Name:	
Enrolment No:	

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Supplementary Examination, May 2020

Course: \quad Ring Theory \& Linear Algebra-I
Program: B.Sc Mathematics (Hons.)
Semester: IV
Time 3 hrs.
Course Code: MATH2031
Max. Marks: 100
Nos. of page(s) : 1
Instructions: Attempt all questions from PART A (60 Marks) and PART B (40 Marks). All questions are compulsory.

PART A

Instructions: PART A contains 20 questions for a total of 60 marks. It contains 10 multiple choice questions, 8 multiple answer questions and 3 True/False questions. Multiple answer questions may have more than one correct option. Select all the correct options. You need to answer PART A within the slot from 2:00 PM to 6:00 PM on 10th July 2020. The due time for PART A is 5:00 PM on 10th July 2020. After the due time, the PART A will not be available.

S. No.		Marks	CO
Q1 (i)	Let F be a field and let T be the linear operator on F^{2} defined by $T(x, y)=(x+y, x)$. C the correct options: A. T is singular B. T is non-singular C. T is invertible D. None of these	3	$\mathrm{CO4}$
Q1 (ii)	Let F be a field and let T be the linear operator on F^{2} defined by $T(x, y)=(x+y, x)$. the correct options: A. $T T^{-1}=I$ B. $T^{-1}(x, y)=(y, x-y)$ C. $T^{-1} T=I$ D. None of these	3	CO4

Q1 (iii)	Let T is a linear transformation from V into W and dimension of $V=$ dimension Choose correct options A. If T is invertible, then T is onto B. If T is onto, then T is invertible C. If T is invertible, then T is one-one D. If T is one-one, then T is onto	3	CO4
Q1 (iv)	Let V be a vector space and T a linear transformation from V into V. Let the interse the range of T and the null space of T is the zero subspace of V. If $T(T \alpha)=0$, Then A. $T \alpha=V$ B. $T(T \alpha)=0, \forall \alpha \in V$ C. $T \alpha=0$ D. None of these	3	CO4
Q1 (v)	Choose correct options for a vector space V of dimension n : A. The rank of the zero transformation is 0 B. the rank of the identity transformation is n. C. The nullity of the zero transformation is n D. the nullity of the identity transformation is 0 .	3	CO4

Q1 (vi)	Let F be a subfield of the field of complex numbers. Let $\begin{aligned} & \alpha_{1}=(1,2,0,3,0) \\ & \alpha_{2}=(0,0,1,4,0) \\ & \alpha_{3}=(0,0,0,0,1) \end{aligned}$ Let W be a subspace of F^{5} spanned by $\alpha_{1}, \alpha_{2}, \alpha_{3}$. Which vector is in A. $(-3,-5,1,-5,2)$ B. $(2,4,6,7,8)$ C. $(-3,-6,1,-5,2)$ D. none of these	3	CO3
Q1 (vii)	Let F be a subfield of the field of complex numbers. In F^{3} the vect $\begin{aligned} & \alpha_{1}=(3,0,-3) \\ & \alpha_{2}=(-1,1,2) \\ & \alpha_{3}=(4,2,-2) \end{aligned}$ are: A. linearly independent B. linearly dependent C. are standard basis for F^{3} D. none of these	3	$\mathrm{CO3}$

Q1 (viii)	The dimension of the space of $n \times n$ matrices over the field F is A. n B. $2 n$ C. n^{2} D. none of these	3	CO 3
Q1 (ix)	Let V be the vector space of all 2×2 matrices over the field F. Let W be the subspace o the form, $\left[\begin{array}{cc}x & -x \\ y & z\end{array}\right]$. The dimension of W is: A. 1 B. 2 C. 3 D. 4	3	CO 3
Q1 (x)	Let $\alpha_{1}=(1,2)$ and $\alpha_{2}=(3,4)$ forms a basis for R^{2}. Consider a linear transformat $R^{2} \longrightarrow R^{3}$, such that $\begin{aligned} & T \alpha_{1}=(3,2,1) \\ & T \alpha_{2}=(6,5,4) \end{aligned}$ Then the image of $T(1,0)$ is A. $(1,2,3)$ B. $(1,3,2)$ C. $(0,2,1)$ D. $(0,1,2)$	3	CO4

Q1 (xi)	Choose a linear transformation from $T: R^{2} \longrightarrow R^{2}$ A. $T(x, y)=(1+x, y)$ B. $T(x, y)=(y, x)$ C. $T(x, y)=\left(x^{2}, y\right)$ D. $T(x, y)=(\sin x, y)$	3	CO 3
Q1 (xii)	Let V is any vector space over a field F. Choose the correct options. A. the subset consisting of the zero vector alone is a subspace of B. the space V is a subspace of V C. any subset of V is a subspace of V D. none of these	3	CO 3
Q1 (xiii)	Let V be the set of all pairs (x, y) of real numbers, and let F be the field of real numbers $\begin{aligned} \left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right) & =\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\ c(x, y) & =(c x, y) \end{aligned}$ With these operations, V is a vector space over the field of real numbers. True or False	3	CO 3
Q1 (xiv)	Let V be the set of all pairs (x, y) of real numbers, and let F be the field of real numbers $\begin{aligned} \left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right) & =\left(x_{1}+x_{2}, 0\right) \\ c(x, y) & =(c x, 0) \end{aligned}$ With these operations, V is a vector space over the field of real numbers. True or False	3	CO3

Q1 (xv)	A ring homomorphism ϕ from a ring R to a ring S is a mapping from R to S that F some operations; for all a, b in R, which of the operations are preserved. A. $\phi(a+b)=\phi(a)+\phi(b)$ B. $\phi(a b)=\phi(a) \phi(b)$ C. $\phi(a)=\phi(b)$ D. none of these	3	CO2
Q1 (xvi)	Let R be a commutative ring of characteristic 2 . Choose correct optio A. $2 x=0 \forall x \in R$ B. the mapping $a \longrightarrow a$ is a ring homomorphism from R to R C. the mapping $a \longrightarrow a^{2}$ is a ring homomorphism from R to R D. none of these	3	CO2
Q1 (xvii)	Let $R[x]$ denote the set of all polynomials with real coefficients and let A denote the s all polynomials with constant term 0 . Then A is an ideal of $\mathrm{R}[\mathrm{x}]$ and A is equal to: A. $\langle x\rangle$ B. $\left\langle x^{2}\right\rangle$ C. $\langle 1\rangle$ D. none of these	3	C01

Q1 (xviii)	In the ring of integers Z , the ideal 5 Z is A. not a subring of Z B. a group with respect to multiplication C. a prime ideal D. none of these	3	CO1
Q1 (xix)	Choose all the true statements about the integral domain. A. An integral domain is a commutative ring with unity and no zero di B. The ring of integers is an integral domain. C. A finite integral domain is a field. D. The characteristic of an integral domain is 0 or prime.	3	CO1
Q1 (xx)	Consider the following two statements. i. $A=\{0,2,4\}$ is a subring of the ring Z_{6}, the integers modulo 6 ii. 4 is the unity in the subring A. Choose the correct option. A. Only (i) is true B. Only (ii) is true C. Both are true D. Both are false	3	CO1

The link for PART B will be available from 2:00 PM on 10th July 2020 to 2:00 PM on 11th July 2020. Solve the problems in PART B on a plain A4 sheets and write your name, roll number and SAP ID on each page and then scan them into a single PDF file. Name the file as SAP ID _BRANCH NAME_ROLL NUMBER (for example 500077624_CCVT_ R103219023.pdf) and upload that PDF file through the link provided over there. PART B solutions sent through WhatsApp or email will not be entertained.			
Q 1	Show that $Q[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in Q\}$ is a field.	6	CO1
Q 2	Let $R[x]$ denote ring of all polynomials with real coefficients. Show that the mapping $f(x) \rightarrow f(1)$ is a ring homomorphism from $R[x]$ to R. In addition, find the kernel of the homomorphism.	6	$\mathrm{CO2}$
Q 3	Let V be the set of all pairs (x, y) of real numbers, and let F be the field of real numbers. Define $\begin{aligned} \left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right) & =\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\ c(x, y) & =(c x, y) \end{aligned}$ Is V, with these operations, a vector space over the field of real numbers?	4	$\mathrm{CO3}$
Q 4	Let R be a field of real numbers. Suppose $\alpha_{1}=(1,2,0,3,0), \alpha_{2}=(0,0,1,4,0), \alpha_{3}=(0,0,0,0,1)$ Explain the subspace W of R^{5} spanned by α_{1}, α_{2} and α_{3}. Show that $(-3,-6,1,-5,2)$ is in W, whereas $(2,4,6,7,8)$ is not.	10	$\mathrm{CO3}$
Q 5	Let F be a field and let T be the linear operator on F^{2} defined by $T(x, y)=(x+y, x)$ Show that T is non-singular and onto. In addition, find the inverse of T.	10	CO4
Q 6	Define rank and nullity of a linear transformation from a finite dimensional vector space V.	4	$\mathrm{CO4}$

