Name: Enrolment No:			
Programme Name: B.Tech/Mechanical and ADE Semester : VI Course Name $:$ Strength of materials Course Code $:$ MECH 2012 Max. Marks : 100 Nos. of page(s) $:$: 06 Instructions: Attempt all the questions as directed. Assume suitable data if missing.			
SECTION A			
S. No.	MCQ	Marks	CO
1	The bending moment at end supports of a simply supported beam subjected to a couple of $200 \mathrm{~N}-\mathrm{m}$ at both the supports will be; (a)Maximum (b) Zero (c) $\mathbf{2 0 0} \mathbf{N}-\mathbf{m}$ (d) Nothing can be said		
2	Two identical circular rods of same diameter and same length are subjected to same magnitude of axial tensile force. One of the rods is made out of mild steel having the modulus of elasticity of 206 GPa . The other rod is made out of cast iron having the modulus of elasticity of 100 GPa . Assume both the materials to be homogeneous and isotropic and the axial force causes the same amount of uniform stress in both the rods. The stresses developed are within the proportional limit of the respective materials. Which of the following observations is correct; (a) Both rods elongate by the same amount (b) Mild steel rod elongates more than the cast iron rod (c) Cast iron rod elongates more than the mild steel rod (d) As the stresses are equal strains are also equal in both the rods		
3	A material has a Poisson's ratio of 0.5. If uniform pressure of 300 GPa is applied to that in one direction material, the volumetric strain of it will be; (a) 0.50 (b) 0.20 (c) 0.25 (d) Zero		
4	A block $100 \mathrm{~mm} \times 100 \mathrm{~mm}$ base and 10 mm height. direct shear stress in the element, when a tangential force of 10 kN is applied to the upper edge to a displacement 1 mm relative to lower face, will be; a) 1 Pa b) $1 \mathbf{M P a}$ c) 10 MPa d) 100 Pa		
5	A steel bar 600 mm long and having 30 mm diameter, is turned down to 25 mm diameter for one fourth of its length. It is heated at 30 degree C above		

SECTION B

S. NO.	Assignment		CO
Q 1	A beam is loaded as shown in figure below. Compute; a. Deflection at point E and D. b. The maximum deflection c. Slop at end A and B	15	CO 3
Q 2	(a) A cylindrical shell is 3 m long; 1 m in diameter and the thickness of metal is 10 mm . It is subjected to an internal pressure of $150 \mathrm{~N} / \mathrm{cm}^{2}$. Calculate the change in dimensions of the shell and the maximum intensity of shear stress induced. Given $\mathrm{E}=200 \mathrm{GPa}$ and Poisson's ratio $=0.3$. (b) Two shafts of the same material and same lengths are subjected to the same torque. If the first shaft is of a solid circular section, the second shaft is of hollow circular section, whose internal diameter is $2 / 3$ of the outside diameter and the maximum shear stress developed in each shaft is the same, compare the weights of the shafts	08 07	CO 2
Q 3	(a) Starting thereon all the important values of shear force and bending moment, construct the shear force and bending moment diagrams for the beam loaded as shown in figure. State the position of points of inflexion on the beam if any. (b) Draw the shear force and bending moment diagram for the beam loaded as shown in figure below. State the position of points of inflexion on the beam if any.	08	CO4

		07	
Q 4	A simply supported beam of 2-m span carries a uniformly distributed load of 200 KN / m over the whole span; the cross section of beam is an I- section with a top flange as $60 \mathrm{~mm} \times 20 \mathrm{~mm}$, bottom flange as $100 \mathrm{~mm} \times 20 \mathrm{~mm}$ and the web as 100 $\mathrm{mm} \times 20 \mathrm{~mm}$. The overall depth of the section is 120 mm . Determine the maximum shear stress in the beam and draw the stress distribution over the depth of the section. Also, calculate the percentage of shear force that is carried by the web. OR	15	CO4
Q. 5	At a point in a bracket, the stress on two mutually perpendicular planes are 100 $\mathrm{N} / \mathrm{mm}^{2}$ (tensile) and $50 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile). The shear stress across the planes is 80 $\mathrm{N} / \mathrm{mm}^{2}$. Find using Mohr stress circle or otherwise calculate: a. Magnitude and direction of the resultant stress on plane making an angle of 20^{0} with the plane of the first stress. b. Maximum shear stress and location of its plane. c. Principal stresses and the location of principal planes.	15	CO3

