	ne: olment No:	UN				
	UNI	VERSITY OF PETROLE			IES	
Cou	irse Code : MEMA	al Science 2001 Nos. of J	page(s) : 04	l I	Semester Time Max. Mark	: IV :03 Hrs s:100
	NOTE: THIS	question paper has 2 SECTION-A (1			Section B.	
	Section A carries 25 mark Section A are compulsory	s. This section has mu	Iltiple-choice o		estions. All the	questions of
1.	What is a surface in crystalline aggregate, ((a) Edge dislocation	nperfection, which se called? (b) Stacking fault	parates crysta (c) Grain bo		ent orientations (d) Screw dislo	
2.	The lattice parameter (a) a \neq b \neq c and α = β = (c) a \neq b \neq c and $\alpha \neq \beta$ =	= γ	(b) a ≠ b ≠ o	c and $\alpha = \gamma =$	= 90° ≠ β = 90°, γ = 120°	
3.	(a) Between upper an(b) Above the upper c(c) Above the upper c	ocess of steels, the spend lower critical temper ritical temperature and critical temperature and critical temperature and ritical temperature and	rature and cool d cooled in the d cooled in the	ed in the fu still air furnace		
		cture and an atomic r	adius of 0.128	nm. What i	s the inter-plane	er spacing of
4.	d ₁₁₁ planes?	(h) 0.208 nm	(c) 0 207 m	n	(d) 0 200 nm	
4. 5.	d ₁₁₁ planes? (a) 0.307 nm Which of the followin each other? (a) Chemical affinity	(b) 0.208 nm g factors is more relev (b) Valency	(c) 0.397 nr vant to represe (c) Crystal s	ent complet	(d) 0.298 nm e solubility of tv (d) Relative size	

- 7. The Miller indices h, k, and I of parallel planes in a BCC lattice should satisfy which of the following X-ray Diffraction Reflection rules
 (a) h + k + I should be even
 (b) h, k, and I should all be either even or odd
 (c) h, k, and I should form Pythagoras triplet
 (d) all planes allow reflections
- 8. Nodular gray cast iron is obtained from gray cast iron by adding a small amount of
 (a) Manganese
 (b) Phosphorous
 (c) Magnesium
 (d) Chromium

9.	An alloy consists of 90% aluminium and 10 and copper are 26.98 g/mol and 63.55 g/mo alloy is		-
	(a) 4.5 (b) 3.5	(c) 6.0	(d) 5.0
10.	Which of the following defects affect the de		
	(a) Schottky (b) Frenkel	(c) Stone-Wales	(d) Antisite
11.	Which one of the following pairs is not corre	•	ius r and Edge alamant a
	Space Lattice Rela (a) Simple cubic structure	$a^2 = 4r^2$	lius r and Edge element a
	(b) Body-centered cubic structure	$3a^2 = 16r^2$	
	(c) Triclinic	$2a^2 = 3r^2$	
	(d) Face-centered cubic structure	$a^2 = 8r^2$	
12.	On completion of heat treatment, the result (a) Rate of cooling is greater than the critica (b) Rate of cooling is less than the critical co (c) Martensite formation start temperature (d) Martensite formation finish temperature	I cooling rate ooling rate is above the room tempe	erature
13.	Material suitable for bearings subjected to h (a) Silicon bronze (b) White metal	eavy loads is (c) Monel metal	(d) Phosphor bronze
14.	Convert direction [2 $ar{1}$ $ar{1}$ 1] from four-index s	vstem to three-index syst	tom
14.	(a) [2 1 0] (b) [3 0 1]	(c) [111]	(d) [121]
15.	The material property that depends purely c	on the basic crystal structu	ure is
		n (c) Yield strength	(d) Elastic Modulus
16.	Duralumin contains (a) 3.5 – 4.5% Cu, 0.4 – 0.7% Mg, 0.4 – 0.7% (b) 3.5 – 4.5% Cu, 1.2 – 1.7% Mn, 1.8 – 2.3% (c) 4.0 – 4.5% Mg, 3.0 – 4.0% Cu and balance (d) 5.0 – 6.0% Sn, 2.0 – 3.0% Cu and balance	Ni, 0.6% each of Si, Mg & Al	Fe and balance Al
17.	Alnico, an alloy used extensively for perm cobalt in the following ratio (a) 50:20:20:10 (b) 40:30:20:10	nanent magnets contains (c) 50:20:10:20	s iron, nickel, aluminium and (d) 30:20:30:20
18.	The phosphorous percentage in phosphor be	ronze is	
10.	(a) 0.5 (b) 1	(c) 2.5	(d) 5.5
19.	A unit cell of a crystal is shown in the given f the direction (arrow) shown in the figure is (a) [0 1 2] (b) [0 2 1] (c) [1 2 0]	igure. The Miller indices (d) [2 0 1]	of

20.	Alloying element mainly used to improve the endurance strength of steels is (a) Nickel (b) Vanadium (c) Molybdenum (d) Tungsten	
21.	From the list given below, choose the most appropriate set of heat treatment processes and their corresponding characteristics:PROCESSCHARACTERISTICSP-Tempering1.Q-Austempering2.R-Martempering3.Cementite is converted into bainiteQ-AustemperingBoth hardness and brittleness are reduced5.Bainite is converted into martensite(a) P-3, Q-1, R-5(b) P-4, Q-3, R-2(c) P-4, Q-1, R-2(d) P-3, Q-5, R-4	
22.	A screw dislocation 1. Lies parallel to its Burger's vector 2. Lies perpendicular to its Burger's vector 3. Moves in a perpendicular direction to the Burger's vector 4. Moves in an inclined direction to the Burger's vector Select the correct answer using the codes given below: Codes: (a) 1 and 4 (b) 1 and 3 (c) 2 and 3 (d) 2 and 4	
23.	Match List I with List II and select the correct answer:List I (Phase diagram)List II (Characteristic)A. Isomorphous system1. One liquid decomposes into another liquid and solidB. Eutectic system2. One liquid and another solid combine to form a new solidC. Peritectic system3. Two metals are completely soluble in liquid state and completely insoluble in solid stateD. Monotectic system4. Two metals, soluble in solid and liquid stateCodes:A B C D(a) 2 3 4 1(b) 4 1 2 3(c) 2 1 4 3(d) 4 3 2 1	
24.	Match List I (Alloying elements for tool steel) with List II (Improved mechanical property) and select the correct answer using the codes given below the Lists.List I (Alloying elements for tool steel)List II (Improved mechanical property)A. Carbon1. HardnessB. Manganese2. Hot HardnessC. Chromium3. Lower Critical TemperatureD. Vanadium4. ToughnessCodes:ABCD(a) 1342(b) 2431(c) 1432(d) 2341	
25.	Which one among the following is the most effective strengthening mechanism of non-ferrous metal?(a) Solid solution hardening (c) Grain size refinement(b) Strain hardening (d) Precipitation hardening	

SECTION-B (15 x 5 = 75 Marks)

Section B carries 75 marks. All the questions of Section B are compulsory and carry equal marks.

Q. No.		Marks	СО
1.	Sketch a completely labelled Fe-Fe ₃ C equilibrium phase diagram showing all the necessary temperatures, compositions, invariant points and phases/micro-constituents. Differentiate between hypo-eutectoid and hyper-eutectoid alloys.	09	
	A 0.80 % C steel is slowly cooled from 750 °C to a temperature slightly below 723 °C. Assuming that the austenite is completely transformed to α -ferrite and cementite, describe the structure/morphology at room temperature, which will be thus formed in each case with the help of appropriate diagrams and calculate: a) the weight percent of ferrite formed, b) the weight percent of cementite formed.	06	CO2 CO3
2.	Define critical cooling rate. Sketch completely labelled TTT curve for eutectoid plain carbon steel and state its utility and limitations. Plain carbon steel containing 0.6 wt. % carbon is heated 25 °C above the upper critical temperature and heat treated separately as follows: (a) Quenched in cold water (b) Quenched in water and reheated at 600 °C Describe the structure/morphology at room temperature, which will thus formed in each case with the help of appropriate diagrams.	10	CO4
	What do you understand by case hardening? Briefly describe the Cyaniding process of case hardening.	05	
3.	What are non-ferrous alloys? How they are classified. How the aluminium alloys are designated? Discuss the composition, properties and applications of the two main alloys of Aluminum, Magnesium, Copper and Nickel.	10	CO3
	Define composite. What is synergistic effect? How the composites are classified? Give broad classification of composites.	05	
4.	What is cast iron? Enumerate different types of cast irons and briefly describe how they are produced? Draw the microstructures of each type and discuss their important properties and applications.	10	CO3
	What is a crystal defect? Enumerate different types of crystal defects.	05	CO1
5.	What is fatigue? Draw S-N curve for mild steel and aluminium and explain endurance limit of a material.	05	
	What is creep and creep rate? Draw a classical creep curve and explain all stages of a classical creep curve.	05	CO5
	Fused silica has a surface energy of 4.32 J/m ² and an elastic modulus of 69 GPa. A large plate of this material is to withstand a nominal stress of 35 MPa. Using Griffith's theory of fracture, determine the largest internal flaw size that can be tolerated without fracture.	05	