x + x^2 - \frac{x^3}{6}$ (b) $1 + x - x^2 + x^3$ (c) $1 + x - x^2 + \frac{x^3}{6}$ (d) None of these	CO5
(l)	Given y_0, y_1, y_2 and y_3 . The Milne's corrector formula to find y_4 for	2M
	$\frac{dy}{dx} = f(x, y) \text{ is}$ (a) $y_4 = y_2 + \frac{h}{3}(f_2 + 4f_3 + f_4)$ (b) $y_4 = y_0 + \frac{h}{3}(f_2 + 4f_3 + f_4)$ (c) $y_4 = y_2 + \frac{h}{3}(f_2 + 2f_3 + f_4)$ (d) None of these	CO5

(m)	The finite difference scheme for the equation $2y'' + y = 5$ is	2M
	(a) $y_{i+1} + 2y_i + y_{i-1} + h^2 y_i = 5h^2$	606
	(b) $y_{i+1} - 2y_i + y_{i-1} + h^2 y_i = 5h^2$	CO6
	(c) $y_{i+1} - 2y_i + y_{i-1} - h^2 y_i = 5h^2$	
(n)	(d) None of these $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial t^2} + \frac{\partial^2 u}{\partial$	2M
(11)	The equation $x^2 \frac{\partial^2 u}{\partial x^2} + y^2 \frac{\partial^2 u}{\partial y^2} = x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y}$ is classified as	2111
	(a) Parabolic	CO6
	(b) Elliptic	
	(c) Hyperbolic (d) None of these	
(0)	(d) None of these $\frac{\partial u}{\partial u} + \frac{\partial^2 u}{\partial u}$	2M
(0)	To solve $\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}$ by Bendre-Schmidt recurrence relation with	2111
	h = 1, the value of k is	CO6
	(a) $1/2$	
	(b) 1/8 (c) 4	
	(d) None of these	
(p)	The following boundary value problem is solved using finite	3M
	difference method by taking number of subintervals $n = 3$	
		CO6
	$x \frac{d^2 y}{dx^2} + y = 0; y(1) = 1, \ y(2) = 2$	
	Then, the values of $y\left(\frac{4}{3}\right)$ and $y\left(\frac{5}{3}\right)$ are	
	(a) $y\left(\frac{4}{3}\right) = \frac{408}{487}$, $y\left(\frac{5}{3}\right) = \frac{570}{487}$ (b) $y\left(\frac{4}{3}\right) = \frac{508}{487}$, $y\left(\frac{5}{3}\right) = \frac{670}{487}$ (c) $y\left(\frac{4}{3}\right) = \frac{608}{487}$, $y\left(\frac{5}{3}\right) = \frac{770}{487}$ (d) $y\left(\frac{4}{3}\right) = \frac{708}{487}$, $y\left(\frac{5}{3}\right) = \frac{870}{487}$	
(q)	Given the differential equation	3M
		CO5
	$2\frac{dy}{dx} = (1+x^2)y^2$ and $y(0) = 1, y(0.1) = 1.06, y(0.2)$	
	ax = 1.12, y(0.3) = 1.21.	
	-1.12, y(0.3) - 1.21.	
	The approximate value of $y(0.4)$ using Milne's predictor corrector	
	method is	
1	(a) 1.27	

	(b) 1.37(c) 1.41(d) None of these					
(r)	From the following table, the approximate value of $y(10)$ is $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
(s)	Consider the following table	3M				
	x 1 2 3 4 5 6 y(x) 198669 295520 389418 479425 564642 644217	CO2				
	The value of $y''(1)$ is approximately equal to (a) -710 (b) -3098 (c) -1986 (d) None of these					
(t)	While solving the system $\begin{bmatrix} 20 & 1 & -2 \\ 3 & 20 & -1 \\ 2 & -3 & 20 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 17 \\ -18 \\ 25 \end{bmatrix}$ using Gauss- Jacobi iteration with initial values $\{x^{(0)}, y^{(0)}, z^{(0)}\} = \{0, 0, 0\}$, the solutions obtained in the second iteration $\{x^{(2)}, y^{(2)}, z^{(2)}\}$ are approximately equal to					
	(a) $x^{(2)} = 1.02$, $y^{(2)} = -0.965$, $z^{(2)} = 1.1515$ (b) $x^{(2)} = -1.02$, $y^{(2)} = 0.965$, $z^{(2)} = 1.1515$ (c) $x^{(2)} = 1.02$, $y^{(2)} = 0.965$, $z^{(2)} = -1.1515$ (d) None of these					
(u)	The value of the integral $\int_0^2 e^{x^2} dx$ estimated by using Trapezoidal mula with 10 integrals is					
	rule with 10 intervals is	CC				

	(a) 17.0621				
	(b) 17.9983				
	(c) 18.3464				
	(d) None of these				
(v)	Consider $y' = e^x + y$ with $y = 0$ at $x = 0$. Then the value of $y(0.2)$				
	using Modified Euler's method correct to 3 decimals is (Hint: Use step size $h = 0.2$)	CO5			
	(a) 0.2				
	(b) 0.2421				
	(c) 0.2468				
	(d) None of these				
(w)	Using Taylor's series expansion (considering the terms up to 4	3 M			
	derivatives), the value of $y(0.1)$ from $y' = -1 + x^2 y$, $y(0) = 1$ is	CO5			
	approximately equal to				
	(a) 0.7865				
	(b) 0.8665				
	(c) 0.9003				
	(d) None of these				
(x)	The value of $y(0.2)$ obtained by solving $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, $y(0) = 1$ using	3M			
	Runge-Kutta method of fourth order is	CO5			
	(a) 0.096				
	(b) 1.196				
	(c) 2.164				
	(d) None of these				
(y)	While solving the parabolic equation $u_{xx} = 2u_t$, $u(0, t) = u(4, t) =$	3 M			
	0 and $u(x, 0) = x(4 - x)$ with step size $h = 1$, The values of $u(2,3)$	CO6			
	and $u(3,4)$ obtained by Bendre-Schmidt recurrence relation are given				
	by				
	(a) $u(2,3) = 1.5$ and $u(3,4) = 0.75$				
	(b) $u(2,3) = 0.75$ and $u(3,4) = 1.5$				
	(c) $u(2,3) = 0.25$ and $u(3,4) = 0.95$				

	(d) None of these	
--	-------------------	--

Section – B (Attempt all the questions) (5 × 8 marks)

2. The following table shows how the relative density ρ of air varies with altitude *h*. Using the *Gauss forward* central difference interpolation technique, estimate the relative density of air at 5 km.

h, (km)	0	1.525	3.050	4.575	6.10	7.625	9.150
ρ	1	0.8617	0.7385	0.6292	0.5328	0.4481	0.3741

[CO1,8 Marks]

3. A gas turbine is used to produce power as a gas flows through it. If the process is isothermal, the equation for work is given by

$$\dot{W} = -\dot{n}RT\int_{inlet}^{outlet}\frac{dP}{P}$$

where

 \dot{n} =molar flow rate, in kmol/s R= universal gas constant, 8.314 kJ/kmol K T= temperature, in K P= pressure, in kPa \dot{W} =power, in kW.

Using *Simpson's* $1/3^{rd}$ *rule* on 10 subintervals, estimate the power produced in an isothermal gas turbine if $\dot{n} = 0.1$, T = 400, $P_{inlet} = 500$ and $P_{outlet} = 100$.

[CO2, 8 Marks]

4. The following system of equations is designed to determine concentrations in a series of coupled reactors as a function of the amount of mass input to each reactor:

Obtain the concentration values correct to 3 decimals by using *Gauss-Seidel* iterative technique with initial approximate solution as $[c_1^{(0)} c_2^{(0)} c_3^{(0)}] = [300\ 220\ 310].$

[CO4, 8 Marks]

5. Determine the value of y(0.4) using Milne's predictor-corrector method given $y' = xy + y^2$, y(0) = 1; Find the initial values by Taylor series method.

[CO5, 8 Marks]

6. Compute *u* for one time step by Crank Nicholson's method if $16u_t = u_{xx}$; 0 < x < 1, t > 0; u(x, 0) = u(0, t) = 0 & u(1, t) = 50t by taking h = 0.25

[CO6, 8 Marks]
