Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2020

Course: PDE and system of ODE

Course Code: MATH 2030

Programme: B.Sc.(H) Maths

Semester: IV Time: 03 hrs.

Max. Marks: 100

Instructions: Attempt all questions from **PART A** (60 Marks) and **PART B** (40 Marks). All questions are compulsory.

PART A

Instructions: PART A contains 25 questions for a total of 60 marks. It contains 20 multiple choice questions and 5 multiple answer questions. Multiple answer questions may have more than one correct option. Select all the correct options. You need to answer PART A within the slot from 2:00 PM to 5:00 PM on 8th July 2020. The due time for PART A is 5:00 PM on 8th July 2020. After the due time, the PART A will not be available.

S. No.		Marks	СО
Q1 (i)	For an arbitrary function f , the PDE corresponding to the family $z = f(x^2 - y^2)$ is A. $xz_x + yz_y = 0$ B. $yz_x + xz_y = 0$ C. $z_{xx} = 0$ D. $z_{yy} = 0$	2	C01
Q1 (ii)	Which of the following is a second order quasilinear PDE? A. $\frac{\partial u}{\partial x} \cdot \frac{\partial^2 u}{\partial x^2} = 0$ B. $\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 - u = 0$ C. $\frac{\partial^3 u}{\partial x^3} - \frac{\partial^2 u}{\partial x^2} = u$ D. $u \frac{\partial u}{\partial x} + \left(\frac{\partial^2 u}{\partial x^2}\right)^2 = 0$	2	CO1
Q1 (iii)	The characteristic curves for the PDE $x^2u_{xx} - y^2u_{yy} = x^2y^2 + x$; $x > 0$ A. are branches of a hyperbola B. is an ellipse centered at origin C. are the lines through origin D. is a parabola with eccentricity 1.	2	CO3

Q1 (iv)	Which of the following is FALSE?		
	A. The diffusion equation $u_t = c^2 u_{xx}$ is parabolic for all choices of $c \neq 0$ B. The wave equation $u_{tt} = c^2 u_{xx}$ is hyperbolic for all choices of $c \neq 0$ C. The Laplace equation $u_{xx} + u_{yy} = 0$ is elliptic D. The Poisson equation $u_{xx} + u_{yy} = f(x, y)$ is not elliptic for some choice of $f(x, y)$	2	CO2
Q1 (v)	For some arbitrary constants c_i $(i = 1,2)$ and for arbitrary functions f and g , the most general solution to the PDE $\frac{\partial^2 u}{\partial x^2} = 0$ is A. $u(x,y) = x(f(y) + c_1)$ B. $u(x,y) = c_1x + c_2$ C. $u(x,y) = x + f(y)$ D. $u(x,y) = xf(y) + g(y)$	2	CO2
Q1 (vi)	The homogeneous solution u_h (for $F(x, y) = 0$) to the PDE $\frac{\partial^2 u}{\partial x \partial y} = F(x, y)$ is (where f and g are arbitrary functions) A. $u_h(x, y) = f(-y) + g(-x)$ B. $u_h(x, y) = f(y)$ C. $u_h(x, y) = f(y)g(x)$ D. $u_h(x, y) = xyf(y)g(x)$	2	C01
Q1 (vii)	Which of the following is a possible solution of the heat equation ? A. $u(x,t) = e^{-t} \sin 2x$ B. $u(x,t) = e^{-t} (\sin x + \cos x)$ C. $u(x,t) = e^{4t} (\sin 2x + \cos 2x)$ D. $u(x,t) = e^{t} \sin x$	2	CO2
Q1 (viii)	Which of the following is a possible solution of the vibrating string problem for a string of length L with fixed ends and zero initial velocity? A. $u(x,t) = \sin\left(\frac{\pi x}{L}\right)\cos\left(\frac{\pi t}{L}\right)$ B. $u(x,t) = \sin\left(\frac{\pi x}{2L}\right)\cos(\pi t)$ C. $u(x,t) = \sin\left(\frac{\pi x}{L}\right)\cos(\pi tL)$ D. $u(x,t) = \sin\left(\frac{\pi x}{2L}\right)\cos\left(\frac{\pi t}{2L}\right)$	2	CO2
Q1 (ix)	Let $\phi(t)$ be the fundamental matrix for the solution $X(t)$ of the system $\frac{dX}{dt} = AX$. Then for some column vector where c A. $X(t) = \phi(t) + c$ B. $X(t) = c\phi(t)$ C. $X(t) = \phi(t)c$ D. $X(t) = c + \phi(t)$	2	CO4

Q1 (x)	Let $\phi(t)$ denote the fundamental matrix for the homogeneous solution $X_h(t)$ of the system		
	$\frac{dX}{dt} = AX + F(t)$. Then the particular solution is		
	A. $X_p(t) = \phi(t) \int \phi^{-1}(u) F(u) du$	2	CO4
	B. $X_p(t) = \phi^{-1}(t) \int \phi(u) F(u) du$		
	C. $X_p(t) = \phi(t) + \int \phi^{-1}(u)F(u)du$		
	D. $X_p(t) = \phi^{-1}(t) + \int \phi(u)F(u)du$		
Q1 (xi)	Let $X_p(t)$ denote the particular solution of the IVP:		
	$\frac{dX}{dt} = AX + F(t), X(t_0) = X_0$		
	Then which of the following is true?	2	CO4
	A. $X_{p}(t) = X_{0}$	_	001
	B. $X_p(t) = 1$		
	C. $X_p(t) = -1$		
	D. $X_p(t) = 0$		
Q1 (xii)	Which of the following CANNOT be the fundamental matrix for the solution of system $\frac{dX}{dt} = AX$?		
	A. $\begin{pmatrix} e^t & 3e^{-t} \\ 2e^t & e^{-t} \end{pmatrix}$		
	$(2e^{t} e^{t})$ $(e^{t} 3e^{-t})$	2	CO4
	B. $\begin{pmatrix} e^t & 3e^{-t} \\ 2e^t & 6e^{-t} \end{pmatrix}$ C. $\begin{pmatrix} e^t & -e^{-t} \\ e^t & e^{-t} \end{pmatrix}$	4	04
	C. $\begin{pmatrix} e & -e \\ e^t & e^{-t} \end{pmatrix}$		
	D. $\begin{pmatrix} 3e^t & 6e^{-t} \\ -e^t & 2e^{-t} \end{pmatrix}$		
Q1 (xiii)	Let $u(x, t)$ be the solution of the initial value problem		
	$u_{tt} - u_{xx} = 0, u(x, 0) = x^3, u_t(x, 0) = \sin x.$		
	Then $u(\pi,\pi)$ is	2	CO3
	A. $4\pi^3$	-	005
	B. π^3		
	C. 0		
	D. 4		
Q1 (xiv)	The solution of $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right) z = 0$ is		
	A. $y - x$		601
	B. $\sin(y-x)$	2	CO1
	C. $\sqrt{y-x}$		
	D. All of the above		
Q1 (xv)	For the IVP $u_{tt} = 4u_{xx}$, $t > 0, -\infty < x < \infty$ satisfying the conditions $u(x, 0) = x, u_t(x, 0) = 0$, the		
c – (,)	D-Alembert's solution is		
	A. $u(x,t) = 0$	2	CO2
	B. $u(x,t) = x^2$	2	CO2
	C. $u(x,t) = x$		
	D. $u(x,t) = xt$		

Q1 (xvi)	Let $u(x,t)$ be the solution of the IVP		
	$u_{tt} = c^2 u_{xx}$, $t > 0, -\infty < x < \infty$ $u(x, 0) = f(x), u_t(x, 0) = g(x),$		
	where both $f(x)$ and $g(x)$ are odd functions. Then		
	A. $u(0,1) = 0$	2	CO2
	B. $u(0,1) = f(c)$		
	C. $u(0,1) = \int_{-c}^{c} g(x) dx$		
	D. $u(0,1) = f(c) + \int_{-c}^{c} g(x) dx$		
Q1 (xvii)	The solution to the IVP $u_t + 2u_x = 0$ with $u_t(x, 0) = x$ by Lagrange's method		
	A. cannot be determined	2	CO1
	B. is unique	2	CO1
	C. is not unique D. is a family of straight lines		
Q1 (xviii)	The restriction that must be placed on k so that the Cauchy problem		
	$\frac{\partial u}{\partial x} - 2\frac{\partial u}{\partial y} = u - 1, u(ky, y) = 2y$		
	can be solved is		
	A. $k = 0$	2	CO3
	B. $k \neq 0$		
	C. $k = -\frac{1}{2}$ D. $k \neq -\frac{1}{2}$		
Q1 (xix)	The IVP $\frac{\partial u}{\partial t} + 3\frac{\partial u}{\partial x} = 0$, $u(x, 0) = \sin x$, $u_t(x, 0) = x$ has		
	A. a unique solution $u(x,t) = \sin(x-3t)$	2	CO2
	B. no solution	2	CO3
	C. infinitely many solutions		
	D. a solution $u(x,t) = \sin(3x-t)$		
Q1 (xx)	Let $u(x, t)$ be the unique solution of		
	$u_{tt} - u_{xx} = 0, x \in \mathbb{R}, t > 0, u(x, 0) = f(x), u_t(x, 0) = 0.$		
	where $f(x) = x(1-x) \ \forall x \in [0,1] \text{ and } f(x+1) = f(x) \ \forall x \in \mathbb{R}.$		
	Then $u\left(\frac{1}{2},\frac{5}{4}\right)$ is	2	CO3
	A. $\frac{1}{8}$		
	B. $\frac{1}{16}$ C. $\frac{3}{16}$		
	D. $\frac{5}{16}$		

Q1 (xxi)	Let $(x(t), y(t))$ satisfy for $t > 0$ the system $\frac{dx}{dt} = -x + y, \frac{dy}{dt} = -y, x(0) = y(0) = 1$. Then $x(t)$ is equal to A. $e^{-t} + ty(t)$ B. $y(t)$ C. $e^{-t}(1+t)$ D. $-y(t)$	4	CO1
Q1 (xxii)	Consider the system $\frac{d}{dt} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} x(t) + y(t) \\ -y(t) \end{bmatrix}$. Then which of the following is NOT the solution? A. $\begin{bmatrix} 0 \\ e^{-t} \end{bmatrix}$ and $\begin{bmatrix} e^{t} \\ 0 \end{bmatrix}$ B. $\begin{bmatrix} e^{t} \\ 0 \end{bmatrix}$ and $\begin{bmatrix} \cosh t \\ e^{-t} \end{bmatrix}$ C. $\begin{bmatrix} e^{-t} \\ -2e^{-t} \end{bmatrix}$ and $\begin{bmatrix} \sinh t \\ e^{-t} \end{bmatrix}$ D. $\begin{bmatrix} e^{t} \\ 0 \end{bmatrix}$ and $\begin{bmatrix} e^{t} - \frac{1}{2}e^{-t} \\ e^{-t} \end{bmatrix}$	4	CO4
Q1 (xxiii)	Let $u(x,t)$ be the solution of $u_{xx} - u_{tt} = 0$, $u(x,0) = f(x)$, $u_t(x,0) = 0$, $x \in \mathbb{R}$, $t > 0$. If $f(2) = 4$, $f(0) = 0$ and $u(2,2) = 8$, then the value of $u(3,1)$ is A. 12 B. 6 C. 2 D. 0	4	CO2
Q1 (xxiv)	The particular solution of $\left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y}\right) z = x$ is A. $\frac{x^2}{2}$ B. $-y\left(x - \frac{y}{2}\right)$ C. $-y\left(x + \frac{y}{2}\right)$ D. $-y\left(y + \frac{x}{2}\right)$	4	CO1
Q1 (xxv)	Let $F(u, v) = 0$ be the general solution of $(2xy - 1)\frac{\partial z}{\partial x} + (z - 2x^2)\frac{\partial z}{\partial y} = 2(x - yz)$. Then A. $u = x^2 + y^2 + z, v = xz + y$ B. $u = x^2 + y^2 - z, v = xz - y$ C. $u = x^2 - y^2 + z, v = yz + x$ D. $u = x^2 + y^2 - z, v = yz - x$	4	C01

problem them in 5000776	PART B t for PART B will be available from 2:00 PM on 8th July 2020 to 5:00 PM on 9th July 2 s in PART B on a plain A4 sheets and write your name, roll number and SAP ID on each pag to a single PDF file. Name the file as SAP ID _BRANCH NAME_ROLL NUMBER 524_CCVT_ R103219023.pdf) and upload that PDF file through the link provided over	ge and th R (for ex	en scan ample:
B solution	Consider the first order PDE: $x \frac{\partial u}{\partial x} + (1+y) \frac{\partial u}{\partial y} = x(1+y) + xu$ a. Find the general solution of the given PDE. b. Assume the initial condition is of the form $u(x, 6x - 1) = \phi(x)$. Find the necessary and sufficient condition on $\phi(x)$ that guarantees the existence of a solution. Solve the problem for the appropriate $\phi(x)$.	8	CO1
Q3	Solve the following IBVP using D' Alembert's method: $\frac{\partial^2 u}{\partial t^2} = 9 \frac{\partial^2 u}{\partial x^2}, x \in (-\infty, \infty), t > 0$ $u(x, 0) = \begin{cases} 2, & x < 3\\ 0, & x \ge 3 \end{cases}$ $\frac{\partial u}{\partial t}(x, 0) = 0$	8	CO2
Q4	Consider the following heat conduction problem: $\frac{\partial^2 u}{\partial x^2} - 2u = \frac{1}{3} \frac{\partial u}{\partial t}$ where $0 < x < 2$, $t > 0$ $u(0,t) = u(2,t) = 0, u(x,0) = x$ Find the solution of the form $u(x,t) = \phi(x)T(t)$ for the given problem.	8	CO2
Q5	Solve the boundary value problem: $u_{xx} = u_{tt} + u, \ 0 < x < \pi, t > 0$ with the boundary conditions $u_x(0,t) = 0$ and $u_x(\pi,t) = 0$ for $t > 0$ andthe initial conditions $u(x,0) = 0$ and $u_t(x,0) = f(x)$ for $0 < x < \pi$.	8	CO3
Q6	Suppose $\phi(t)$ is the fundamental matrix corresponding to the coefficient matrix A in the IVP: $\frac{dX}{dt} = AX + F(t), X(t_0) = X_0, t_0 \in [a, b]$ Find the particular solution of the IVP:	8	CO4