Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 End Semester Examination, July 2020

Programme Name:	B. Sc. (Hons) Mathematics	Semester : IV
Course Name $:$	Riemann Integration \& Series of functions	Time $: 03 \mathrm{hrs}$
Course Code $:$	MATH 2014	Max. Marks : $\mathbf{1 0 0}$

Instructions: Attempt all questions from PART A (60 Marks) and PART B (40 Marks). All questions are compulsory.

PART A

Instructions: PART A contains 25 questions for a total of 60 marks. It contains 18 multiple choice questions and 7 multiple answer questions. Multiple answer questions may have more than one correct option. Select all the correct options. You need to answer PART A within the slot from 2:00 PM to 5:00 PM on 6th July 2020. The due time for PART A is 5:00 PM on 6th July 2020. After the due time, the PART A will not be available.

S. No.		Marks	CO
Q1 (i)	Approximation of the definite integral $\int_{1}^{4} x^{2} d x$ with the Riemann sum by dividing $[1,4]$ into equal subintervals: a) 21 b) 63 c) 4 d) 64	2	CO1
Q1 (ii)	Upper Darboux sum for the function $f(x)=\left\{\begin{array}{ll}1, & x \in Q \\ -1 & x \notin Q\end{array}\right.$ on the interval [0,1] is: a) 1 b) -1 c) 0 d) Q	2	CO1
Q1 (iii)	A bounded function $f:[a, b] \rightarrow \mathrm{R}$ is Riemann integrable on $[a, b]$ iff for each $\varepsilon>0$ there exists a partition P of $[a, b]$ such that a) $U(P, f)-L(P, f)<\varepsilon$ b) $U(P, f)-L(P, f)>\varepsilon$ c) $U(P, f)+L(P, f)<\varepsilon$ d) $U(P, f)+L(P, f)>\varepsilon$	2	CO1
Q1 (iv)	Determine the value of integral $\int_{0}^{1} x \ln (x) d x$: a) $-1 / 4$ b) 0 c) 1	2	CO 2

$\left.\begin{array}{|l|l|l|l|}\hline & \text { d) Divergent } & & \\ \hline \text { Q1 (v) } & \begin{array}{c}\text { The given integral } \int_{1}^{\infty} \frac{1}{x^{2}} d x \text { converges to } \\ \text { a) } 1 \\ \text { b) }-1\end{array} & \mathbf{2} & \text { CO2 } \\ & \text { c) } 0 \\ \text { d) } 2\end{array}\right]$

Q1 (xi)	The geometric series $\sum_{n=0}^{\infty}(x)^{n}$ has radius of convergence a) 1 b) -1 c) 0 d) Infinity	2	CO 4
Q1 (xii)	The power series $\sum_{n=1}^{\infty} \frac{1}{n}(x)^{n}$ has radius of convergence a) 1 b) 2 c) 0 d) None of these	2	CO 4
Q1 (xiii)	The power series $\sum_{n=0}^{\infty} \frac{1}{n!}(x)^{n}$ has radius of convergence a) ∞ b) 1 c) -1 d) 2	2	$\mathrm{CO4}$
Q1 (xiv)	The power series $\sum_{n=0}^{\infty} n!(x)^{n}$ has radius of convergence a) 0 b) 1 c) -1 d) ∞	2	$\mathrm{CO4}$
Q1 (xv)	If the series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}$ is equal to a) 0 b) 1 c) Infinity d) None of these	2	CO4
Q1 (xvi)	Select all Riemann integrable functions: a) Continuous function on $[a, b]$ b) A bounded function on $[a, b]$ which is continuous except at finitely many points in $[a, b]$	3	$\mathrm{CO1}$

	c) A monotonic function on $[a, b]$ d) Differentiable function on $[a, b]$		
Q1 (xvii)	Let $[a, b]$ be a given interval. A partition P on $[a, b]$ is a finite set of points x_{0}, x_{1}, x_{2} such that $a=x_{0} \leq x_{1} \leq x_{2} \ldots \ldots \leq x_{n}=b$. Let $f(x)$ be real valued function on $[a, b]$, there exist real numbers m and M such that $m \leq f(x) \leq M$. For all $x \in[a, b]$ a) $m(b-a) \leq L(P, f)$ b) $L(P, f) \leq U(P, f)$ c) $M(b-a) \leq L(P, f)$ d) $m(b-a) \leq M(b-a)$	3	CO1
Q1 (xviii)	Select all that apply for the integral $\int_{a}^{b} \frac{1}{(x-a)^{p}} d x$ a) Converges if $p<1$. b) Diverges if $p<1$. c) Converges if $p \geq 1$. d) Diverges if $p \geq 1$.	3	CO 2
Q1 (xix)	Let $\lim _{x \rightarrow \infty} x^{p} f(x)=A$. Then a) $\int_{a}^{\infty} f(x) d x$ converges if $p>1$ and A is finite. b) $\int_{a}^{\infty} f(x) d x$ diverges if $p \leq 1$ and $A \neq 0$ (A may be infinite). c) $\int_{a}^{\infty} f(x) d x$ converges if $p>1$. d) $\int_{a}^{\infty} f(x) d x$ diverges if $p \leq 1$.	3	CO 2
Q1 ($\mathbf{x x)}$	Which of the following is true about $S_{n}=\frac{1}{n}$? a) The sequence converges to 0 . b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} S_{i}=L$, for some finite L. c) The series $\sum S_{n}{ }^{2}$ converges. d) The series $\sum(-1)^{n} S_{n}$ converges	3	CO 3
Q1 (xxi)	Suppose that $\left\langle u_{n}\right\rangle$ and $\left\langle M_{n}\right\rangle$ are sequence of real numbers, with $0 \leq u_{n} \leq M_{n}$ for each positive integer n. If $\sum_{n=0}^{\infty} M_{n}$ converges, then a) $\sum_{n=0}^{\infty} u_{n}$ converges b) $\sum_{n=0}^{\infty} u_{n}$ diverges c) $\sum_{n=0}^{\infty} u_{n}$ oscillates d) None of the above	3	CO 3
Q1 (xxii)	If $\left\langle f_{n}\right\rangle$ and $\left\langle g_{n}\right\rangle$ are sequence of bounded functions and $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ on a set E, then a) $\left\{f_{n}+g_{n}\right\}$ converges uniformly on E. b) $\left\{f_{n} g_{n}\right\}$ converges uniformly on E. c) $\left\{f_{n}+g_{n}\right\}$ diverges.	3	CO 3

	d) $\left\{f_{n} g_{n}\right\}$ diverges.		
Q1 (xxiii)	The radius of convergence R of the power series $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ is given by $R=\frac{1}{\limsup _{n \rightarrow \infty}\left\|a_{n}\right\|^{1 / n}}$ where a) $R=0$ if limsup diverges to ∞ b) $R=\infty$ if limsup is 0 c) $R=1$ if limsup diverges to ∞ d) $R=c$ if limsup diverges to ∞	3	$\mathrm{CO4}$
Q1 (xxiv)	Suppose that the power series $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ has radius of convergence R. Then the power series $\sum_{n=0}^{\infty} n a_{n}(x-c)^{n-1}$ has radius of convergence a) R b) 1 c) R^{2} d) 0	3	CO4
Q1 (xxv)	The exponential function has radius of convergence a) Infinity b) 1 c) 2 d) 0	3	CO4

PART B

The link for PART B will be available from 2:00 PM on 6th July 2020 to 2:00 PM on 7th July 2020. Solve the problems in PART B on a plain A4 sheets and write your name, roll number and SAP ID on each page and then scan them into a single PDF file. Name the file as SAP ID _BRANCH NAME_ROLL NUMBER (for example: 500077624_CCVT_ R103219023.pdf) and upload that PDF file through the link provided over there. PART B solutions sent through WhatsApp or email will not be entertained.

Q2	Show that the function f defined as follows:		
$\qquad f(x)=\frac{1}{2^{n}}$, when $\frac{1}{2^{n+1}}<x<\frac{1}{2^{n}}, \quad(n=0,1,2, \ldots)$,	$\mathbf{8}$	CO1	
	is integrable on $[0,1]$, although it has an infinite number of points of discontinuity.		

Q3	Show that the sequence $\left\{f_{n}\right\}$, where $f_{n}(x)=\frac{1}{x+n}$ is uniformly convergent in any interval $[0, b], b>0$.	$\mathbf{8}$	$\mathbf{C O 2}$
Q4	Find the radius of convergence of the series $x+\frac{1}{2^{2}} x^{2}+\frac{2!}{3^{3}} x^{3}+\frac{3!}{4^{4}} x^{4}+\cdots$.	$\mathbf{8}$	$\mathbf{C O 3}$
Q5	If a function f is continuous on $[a, b]$, then there exists a number ξ in $[a, b]$ such that $\int_{a}^{b} f d x=f(\xi)(b-a)$.	$\mathbf{8}$	$\mathbf{C O 4}$
Q6	If a function is monotonic on $[a, b]$, then it is integrable on $[a, b]$.	$\mathbf{8}$	$\mathbf{C O 4}$

