JPES SAP ID No.: $\qquad$
14 UPES
UNIVERSITY WITH A PURPOSE

# UNIVERSITY OF PETROLEUM AND ENERGY STUDIES 

End Semester Examination, July 2020

Programme: B.Sc. Physics (H)<br>Course Name: Elements of Modern Physics<br>Course Code: PHYS 2005<br>Semester : IV<br>Max. Marks : 100<br>Attempt Duration : 3 Hrs.<br>No. of page/s: 21

## Note:

1. Read the instruction carefully before attempting.
2. This question paper has two section, Section A and Section B.
3. There are total of six questions in this question paper. One in Section $\mathbf{A}$ and six in Section B
4. Section A consist of multiple choice based questions and has the total weightage of $60 \%$.
5. Section $\mathbf{A}$ will be conducted online on BB Collaborate platform
6. Section B consist of long answer based questions and has the total weightage of $40 \%$. The questions for section B shall also appear in BB Collaborate
7. Section B is to be submitted within 24 hrs from the scheduled time i.e. if the examination starts at 10:00 AM, the long answers must be submitted by 09:59:59 AM next day. Similarly, if the examination starts at 2:00 PM it must be submitted by 01:59:59 PM next day. (Exceptional provision due extraordinary circumstance due to COVID-19 and due to internet connectivity issues in the far-flung areas).
8. No submission of Section B shall be entertained after 24 Hrs .
9. Section B should be attempted after Section A
10. Section B should be attempted on blank white sheets (hand written) with all the details like programme, semester, course name, course code, name of the student, Sap id at the top (as in the format) and signature at the bottom (right hand side bottom corner)
11. Both section A \& B should have questions from entire syllabus.
12. The COs mapping, internal choices within a section is same as earlier

Section - A (Attempt all the questions)
( 60 marks. Please write how marks have been distributed)

1. MCQs

## QUESTION 1

CO3
Heavy nuclel have
more neutrons than protans
equal number of peotons and neutrons
more electrons than neutrons
more protons than neutrans
Aotive Goals
Aotions ID Goal Ooal Sel Name Catogory


| T1antes | Prevewr Test End Sementor Baminalion Part A - Evmerts. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Aotions ID | Goal | Goul Set Mams | Catagory |  |  |  |
|  | (3) 903 | CO3 | Course Gosk | Course Cejectives |  |  |  |
|  | QUESTION 2 |  |  |  | 3 points | fave Ancwer |  |
|  | CO3 |  |  |  |  |  |  |
|  | A beryllum-8 atom at rest undergoes double alpha decay as follows |  |  |  |  |  |  |
|  | ${ }_{4}^{8} \mathrm{Be} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{2}^{4} \mathrm{He}$ |  |  |  |  |  |  |
|  | The atomk masses are: |  |  |  |  |  |  |
|  | ${ }_{2}^{4} \mathrm{He} \quad 40028013$ |  |  |  |  |  |  |
|  | ${ }_{4}^{8} \mathrm{Be} \quad 8005300$ |  |  |  |  |  |  |
|  | The kinetic energy of each departing a-particie, in keV, is closest to |  |  |  |  |  |  |
|  | 130 |  |  |  |  |  |  |
|  | O6 |  |  |  |  |  |  |
|  | $\bigcirc 46$ |  |  |  |  |  |  |
|  | O92 |  |  |  |  |  |  |
|  | Aotive Boals |  |  |  |  |  |  |
|  | (1) 903 | CO3 | Course Goak | Course Cejectives |  |  |  |
|  | QUESTION 3 |  |  |  | 1.8 points | Bave Ancwer |  |
|  | CO2 |  |  |  |  |  |  |
|  | Which of the following ls/are a truth about quantum mechanics? (Belect all that apply) |  |  |  |  |  |  |
|  | $\square$ An electron can seem to interfere with itself when passing through doutle silts |  |  |  |  |  |  |
|  | $\square$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  | $3 / 21$ |



```
            The fotal probability of finding the parificie in space must be unity.
            \square \text { Energy is quantized.}
            A particle has a chance to be found in a region which should ctassically be impossible for it to be found in.
        Aotive Goals
\begin{tabular}{|c|c|c|c|c|}
\hline Aotions & ID & Goal & Coul Sel Name & Catogory \\
\hline 56 & CO2 & CO2 & Course Goak & Course Cejectives \\
\hline
\end{tabular}
QUESTION 4
1.8 points 8ave Answer
```


## COI

```
Which among the following is (/are) true in case of Photo-electric ellect? (Beiect all that appty)
```

```it is an instantaneous process
\(\square\) The extinction woiltage always remains constant with increase in intensity for a given frequency of inght.
\(\square\) The kinetic energy of photo-electron does not change with Increase in intensity of incident radiation
\(\square\) The work function of a given metal Increases with increase in frequency of incident radiation
Aotive Goals
\begin{tabular}{lllll} 
Aotions & ID & Goal & Ooal Sot Name & Catogory \\
\hline \hline\(⿴ 囗\) & COI & COI & Course Gosk & Course Cbjectives \\
\hline
\end{tabular}
QUESTION 5
CO3
If a C-14 has a har-ife of 5730 years, then how long will it take for the number of C -14 atoms in a sample to drop to \(1 / 8\) of inftial quantity?
\(258 \times 10^{4}\) years
\(1.72 \times 10^{4}\) years
\(1.44 \times 10^{4}\) years
\(229 \times 10^{4}\) years
```






Preview Test End Semestar Exanination Part A - Exemerts.

| Aothve Boals |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Aotions | ID | Goal | Goal Bet Mame | Catogory |
| (3) 0 | CO3 | $\mathrm{CO3}$ | Course Gosks | Course Cbjectives |

QUESTION 15
CO3
lsobones are those which haveBame number of neutronsBame number of protonsBame number of electronsBame atomic number
Aotive Goals

| Aotions | ID | Goal | Ooal Set Mame | Catogary |
| :--- | :--- | :--- | :--- | :--- |
| $\boldsymbol{O}$ | $\mathrm{CO3}$ | $\mathrm{CO3}$ | Course Qoals | Course Cbjectives |

QUESTION 16
CO4
The dimension of the ratio of the probabilites of spontaneous and stimulated emission is$M^{-2} L^{2} T^{-1}$$M^{2} L^{-2} T$$M^{-2} L^{2} T^{-2}$$M^{2} L^{2} T^{-1}$

| mrasaso | Provew Test End Somerner Buanination Part A - Evmerts. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Aotive Goalc |  |  |  |  |  |
|  | Aotions ID | Goal | Qual Iet Mame | Catogory |  |  |
|  | (1) CO4 | CO4 | Course Gosk | Course Cejectives |  |  |
|  | QUESTION 17 |  |  |  | 3 points | Eave Ancwor |
|  | CO1 |  |  |  |  |  |
|  | Find the condition at which de Broglle wavelength equals the Campton waveiength. |  |  |  |  |  |
|  | $\mathrm{v}=0.7 \mathrm{c}$ |  |  |  |  |  |
|  | $\mathrm{V}=\mathrm{c}$ |  |  |  |  |  |
|  | $\mathrm{v}=0.5 \mathrm{c}$ |  |  |  |  |  |
|  | $\mathrm{v}=0.2 \mathrm{c}$ |  |  |  |  |  |
|  | Aotive Goals |  |  |  |  |  |
|  | (6) COT | COH | Course Gosk | Course Cejectives |  |  |
|  | QUESTION 18 |  |  |  | 0.8 points | Fave Ancwer |
|  | CO2 |  |  |  |  |  |
|  | The total probability of fliding the particie in space must be |  |  |  |  |  |
|  | zero |  |  |  |  |  |
|  | $\bigcirc$ |  |  |  |  |  |
|  | Unity |  |  |  |  |  |
|  | Ofetinity |  |  |  |  |  |
|  | Aotive Goals |  |  |  |  |  |
|  | Aotions ID | Goal | Soal Set Mame | Catogory |  |  |
|  | (3) CO2 | CO2 | Course Gosk | Course Cejedives |  |  |

QUESTION 18
CO2
The total probability of finding the particie in space must bezero2UnityIntinity
Goals


```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{23}{*}{7192020} & \multicolumn{6}{|l|}{Prevew Test End Semeshar Beanhation Part A - Euments.} \\
\hline & \multicolumn{6}{|l|}{Which of the following ls/are the properties of a wave function? (Belect all that apply)} \\
\hline & \multicolumn{6}{|l|}{\(\square\) it must be single valued.} \\
\hline & \multicolumn{6}{|l|}{\(\square\) it must be normalzable.} \\
\hline & \multicolumn{6}{|l|}{\(\square\) it ahould not be finte everywhere.} \\
\hline & \multicolumn{6}{|l|}{\(\square\) It must be continuous and have a continuous frst derivative everywhere.} \\
\hline & \multicolumn{6}{|l|}{Aotive Goals} \\
\hline & Aotions ID & Goal & Ooul Iot Mams & Catogory & & \\
\hline & (-) \(0^{\text {co2 }}\) & CO2 & Course Gosk & Course Cojectives & & \\
\hline & QUESTION 2 & & & & 1.8 points & Bave Ancwer \\
\hline & \multicolumn{6}{|l|}{\(\mathrm{CO2}\)} \\
\hline & \multicolumn{6}{|l|}{Suppose \(\psi^{\prime}=e^{2 x}\) is eigen function of operator \(\frac{d^{3}}{d x^{3}}\) then the eigen value will be} \\
\hline & \multicolumn{6}{|l|}{\(4 e^{2 x}\)} \\
\hline & \multicolumn{6}{|l|}{\(8 e^{2 x}\)} \\
\hline & \multicolumn{6}{|l|}{4} \\
\hline & \multicolumn{6}{|l|}{8} \\
\hline & \multicolumn{6}{|l|}{Aotive Goals} \\
\hline & Aotions ID & Goal & ©oul Sot Name & Catogory & & \\
\hline & (-) \(0^{002}\) & CO2 & Course Gosk & Course Cejectives & & \\
\hline & \multicolumn{4}{|l|}{QUESTION 23} & 0.8 points & Bave Ancwar \\
\hline & \multicolumn{6}{|l|}{CO 3} \\
\hline & \multicolumn{6}{|l|}{Gamma (v) radiation are fast moving} \\
\hline & \multicolumn{6}{|l|}{-} \\
\hline
\end{tabular}
```



[^0]


| Trasose | Provew Test End Somentar Exaninalion Part A - Evmerts. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Z $=37$ and $\mathrm{N}=55$ |  |  |  |  |  |
|  | $\mathrm{z}=37$ and $\mathrm{N}=92$ |  |  |  |  |  |
|  | Aotive Goals |  |  |  |  |  |
|  | Aotions ID | Goal | Qual Iet Mams | Catogory |  |  |
|  | (\%) $0^{\text {cos }}$ | CO3 | Course Goak | Course Cejectives |  |  |
|  | QUESTION 30 |  |  |  | 3 points | Bave Ancwar |
|  | CO3 |  |  |  |  |  |
|  | Determine the stability of $\mathrm{Cl}(z=17, A=36)$ with respect to alpha, beta-plus, and beta-minus. Do not consider the possbility of decay by electron capture. The following atomic masses are known: |  |  |  |  |  |
|  | ${ }_{2}^{4} \mathrm{He} \quad 4.000603$ |  |  |  |  |  |
|  | ${ }_{15}^{32} \mathrm{P} \quad 31.973907$ |  |  |  |  |  |
|  | ${ }_{16}^{36} 5 \quad 35.967081$ |  |  |  |  |  |
|  | ${ }_{17}^{36} \mathrm{Cl} \quad 35.966307$ |  |  |  |  |  |
|  | ${ }_{18}^{36} \mathrm{Ar} \quad 35.967546$ |  |  |  |  |  |
|  | The Ca ( $z=17, A=36$ ) muclide is: |  |  |  |  |  |
|  | subject to beta-plus decay only. |  |  |  |  |  |
|  | subject to alpha decay only. |  |  |  |  |  |
|  | subject to beta-plus or beta-minus decay, but not to alpha decay. |  |  |  |  |  |
|  | subject to beta-minus decay only. |  |  |  |  |  |
|  | Aotive Goak |  |  |  |  |  |
|  | Aotions ID | Goal | Qoal Set Mame | Catogory |  |  |
|  | (1) © 003 | co3 | Course Gosk | Course Cejectives |  |  |
|  | QUESTION 31 |  |  |  | 3 points | 8ave Ancwar |






## QUESTION 38

0.8 points 8ave Ancwer

## CO3

The rate of radioactive decay is proportional to
number of unstable nuciel
number of protons
number of neutrans
nature of rays


## QUESTION 39

1.8 points zave Ancwor
CO3
Bcandlum $\mathrm{BC}(Z=21, A=44)$ decays by emilting a positron. The nucielde that is the product of the decay is
$\mathrm{TI}(Z=22, A=44)$
$3 c(Z=21, A=43)$
$\operatorname{sc}(z=21, A=45)$
$\mathrm{Ca}(\mathrm{Z}=20, \mathrm{~A}=44)$
Aotive Goals


| Section - B (Attempt all the questions) (40 marks) |  |  |  |
| :---: | :---: | :---: | :---: |
| Q2 | Starting from the momentum conservation equations (in Compton effect) derive a relation between the angle of scattering $\varnothing$ and angle of recoil $\theta$. $\tan \theta=\frac{\cot \frac{\emptyset}{2}}{1+\frac{h v}{m_{o} c^{2}}}$ <br> where $v$ is the frequency of incident photon and $m_{0}$ is the rest mass of the electron. | 6 | CO1 |


| Q3 | Find the Normalization constant N for the wave-function | $\varphi(x)=N e^{-\|x\|} \sin \alpha x$ | $\mathbf{8}$ |
| :--- | :--- | :---: | :---: |
| Q4 | A beam of electrons impinges on an energy step barrier of height 0.035 eV . Calculate <br> the fraction of electrons reflected and transmitted at the barrier when the energy of the <br> electron is (i) 0.045 eV (ii) 0.020 eV | $\mathbf{6}$ | $\mathbf{C O 2}$ |
| Q5 | Write a note on the semi-empirical mass formula inclusive of all terms of binding <br> energy. | $\mathbf{8}$ | $\mathbf{C O 3}$ |
| Q6 | A piece of an ancient wooden boat shows an activity of ${ }^{14} \mathrm{C}$ of 3.9 disintegrations per <br> minute per gm of Carbon. Estimate the age of the boat if the half-life of ${ }^{14} \mathrm{C}$ is 5568 <br> years. Assume that the activity of fresh ${ }^{14} \mathrm{C}$ is 15.6 dpm. gm. | $\mathbf{6}$ | $\mathbf{C O 3}$ |
| Q7 | Establish a relation between Einstein's A and B coefficients. | $\mathbf{6}$ | $\mathbf{C O 4}$ |


[^0]:    

