UPES SAP ID No.:	

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, July 2020**

Programme: B.Sc. Physics (H) Semester : IV **Course Name: Elements of Modern Physics**

Course Code: PHYS 2005

No. of page/s: 21

Max. Marks: 100

Attempt Duration: 3 Hrs.

Note:

1. Read the instruction carefully before attempting.

2. This question paper has two section, Section A and Section B.

- 3. There are total of six questions in this question paper. One in Section A and six in Section B
- 4. Section A consist of multiple choice based questions and has the total weightage of 60%.
- 5. **Section A** will be conducted online on BB Collaborate platform
- 6. **Section B** consist of long answer based questions and has the total weightage of 40%. The questions for section B shall also appear in BB Collaborate
- 7. Section B is to be submitted within 24 hrs from the scheduled time i.e. if the examination starts at 10:00 AM, the long answers must be submitted by 09:59:59 AM next day. Similarly, if the examination starts at 2:00 PM it must be submitted by 01:59:59 PM next day. (Exceptional provision due extraordinary circumstance due to COVID-19 and due to internet connectivity issues in the far-flung areas).
- No submission of Section B shall be entertained after 24 Hrs.
- 9. Section B should be attempted after Section A
- 10. Section B should be attempted on blank white sheets (hand written) with all the details like programme, semester, course name, course code, name of the student, Sap id at the top (as in the format) and signature at the bottom (right hand side bottom corner)
- 11. Both section A & B should have questions from entire syllabus.
- 12. The COs mapping, internal choices within a section is same as earlier

Section – A (Attempt all the questions)

(60 marks. Please write how marks have been distributed)

1. MCQs

003					
CO3 Heavy nuclei have					
O more neutrons than	protons				
O equal number of pr	otons and neutrons				
O more electrons that	n neutrons				
O more protons than	neutrons				
Active Goals					
Adtons ID G	oal	Goal Set Name	Category	_	
ac.in/webspps/assessment/tal	kefaunch.jsp?course_assec	sement_id=_70167_1&course_id=_36157	_1&content_ld=_1727264_1&step=n	ul	
Autions ID (n	Preview Test: End Semester Exa Goal Set Name			
	90al 203	Goal Set Name Course Goals	Calegory Course Objectives		
QUESTION 2				3 points	Save Answer
CO3					
A beryllium-8 atom at r	est undergoes double	alpha decay as follows			
80 111	4				
${}_{4}^{8}$ Be $\rightarrow {}_{2}^{4}$ He +	2 He				
The atomic masses are	e:				
4					
⁴ He 4.00260	,				
8 Be 8.00530	5				
The kinetic energy of e	acn oeparung o-partici	e, in KeV, IS Closest 10			
0 65					
O 46					
O 92					
Active Goals Actions ID	Dosi	Goal Set Name	Calegory		
© © CO3	003	Course Goals	Course Objectives		
QUESTION 3				1.8 points	Save Answer
CO2	latera a finite remai				
	isvare a truth about qua	entum mechanics? (Select all that			
_	em in interfere with the	elf when passing through double s	Die.		

□ Ener	gy is quar	ntized.				
☐ A pa	rticle has	a chance to be found	in a region which should classically be	impossible for it to be found in.		
Active Go Actions	oals ID	@oal	Qoal Set Name	Catagory		
Ø	COZ	CO2	Course Goals	Course Objectives		
QUESTI	ON 4				1.8 points	Save Answe
CO1 Which an	nong the 1	following is (/are) true	In case of Photo-electric effect? (Sele	t all that apply)		
☐ Itisa	an Instant	aneous process				
☐ The	extinction	voltage always remai	ns constant with increase in intensity i	or a given frequency of light.		
_			ns constant with increase in intensity to does not change with increase in inte			
☐ The I	kinetic en	ergy of photo-electron		nsity of incident radiation		
☐ The I	kinetic end work funct	ergy of photo-electron	does not change with increase in inte	nsity of incident radiation		
☐ The l	kinetic end work funci	ergy of photo-electron	does not change with increase in inte	nsity of incident radiation		
☐ The I	kinetic end work funci	ergy of photo-electron tion of a given metal in	does not change with increase in inte	nsity of incident radiation	_	
☐ The I	kinetic end work functions ID	ergy of photo-electron tion of a given metal in Goal	does not change with increase in Inte ncreases with increase in frequency of Qual Bet Name	nsity of incident radiation incident radiation Catagory	0.8 points	Save Answe
Antive Go	kinetic end work functions ID	ergy of photo-electron tion of a given metal in Goal	does not change with increase in Inte ncreases with increase in frequency of Qual Bet Name	nsity of incident radiation incident radiation Catagory	0.8 points	Save Answe
Active Go	work functionals ID CO1	ergy of photo-electron tion of a given metal in Goal CO1	does not change with increase in Inte ncreases with increase in frequency of Qual Bet Name	nsity of incident radiation incident radiation Category Course Objectives		Save Answe
QUESTIO CO3 If a C-14 to 1/8 of 1	kinetic eni work functionals ID CO1	ergy of photo-electron tion of a given metal in Goal CO1 File of 5730 years, the ntity?	does not change with increase in Inter- ncreases with increase in frequency of Qual Set Name Course Goals	nsity of incident radiation incident radiation Category Course Objectives		Save Answe
QUESTIC CO3 If a C-14 to 1/8 of 1	work functions ON 5 has a half	ergy of photo-electron tion of a given metal in Goal CO1 f-life of 5730 years, the ntity? ars	does not change with increase in Inter- ncreases with increase in frequency of Qual Set Name Course Goals	nsity of incident radiation incident radiation Category Course Objectives		Save Answe

QUESTION 8				0.6 points	Save Answer
CD1					
	ter wave was suggested	d by			
O Laplace					
O de Broglie					
O Helsenberg					
O Schrodinger					
Active Goals					
Aditions ID	Goal	Goal Set Name	Category		
© Ø CO1	CO1	Course Goals	Course Objectives		
QUESTION 9				1.8 points	Save Answer
CO4 Which of these is/a	re true statements? (8e	elect all that apply)			
	-	y condition to produce Laser.			
Absorption is a	lways stimulated				
☐ Spontaneous e	mission is always accor	mpanied by stimulated emission.			
Example of opt	ical pumping is Ruby La	aser.			
Active Goals Actions ID		Goal Set Name	0-f		
O O CO4	Goal CO4	Course Goals	Category Course Objectives		
QUESTION 10				0.8 points	Save Answer
CO2					

)			Preview Test: End Semester Exami	ination Part A - Elements		
0	travel in the sa	ame direction as that o	of the incident photon.			
0	have the same	e wavelength as that o	of the incident photon.			
0	All of the above	e				
	tve Goals ions ID	Çozi	Qoal Set Name	Calagory		
Ö	Ø CO4	CO4	Course Goals	Course Objectives		
QUE	STION 13				0.8 points	Save Answer
co	1					
The	Compton shift	Δλ is twice the Compt	ton wavelength If the scattering angle is			
0	90°					
0	45 ⁰					
	1800					
0	00					
	tve Goals			n-4		
Aol	ions ID	Goal	Goal Set Name	Calegory		
Aol Aol		Qoal CO1	Qual Set Name Course Goals	Course Objectives		
Aci Aci	ions ID		*		3 points	Save Angwer
Aci Aci	CO1		*		3 points	Save Answer
Q U E	CO1 CO1 CO1 CO1 CO1	CO1	Course Goals cour In a 1 gm sample of Thorlum-232 In	Course Objectives		Save Answer
QUE CO Fin	CO1 CO1 CO1 CO1 CO1	CO1	Course Goals cour In a 1 gm sample of Thorlum-232 In	Course Objectives		Save Answer
QUE CO Fin	CO1 CO1 STION 14 d the number of stant of Thorium	CO1	Course Goals cour In a 1 gm sample of Thorlum-232 In	Course Objectives		Save Answer

https://learn.upea.ac.in/webspps/assessment/take/faunch.jsp?course_assessment_id=_70167_1&course_id=_36167_1&content_id=_1727264_1&step=nut

8/21

Which of the folio	wing is/are the proper	Preview Test: End Semester Ex- ities of a wave function? (Select all that	apply)		
☐ It must be sin					
☐ It must be no	rmailzable.				
☐ It should not	be finite everywhere.				
	-	continuous first derivative everywhere.			
Active Goals	initial and there are	to the second se			
Adions ID	Qoal	Qoal Set Name	Calegory		
	CO2	Course Goals	Course Objectives		
QUESTION 22				1.8 points	Save Answer
CO2					
		_			
Suppose ¥:	ા લે ^{2×} is eigen fur	nction of operator $\frac{d^3}{dx^3}$ then the	eigen value will be		
Suppose ^{y/=}	e e eigen fur	nction of operator $\frac{d^3}{dx^3}$ then the	eigen value will be		
	e e is eigen fur	enction of operator $\frac{d^3}{dx^3}$ then the	eigen value will be		
○ 4e²x	e ^{2 x} is eigen fur	nction of operator $\frac{d^3}{dx^3}$ then the	eigen value will be		
○ 4e²×	e eigen fur	enction of operator $\frac{d^3}{dx^3}$ then the	eigen value will be		
○ 4e ^{2x} ○ 8e ^{2x} ○ 4	e ^{2 x} is eigen fur	nction of operator $\frac{d^3}{d\chi^3}$ then the	eigen value will be Calegory		
_ 4e ^{2x} _ 8e ^{2x} _ 4 _ 8 Aotive Goals					
O 4e ^{2x} O 8e ^{2x} O 4 O 8 Authors ID	G oal	Qual Set Name	Callegory		
4e ^{2x} 8e ^{2x} 4 8 Active Goals	Goall CO2	Qual Set Name	Callegory	0.8 points	Save Answer
4e ^{2x} Be ^{2x} 4 8 Author Goals Authors ID CO2 CO2	Goall CO2	Qual Set Name	Callegory	0.8 points	Save Answer

19/2020				Preview Test	End Semester Ex	mination Part A - Elements		
	Active G Actions		@oal	@oa	i Set Name	Calagory		
	Ø	002	CO2	Cou	rse Goals	Course Objectives		
-	QUESTI	ON 26					1.8 points	Save Answer
	CO3							
	The deca	y constan	t of a radioactive nu	clide is 4.5 X 10 ⁻³ s ⁻¹ . T	he half-life of th	e nuclide, in minutes, is closest to		
	O 3.6							
	O 6.4							
	0 25							
	O 6.7							
	Active G Actions		Qoal	@oa	í Set Name	Category		
	② ②	CO3	CO3	Cou	rse Goals	Course Objectives		
-	QUESTI	ON 27					3 points	Save Answer
		evnertello	n units of position o	f a nadicia havino wave	tunction w - m	x between x = 0 & 1, ψ = 0		
	elsewher		ii value oi position o	a paracic having wave	nunction w - u	I between I - v a 1, y - v		
	° <u>a</u> ⁴ 3							
	3							
	O a2							
	○ <u>a²</u>							
	○ <u>a</u> ⁴							
	4							

Active Goals					
Adions ID	Goal	Qoal Set Name	Category	_	
© Ø CO3	003	Course Goals	Course Objectives		
QUESTION 3)			3 points	Save Answer
		36) with respect to alpha, beta-plus, a c. The following atomic masses are kr			
32 P	31,973907				
36 16	35.967081				
36 CI	35.968307				
36 Ar 18	35.967546				
	A = 36) nuclide is: eta-plus decay only.				
	pha decay only.				
O subject to a	eta-plus or beta-minus de	cay, but not to alpha decay.			
O subject to b	eta-minus decay only.				
O subject to b	eta-minus decay only.				
o subject to b	eta-minus decay only. Qual	Qoal Set Name	Calagory	_	

https://earn.upea.ac.in/webspps/assessment/take/faunch.jsp?course_assessment_id=_70167_1&course_id=_38167_1&content_id=_1727264_1&step=nut

16/21

/2020			Preview Test: End Semester Exc	mination Part A – Elementa		
	CO3					
	One of the fusion in	eactions that occur in t	ine sun is			
	3 He + 3 He	→ ⁴ ₂ He + ¹ ₁ H +	1 H			
	The following mass	ses are known				
	The reaction energ	y, In MeV, Is closest to	ı			
	O 19					
	O 13					
	O 17					
	O 11					
	Active Goals Actions ID	Qoal	Goal Set Name	Calagory		
	© © CO3	003	Course Goals	Course Objectives		
	QUESTION 32				0.6 points	Save Answer
	CO1					
		omagnetic radiation wit	threst mass and	charge.		
	o variable, zero					
	O zero, zero					
	O variable, nega	tive				
	O zero, negative					

CO2						
			skes a transition from 3rd level to the g ngth 20.9 nm. What is the width of this		el)	
○ 2 mm						
0.21	nm					
0.54	ım					
0.891	ım					
Active Go	als					
Adtions	ID	Qoal	Goal Set Name	Calagory	_	
Ø	CG2	CO2	Course Goals	Course Objectives		
QUESTIC	N 36				3 points	Save Answer
CO2						
A beam of transmissi			a potential barrier of height 30 eV and	width 0.05 nm. Calculate the		
			a potential barrier of height 30 eV and	width 0.05 nm. Calculate the		
transmissi			a potential barrier of height 30 eV and	width 0.05 nm. Calculate the		
© 0.44			a potential barrier of height 30 eV and	width 0.05 nm. Calculate the		
0.44 0.56			a potential barrier of height 30 eV and	width 0.05 nm. Calculate the		
0.44 0.56 0.1.2	on coeffi		a potential barrier of height 30 eV and	width 0.05 nm. Calculate the		
0.44 0.56 0.1.2	on coeffi		a potential barrier of height 30 eV and	width 0.05 nm. Calculate the		
0.44 0.56 1.2 1 Autive Go	on coeffi	iclent.				
0.44 0.56 1.2 1 Active Go	on coeffi	Goal	Qoal Set Name	Calegory	1.8 points	Savo Answor
0.44 0.56 1.2 1 Active Go Autions	on coeffi	Goal	Qoal Set Name	Calegory	1.8 points	Savo Answer
transmissi 0.44 0.56 1.2 1 Active Go Actions QUESTIC	on coeffi	Goal	Qual Set Name Course Goals	Calegory	1.8 points	Save Answer
transmissi 0.44 0.56 1.2 1 Active Go Actions QUESTIC	alis ID CO2	@call CO2	Qual Set Name Course Goals	Calegory	1.8 points	Save Answer

	Preview lest: End Semester	Examination Part A – Elements		
2.4 fm				
○ 4.8 fm				
O 9.6 Å				
Active Goals				
Autions ID Goal	Goal Set Name Course Goals	Category Course Objectives		
© Ø CO3 CO3	Course Goods	ount oncomes		
QUESTION 38			0.8 points	Save Answer
CO3				
The rate of radioactive deca				
number of unstable nuc	tel			
 number of protons 				
o number of neutrons				
nature of rays				
Active Goals				
Aditions ID Goal	Qual Set Name	Calegory		
© © CO3 CO3	Course Goals	Course Objectives		
QUESTION 39			1.8 points	Save Answer
CO3				
8candium 8c (Z = 21, A = 4	4) decays by emitting a positron. The nucleide t	hat is the product of the decay is		
O TI (Z = 22, ∧ = 44)				
O 8c (Z = 21, A = 43)				
O 8c (Z = 21, A = 45)				
Ca (Z = 20, A = 44)				
Active Goals				

_	4-	_			nination Part A - Elements		
A	anothe	CO3	Qual CO3	Goal Bel Name Course Goals	Calagory Course Objectives	_	
	· w						
QU	EST	ION 40				0.8 points	Save Answer
C	03						
		_	_	ombarded a very thin gold foll with alpha			
(mos grai	st of the a e angles.	particles passed throu	ugh the foll with negligible deflection but	some were deflected through		
(allo	of the a pa	articles passed through	the foll without significant deflection.			
) the	a particle:	s were linearly polarize	ed after passing through the foli.			
			particles were able to	penetrate the foil.			
	otive G anotic		Goal	Goal Set Name	Callegory		
	0	003	CO3	Course Goals	Course Objectives	_	
Click	: Save	and Subr	mit to save and submi	it. Click Save All Answers to save all an	iswers.		
Click	: Save	and Subi	mit to save and submi	it. Click Save All Answers to save all an	isi <i>vers.</i> Save All An	nswers Sawa	and Submit
Clici	: Save	and Subi	mit to save and submi	it. Click Save All Answers to save all as		newers Save :	and Submit
Clici	: Save	and Subi	mit to save and submi	it. Click Save All Answers to save all an		newers Savo :	and Submit
Clici	: Save	and Subi	mit to save and submi	it. Click Save All Answers to save all an		nswers Sawa	and Submit
Clici	i Save	and Subi	mit to save and submi	it. Click Save All Answers to save all an		newers Save a	and Submit
Clici	: Save	and Subi	mit to save and submi	it. Click Save All Answers to save all an		nswers Save :	and Submit
Clici	: Save	and Subi	mit to save and submi	it. Click Save All Answers to save all an		nswers Sever	and Submit
Chici	: Save	and Subi	mit to save and submi	it. Click Save All Answers to save all an		newers Save a	and Submit
Clici	i Save	and Subi	mit to save and submi	it. Click Save All Answers to save all as		newers Savu :	and Submit
Clici	: Save	and Subi	mit to save and submi	it. Click Save All Answers to save all au		nswers Sevil a	and Submit

Section – B (Attempt all the questions) (40 marks)

	(10.1101)		
Q2	Starting from the momentum conservation equations (in Compton effect) derive a relation between the angle of scattering \emptyset and angle of recoil θ . $tan\theta = \frac{\cot \frac{\emptyset}{2}}{1 + \frac{hv}{2}}$	6	CO1
	$1 + \frac{nv}{m_o c^2}$ where v is the frequency of incident photon and m_0 is the rest mass of the electron.		

Q3	Find the Normalization constant N for the wave-function		
	$\varphi(x) = N e^{- x } \sin \alpha x$	8	CO2
Q4	A beam of electrons impinges on an energy step barrier of height 0.035eV. Calculate the fraction of electrons reflected and transmitted at the barrier when the energy of the electron is (i) 0.045eV (ii) 0.020eV	6	CO2
Q5	Write a note on the semi-empirical mass formula inclusive of all terms of binding energy.	8	CO3
Q6	A piece of an ancient wooden boat shows an activity of ¹⁴ C of 3.9 disintegrations per minute per gm of Carbon. Estimate the age of the boat if the half-life of ¹⁴ C is 5568 years. Assume that the activity of fresh ¹⁴ C is 15.6 dpm. gm.	6	CO3
Q7	Establish a relation between Einstein's A and B coefficients.	6	CO4
