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UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
End Semester Examination, July 2020

Course: Mathematical Physics 111 Semester: 1V
Course Code: PHYS 2004 Time: 03 hrs.
Programme: B.Sc. Physics (H) Max. Marks: 100

Instructions: Attempt all questions from PART A (60 Marks) and PART B (40 Marks). All questions are
compulsory.

PART A

Instructions: PART A contains 25 questions for a total of 60 marks. It contains 22 multiple-choice questions and 3
multiple answer gquestions. Multiple answer questions may have more than one correct option. Select all the correct
options. You need to answer PART A within the slot from 02:00 AM to 05:00 PM on 10" July 2020. The due
time for PART A is 05:00 PM on 10" July 2020. After the due time, the PART A will not be available.
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The nature of the singularity of the function f(z) =

Removable Singularity
Essential Singularity
Pole

None of these
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Q1 (iv)

The residue of the function f(z) = ﬁ at the pole z = 1 is given by
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Let P(z) = a+ bzand fC %Z)dz = fC —-dz = 2mi, where C is the circle |z| = 1.
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Then the value of the constants a and b is
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Laplace transform of t3e =3t is
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L[2sin2tcos4t] =................
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If F(s) is the Fourier transform of f(x), then the Fourier transform of f(x — a) is

A. —e!®SFE(s).

B. e IF(s).

C. e'*F(s).

D. None of these.
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Let f(x) be a function defined on (—o0, ) and is piecewise continuous, differentiable
in each finite interval and is absolutely integrable on (—oo, o). Then Fourier transform
of f(x) is given by,

A FIf()] = F(s) = [, f(x)e"*dx.
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B. FIf(x)] = F(s) = =", f(x)e"*dx.
C. FIf@)] =F(s) = 5", f(x)e'*dx.
D. FIf(0)] = F(s) == [, f(x)e'*dx
The Laplace transform of the piecewise continuous function
0,0<t<2, . .
f) = {k , Y (k is a constant) is
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The Fourier sine transform of e is
2 s
A. \/;(1+52)'
B. \F !
Q1 (xi) () co3
2 1
C. \/;(1+52)'
2 S
D. \/;(1—52)
The Laplace transform of a unit step function with step at point ‘a’ is given by
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If F(s) is the Fourier transform of f(x), then the Fourier transform of f(x) cos ax is
A S[F(s—a)—F(s +a)].
Q1 (xiii) B. [F(s —a) - F(s + a)]. 2 | coa
C. %[F(s— a)+ F(s+a)l.
D. ~[F(s —a) + F(s + a)].
The value of the integral [ =3¢ 5(t — 4)dt is
A. e—lZS
Q1 (xiv) B. e125 2 CO4
C. e”
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If F(s) and G(s) are the Fourier transform of f(x) and g(x) respectively and c; and
c, are constants, then
A. F7 1 F(s) 4 c,G(8)] = ¢4 f(x).c, g(x)
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D. F7'c;F(s) + c2G(s)] = ¢y f(x) + ¢, g(x)
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The residue of the function f(z) = m at the pole z = —1 is given by
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The Laurent’s series expansion of the function f(z) = TS valid in the region
1<|z|<2is
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Q1 (xviii)

In the Laurent’s series expansion of f(z) = ez_1—1 about the point z = 0 valid in the

region 0 < |z| < 2m, which are the following are true? (More than one answer can be
correct)

A. coefficientof 1/z is1
B. coefficient of 1/z is 0
C. coefficientof zis 1/12
D. coefficient of zis 1/2
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The function whose Laplace transform is tan~1(1 + s); given as
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If L[f(t)] = F(s), then which of the following statements are correct. (More than
one answer can be correct)

A. L[ r@odt] =2F(s)

B. L[f'(©)] =sLIf(©)] - f(0)
C. L[t"f(t)] = %F(S)

D. All of the above
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The value of the integral fooo te 3tsint dt is
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None of these

CO3

Q1 (xxii)

The Fourier Transform of the function

f(x) =e @l —o0 < x < 0
is given by
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The Fourier Transform of the function

(1, [x|<a
f(x)_{o, x| > a
is given by (More than one answer can be correct)
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PART B

Instructions: The link for PART B will be available from 10:00 AM on 10" July 2020 to 10:00 AM on 11" July
2020. Solve the problems in PART B on a plain A4 sheets and write your name, roll number and SAP ID on each
page and then scan them into a single PDF file. Name the file as SAP ID _BRANCH NAME_ROLL NUMBER (for
example: 500077624 _CCVT_ R103219023.pdf) and upload that PDF file through the link provided over there.
PART B solutions sent through WhatsApp or email will not be entertained.

Q2 Evaluate fo o 1) dx using complex integration. col
Find the Laplace transform of f(t) = cos Ve
Q3 P G CO2
Find the Fourier Transform of the function
(1, |x|<a
f(x)_{o, x| > a
04 and hence evaluate . _ CO3
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Solve the heat conduction problem described by
PDE: ka—“zg—‘t‘, 0<x<oot>0,
Q5 BC: u(0,t) = ug t=>0, CO4
IC: u(x,0)=0, 0<x< oo,
u and du/dx both tend to zero as x — oo.
Solve the following differential equation using Laplace transform
Q6 dt2+4dy+8y—c052t y(0) = 2,y'(0) = 1. CO4




