Name: **Enrolment No:** UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **Supplementary Examination, May 2020 Ring Theory & Linear Algebra-I** Course: Semester: IV **B.Sc Mathematics (Hons.) Program:** Time 3 hrs. Course Code: MATH2031 Max. Marks: 100 Nos. of page(s) :1 Instructions: Attempt all questions from PART A (60 Marks) and PART B (40 Marks). All questions are compulsory. PART A **Instructions:** PART A contains 20 questions for a total of 60 marks. It contains 10 multiple choice questions, 8 multiple answer questions and 3 True/False questions. Multiple answer questions may have more than one correct option. Select all the correct options. You need to answer PART A within the slot from 2:00 PM to 6:00 PM on 10th July 2020. The due time for PART A is 5:00 PM on 10th July 2020. After the due time, the PART A will not be available. S. No. Marks CO Q1 (i) Let F be a field and let T be the linear operator on F^2 defined by T(x, y) = (x + y, x). C the correct options: A. T is singular **CO4** 3 B. T is non-singular C. T is invertible D. None of these **O1** (ii) Let F be a field and let T be the linear operator on F^2 defined by T(x, y) = (x + y, x). the correct options: A. $TT^{-1} = I$ **CO4** 3 B. $T^{-1}(x, y) = (y, x - y)$ **C**. $T^{-1}T = I$ D. None of these

Q1 (iii)	 Let T is a linear transformation from V into W and dimension of V = dimension of Choose correct options A. If T is invertible, then T is onto B. If T is onto, then T is invertible 	3	CO4
	C. If T is invertible, then T is one-oneD. If T is one-one, then T is onto		
Q1 (iv)	Let V be a vector space and T a linear transformation from V into V. Let the interse the range of T and the null space of T is the zero subspace of V. If $T(T\alpha) = 0$, Then A. $T\alpha = V$ B. $T(T\alpha) = 0, \forall \alpha \in V$ C. $T\alpha = 0$ D. None of these	3	CO4
Q1 (v)	 Choose correct options for a vector space V of dimension n: A. The rank of the zero transformation is 0 B. the rank of the identity transformation is n. C. The nullity of the zero transformation is n D. the nullity of the identity transformation is 0. 	3	CO4

Q1 (vi)	Let F be a subfield of the field of complex numbers. Let		
	$ \begin{array}{rcl} \alpha_1 &=& (1,2,0,3,0) \\ \alpha_2 &=& (0,0,1,4,0) \\ \alpha_3 &=& (0,0,0,0,1) \end{array} $		
	Let W be a subspace of F^5 spanned by $\alpha_1, \alpha_2, \alpha_3$. Which vector is in	3	CO3
	A. $(-3, -5, 1, -5, 2)$ B. $(2, 4, 6, 7, 8)$		
	C. $(-3, -6, 1, -5, 2)$		
01/1	D. none of these		
Q1 (vii)	Let F be a subfield of the field of complex numbers. In F^3 the vect		
	$ \begin{array}{rcl} \alpha_1 &=& (3,0,-3) \\ \alpha_2 &=& (-1,1,2) \\ \alpha_3 &=& (4,2,-2) \end{array} $		
	are:	3	CO3
	A. linearly independent		
	B. linearly dependent		
	C. are standard basis for F^3		
	D. none of these		

Q1 (viii)	The dimension of the space of $n \times n$ matrices over the field F is A. n B. $2n$ C. n^2 D. none of these	3	CO3
Q1 (ix)	Let V be the vector space of all 2×2 matrices over the field F. Let W be the subspace of the form, $\begin{bmatrix} x & -x \\ y & z \end{bmatrix}$. The dimension of W is: A. 1 B. 2 C. 3 D. 4	3	CO3
Q1 (x)	Let $\alpha_1 = (1, 2)$ and $\alpha_2 = (3, 4)$ forms a basis for R^2 . Consider a linear transformat $R^2 \longrightarrow R^3$, such that $T\alpha_1 = (3, 2, 1)$ $T\alpha_2 = (6, 5, 4)$ Then the image of $T(1, 0)$ is A. (1,2,3) B. (1,3,2) C. (0,2,1) D. (0,1,2)	3	CO4

Q1 (xi)			
	Choose a linear transformation from $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$		
	A. $T(x, y) = (1 + x, y)$		
	B. $T(x, y) = (y, x)$	3	CO3
	C. $T(x, y) = (x^2, y)$		
	D. $T(x,y) = (\sin x, y)$		
Q1 (xii)	Let V is any vector space over a field F . Choose the correct options.		
	A. the subset consisting of the zero vector alone is a subspace of		
	B. the space V is a subspace of V	3	CO3
	C. any subset of V is a subspace of V		
	D. none of these		
Q1 (xiii)	Let V be the set of all pairs (x, y) of real numbers, and let F be the field of real numbers		
	$ \begin{aligned} (x_1,y_1) + (x_2,y_2) &= & (x_1+x_2,y_1+y_2) \\ c(x,y) &= & (cx,y) \end{aligned} $	3	CO3
	With these operations, V is a vector space over the field of real numbers. True or False		
Q1 (xiv)	Let V be the set of all pairs (x, y) of real numbers, and let F be the field of real numbers		
	$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, 0)$ c(x, y) = (cx, 0)	3	CO3
	With these operations, V is a vector space over the field of real numbers. True or False		

Q1 (xv)	A ring homomorphism ϕ from a ring R to a ring S is a mapping from R to S that p some operations; for all a , b in R , which of the operations are preserved. A. $\phi(a+b) = \phi(a) + \phi(b)$ B. $\phi(ab) = \phi(a)\phi(b)$ C. $\phi(a) = \phi(b)$ D. none of these	3	CO2
Q1 (xvi)	 Let R be a commutative ring of characteristic 2. Choose correct optio A. 2x = 0 ∀ x ∈ R B. the mapping a → a is a ring homomorphism from R to R C. the mapping a → a² is a ring homomorphism from R to R D. none of these 	3	CO2
Q1 (xvii)	Let $R[x]$ denote the set of all polynomials with real coefficients and let A denote the s all polynomials with constant term 0. Then A is an ideal of R[x] and A is equal to: A. $< x >$ B. $< x^2 >$ C. $< 1 >$ D. none of these	3	CO1

Q1 (xviii)			
	In the ring of integers Z, the ideal 5Z is		
	A. not a subring of Z		
	B. a group with respect to multiplication	3	CO1
	C. a prime ideal		
	D. none of these		
Q1 (xix)	Choose all the true statements about the integral domain.		
	A. An integral domain is a commutative ring with unity and no zero div		
	B. The ring of integers is an integral domain.	3	CO1
	C. A finite integral domain is a field.		
	D. The characteristic of an integral domain is 0 or prime.		
Q1 (xx)	Consider the following two statements.		
	i. $A = \{0, 2, 4\}$ is a subring of the ring Z_6 , the integers modulo 6		
	ii. 4 is the unity in the subring A.		
	Choose the correct option.	3	CO1
	A. Only (i) is true		
	B. Only (ii) is true		
	C. Both are true		
	D. Both are false		

PART B The link for PART B will be available from 2:00 PM on 10th July 2020 to 2:00 PM on 11th July 2020. Solve the problems in PART B on a plain A4 sheets and write your name, roll number and SAP ID on each page and then scan them into a single PDF file. Name the file as SAP ID _BRANCH NAME_ROLL NUMBER (for example: 500077624_CCVT_ R103219023.pdf) and upload that PDF file through the link provided over there. PART B solutions sent through WhatsApp or email will not be entertained.		nd then xample:	
Q 1	Show that $Q[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in Q\}$ is a field.	6	CO1
Q 2	Let $R[x]$ denote ring of all polynomials with real coefficients. Show that the mapping $f(x) \rightarrow f(1)$ is a ring homomorphism from $R[x]$ to R . In addition, find the kernel of the homomorphism.	6	CO2
Q 3	Let V be the set of all pairs (x, y) of real numbers, and let F be the field of real numbers. Define $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ c(x, y) = (cx, y) Is V, with these operations, a vector space over the field of real numbers?	4	CO3
Q 4	Let <i>R</i> be a field of real numbers. Suppose $\alpha_1 = (1,2,0,3,0), \alpha_2 = (0,0,1,4,0), \alpha_3 = (0,0,0,0,1)$ Explain the subspace <i>W</i> of <i>R</i> ⁵ spanned by α_1, α_2 and α_3 . Show that (-3,-6, 1, - 5, 2) is in W, whereas (2, 4, 6, 7, 8) is not.	10	CO3
Q 5	Let <i>F</i> be a field and let <i>T</i> be the linear operator on F^2 defined by T(x,y) = (x + y, x) Show that <i>T</i> is non-singular and onto. In addition, find the inverse of <i>T</i> .	10	CO4
Q 6	Define rank and nullity of a linear transformation from a finite dimensional vector space V.	4	CO4