Name:

Enrolment No:

Semester: IV

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, July 2020

Course: Mathematical Physics III

Course Code: PHYS 2004 Time: 03 hrs.
Programme: B.Sc. Physics (H) Max. Marks: 100

Instructions: Attempt all questions from PART A (60 Marks) and PART B (40 Marks). All questions are

compulsory.

PART A

Instructions: PART A contains 25 questions for a total of 60 marks. It contains 22 multiple-choice questions and 3 multiple answer questions. Multiple answer questions may have more than one correct option. Select all the correct options. You need to answer PART A within the slot from 02:00 AM to 05:00 PM on 10th July 2020. The due time for PART A is 05:00 PM on 10th July 2020. After the due time, the PART A will not be available.

S. No.		Marks	CO
Q1 (i)	The modulus of the complex number $z = \frac{1+i}{1-i\sqrt{3}}$ is A. $\frac{1}{\sqrt{2}}$ B. $\sqrt{2}$ C. 0 D. 1	2	CO1
Q1 (ii)	The value of the integral $\int_C \frac{e^z}{z-2} dz$, where C is the circle $ z =3$ is A. $\pi i e^2$ B. $2\pi i e^2$ C. $2i e^2$ D. $2\pi e^2$	2	CO1
Q1 (iii)	The nature of the singularity of the function $f(z) = \frac{z - \sin z}{z^3}$ at $z = 0$ is A. Removable Singularity B. Essential Singularity C. Pole D. None of these	2	CO1

	The residue of the function $f(z) = \frac{z^2}{(z-1)(z-2)^2}$ at the pole $z=1$ is given by		
Q1 (iv)	A. 0 B. 1 C. 2 D. 3	2	CO1
Q1 (v)	Let $P(z) = a + bz$ and $\int_C \frac{P(z)}{z} dz = \int_C \frac{P(z)}{z^2} dz = 2\pi i$, where C is the circle $ z = 1$. Then the value of the constants a and b is A. $a = 1, b = 1$ B. $a = 1, b = 2$ C. $a = 2, b = 1$ D. $a = 2, b = 2$	2	CO1
Q1 (vi)	Laplace transform of t^3e^{-3t} is A. $\frac{7}{(s+4)^3}$ B. $\frac{s}{(s+3)^3}$ C. $\frac{6}{(s+3)^4}$ D. $\frac{2}{(s+6)^3}$	2	CO2
Q1 (vii)	$L[2 \sin 2t \cos 4t] = \dots$ $A. \frac{3}{(s^2+36)} - \frac{2}{(s^2+4)}$ $B. \frac{6}{(s^2+36)} + \frac{2}{(s^2+4)}$ $C. \frac{6}{(s^2+36)} - \frac{1}{(s^2+4)}$ $D. \frac{6}{(s^2+36)} - \frac{2}{(s^2+4)}$	2	CO2
Q1 (viii)	If $F(s)$ is the Fourier transform of $f(x)$, then the Fourier transform of $f(x-a)$ is A. $-e^{ias}F(s)$. B. $e^{-ias}F(s)$. C. $e^{ias}F(s)$. D. None of these.	2	CO2

Q1 (ix)	Let $f(x)$ be a function defined on $(-\infty, \infty)$ and is piecewise continuous, differentiable in each finite interval and is absolutely integrable on $(-\infty, \infty)$. Then Fourier transform of $f(x)$ is given by, A. $F[f(x)] = F(s) = \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} f(x) e^{-isx} dx$. B. $F[f(x)] = F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx$. C. $F[f(x)] = F(s) = \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} f(x) e^{isx} dx$. D. $F[f(x)] = F(s) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx$	2	CO2
Q1 (x)	The Laplace transform of the piecewise continuous function $f(t) = \begin{cases} 0 & , & 0 \le t < 2 \\ k & , & t \ge 2 \end{cases}; (k \text{ is a constant}) \text{ is}$ $A. \frac{ke^{-2s}}{s} (s > 0)$ $B. \frac{e^{-2s}}{s} (s > 0)$ $C. \frac{ke^{2s}}{s} (s > 0)$ $D. \frac{ke^{-s}}{s} (s > 0)$	2	CO3
Q1 (xi)	The Fourier sine transform of e^{-x} is A. $\sqrt{\frac{2}{\pi}} \left(\frac{s}{1+s^2}\right)$. B. $\sqrt{\frac{2}{\pi}} \left(\frac{1}{1-s^2}\right)$. C. $\sqrt{\frac{2}{\pi}} \left(\frac{1}{1+s^2}\right)$. D. $\sqrt{\frac{2}{\pi}} \left(\frac{s}{1-s^2}\right)$.	2	CO3
Q1 (xii)	The Laplace transform of a unit step function with step at point 'a' is given by A. e^{-as} B. $\frac{1}{s}e^{-as}$ C. $-\frac{1}{s}e^{-as}$ D. $-\frac{1}{s}e^{as}$	2	CO3

Q1 (xiii)	If $F(s)$ is the Fourier transform of $f(x)$, then the Fourier transform of $f(x)\cos ax$ is A. $\frac{1}{2}[F(s-a)-F(s+a)]$. B. $\frac{1}{4}[F(s-a)-F(s+a)]$. C. $\frac{1}{2}[F(s-a)+F(s+a)]$.	2	CO4
Q1 (xiv)	D. $\frac{1}{4}[F(s-a)+F(s+a)]$. The value of the integral $\int_0^\infty e^{-3t} \delta(t-4) dt$ is A. e^{-12s} B. e^{12s} C. e^{-12} D. e^{12}	2	CO4
Q1 (xv)	If $F(s)$ and $G(s)$ are the Fourier transform of $f(x)$ and $g(x)$ respectively and c_1 and c_2 are constants, then A. $F^{-1}[c_1F(s) + c_2G(s)] = c_1 f(x).c_2 g(x)$ B. $F^{-1}[c_1F(s) + c_2G(s)] = c_1 f^{-1}(x).c_2 g^{-1}(x)$ C. $F^{-1}[c_1F(s) + c_2G(s)] = c_1 f^{-1}(x) + c_2 g^{-1}(x)$ D. $F^{-1}[c_1F(s) + c_2G(s)] = c_1 f(x) + c_2 g(x)$	2	CO4
Q1 (xvi)	The residue of the function $f(z) = \frac{z^2 - 2z}{(z^2 + 4)(z + 1)^2}$ at the pole $z = -1$ is given by A. $-11/25$ B. $-12/25$ C. $-13/25$ D. $-14/25$	3	CO1
Q1 (xvii)	The Laurent's series expansion of the function $f(z) = \frac{1}{(z+2)(1+z^2)}$ valid in the region $1 < z < 2$ is A. $f(z) = \frac{1}{10} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z}{2}\right)^n + \frac{2-z}{5z^2} \sum_{n=0}^{\infty} (-1)^n \left(\frac{1}{2z^2}\right)^n$ B. $f(z) = \frac{1}{10} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z}{2}\right)^n + \frac{2-z}{5z^2} \sum_{n=0}^{\infty} (-1)^n \left(\frac{1}{z^2}\right)^n$ C. $f(z) = \frac{1}{10} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z}{2z}\right)^n + \frac{2-z}{5z^2} \sum_{n=0}^{\infty} (-1)^n \left(\frac{1}{z^2}\right)^n$ D. $f(z) = \frac{1}{10} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z}{3}\right)^n + \frac{2-z}{5z^2} \sum_{n=0}^{\infty} (-1)^n \left(\frac{1}{z^2}\right)^n$	3	CO1

	In the Laurent's series expansion of $f(z) = \frac{1}{e^z - 1}$ about the point $z = 0$ valid in the		
Q1 (xviii)	region $0 < z < 2\pi$, which are the following are true? (More than one answer can be correct)		
	A. coefficient of 1/z is 1	3	CO1
	B. coefficient of 1/z is 0		
	C. coefficient of z is 1/12		
	D. coefficient of z is 1/2		
	The function whose Laplace transform is $tan^{-1}(1+s)$; given as		
	A. $-\frac{1}{t}e^{-t}\sin t$		
Q1 (xix)	B. $\frac{1}{t}e^{-t}\sin t$	3	CO2
	C. $-\frac{1}{t}e^t\sin t$		
	D. $\frac{1}{t}e^t \sin t$		
	If $L[f(t)] = F(s)$, then which of the following statements are correct. (More than one answer can be correct)		
01()	A. $L\left[\int_0^t f(t)dt\right] = \frac{1}{s}F(s)$	2	CO2
Q1 (xx)	B. $L[f'(t)] = sL[f(t)] - f(0)$	3	CO2
	C. $L[t^n f(t)] = \frac{d^n}{ds^n} F(s)$		
	D. All of the above		
	The value of the integral $\int_0^\infty te^{-3t} \sin t dt$ is		
	. 1		
Q1 (xxi)	A. $\frac{1}{50}$	3	CO3
	B. 0 C1		
	D. None of these		
	The Fourier Transform of the function		
Q1 (xxii)	$f(x) = e^{-a x }; -\infty < x < \infty$		
	$f(x) = e^{-\alpha / x}; -\infty < x < \infty$ is given by		
		3	CO3
	A. $\sqrt{\frac{2}{\pi}} \left(\frac{a}{a^2 + s^2} \right)$.		
	A. $\sqrt{\frac{2}{\pi}} \left(\frac{a}{a^2 + s^2} \right)$. B. $\sqrt{\frac{2}{\pi}} \left(\frac{a}{a^2 - s^2} \right)$.		

	C. $\sqrt{\frac{1}{2\pi}} \left(\frac{a}{a^2 + s^2} \right)$. D. $\sqrt{\frac{1}{2\pi}} \left(\frac{a}{a^2 - s^2} \right)$.		
	D. $\sqrt{2\pi} \left(\frac{1}{a^2 - s^2} \right)$.		
Q1 (xxiii)	The Fourier Transform of the function $f(x) = \begin{cases} 1, & x \le a \\ 0, & x > a \end{cases}$ is given by (More than one answer can be correct)		
	A. $-\frac{i}{s\sqrt{2\pi}}(e^{ias} - e^{-ias})$. B. $\frac{i}{s\sqrt{2\pi}}(e^{ias} - e^{-ias})$. C. $\sqrt{\frac{2}{\pi}}(\frac{\sin sa}{s})$	3	CO3
	D. $\sqrt{\frac{2}{\pi}} \left(\frac{\cos sa}{s} \right)$		
Q1 (xxiv)	If $F(s) = \frac{1}{(2s+3)^{1/2}}$ then $L^{-1}[F(s)] = \dots$ A. $\frac{1}{\sqrt{2\pi}} t^{-1/2} e^{3t/2}$ B. $\frac{1}{\sqrt{2\pi}} t^{-1/2} e^{-3t/2}$ C. $\frac{1}{\sqrt{2\pi}} t^{1/2} e^{-3t/2}$	3	CO4
	D. $\frac{1}{\sqrt{2\pi}}t^{1/2}e^{3t/2}$ The Fourier cosine transform of		
Q1 (xxv)	The Fourier cosine transform of $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$ is $A. \sqrt{\frac{8}{\pi}} \left\{ \frac{\cos s (1 + \cos s)}{s^2} \right\}.$ $B. \sqrt{\frac{8}{\pi}} \left\{ \frac{\cos s (1 - \cos s)}{s^2} \right\}.$ $C. \sqrt{\frac{4}{\pi}} \left\{ \frac{\cos s (1 - \cos s)}{s^2} \right\}.$ $D. \sqrt{\frac{4}{\pi}} \left\{ \frac{\cos s (1 + \cos s)}{s^2} \right\}.$	3	CO4

PART B

Instructions: The link for PART B will be available from 10:00 AM on 10th July 2020 to 10:00 AM on 11th July 2020. Solve the problems in PART B on a plain A4 sheets and write your name, roll number and SAP ID on each page and then scan them into a single PDF file. Name the file as SAP ID _BRANCH NAME_ROLL NUMBER (for example: 500077624_CCVT_ R103219023.pdf) and upload that PDF file through the link provided over there. PART B solutions sent through WhatsApp or email will not be entertained.

Q2	Evaluate $\int_0^\infty \frac{1}{(x^4+1)} dx$ using complex integration.	8	CO1
Q3	Find the Laplace transform of $f(t) = \frac{\cos \sqrt{t}}{\sqrt{t}}$.	8	CO2
Q4	Find the Fourier Transform of the function $f(x) = \begin{cases} 1, & x \le a \\ 0, & x > a \end{cases}$ and hence evaluate $\int_{-\infty}^{\infty} \frac{\sin sa \cos sx}{s} ds \ and \int_{0}^{\infty} \frac{\sin sa}{s} ds$	8	CO3
Q5	Solve the heat conduction problem described by $PDE: k \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}, 0 < x < \infty, t > 0,$ $BC: u(0,t) = u_0, \qquad t \ge 0,$ $IC: u(x,0) = 0, 0 < x < \infty,$ $u \text{ and } \frac{\partial u}{\partial x} \text{ both tend to zero as } x \to \infty.$	8	CO4
Q6	Solve the following differential equation using Laplace transform $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = \cos 2t; y(0) = 2, y'(0) = 1.$	8	CO4