Name:		DEC	
Enrolment	arolment No:		
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES		
	End Semester Examination, July 2020		
0	ne Name: B. Sc. (Hons) Mathematics Semester : IV		
Course Na			
Course Co			
compulsor	ns: Attempt all questions from PART A (60 Marks) and PART B (40 Marks). All questive	ions are	
	PART A		
multiple a options. Y	bns: PART A contains 25 questions for a total of 60 marks. It contains 18 multiple choice inswer questions. Multiple answer questions may have more than one correct option. Sele You need to answer PART A within the slot from 2:00 PM to 5:00 PM on 6th July 2020. If is 5:00 PM on 6th July 2020. After the due time, the PART A will not be available.	ect all the	correct
S. No.		Marks	СО
Q1 (i)	Approximation of the definite integral $\int_{1}^{4} x^{2} dx$ with the Riemann sum by dividing [1, 4] into equal subintervals: a) 21 b) 63 c) 4 d) 64	2	C01
Q1 (ii)	Upper Darboux sum for the function $f(x) = \begin{cases} 1, & x \in Q \\ -1 & x \notin Q \end{cases}$ on the interval [0, 1] is: a) 1 b) -1 c) 0 d) Q	2	C01
Q1 (iii)	A bounded function $f:[a,b] \rightarrow \mathbb{R}$ is Riemann integrable on $[a,b]$ iff for each $\varepsilon > 0$ there exists a partition P of $[a,b]$ such that a) $U(P, f) - L(P, f) < \varepsilon$ b) $U(P, f) - L(P, f) > \varepsilon$ c) $U(P, f) + L(P, f) < \varepsilon$ d) $U(P, f) + L(P, f) > \varepsilon$	2	C01
Q1 (iv)	Determine the value of integral $\int_0^1 x \ln(x) dx$: a) -1/4 b) 0 c) 1	2	CO2

	d) Divergent		
Q1 (v)	The given integral $\int_{1}^{\infty} \frac{1}{x^2} dx$ converges to a) 1 b) -1 c) 0 d) 2	2	CO2
Q1 (vi)	Which of the following is not true about $S_n = \frac{1}{n}$? a) The sequence converges to 0. b) $\lim_{n \to \infty} \sum_{i=1}^{n} S_i = L$, for some finite L. c) The series $\sum S_n^2$ converges. d) The series $\sum (-1)^n S_n$ converges	2	CO3
Q1 (vii)	Let $f_n: R \to R$ by $f_n(x) = \frac{Sinnx}{n}$. Then a) $f_n \to 0$ pointwise on R . b) $f_n \to \pi$ pointwise on R . c) $f_n \to 1$ pointwise on R . d) $f_n \to \pi/2$ pointwise on R .	2	CO3
Q1 (viii)	Let $f_n: R \to R$ by $f_n(x) = \left(1 + \frac{x}{n}\right)^n$. Then a) $f_n \to e^x$ pointwise on R . b) $f_n \to x$ pointwise on R . c) $f_n \to 1$ pointwise on R . d) $f_n \to 0$ pointwise on R .	2	CO3
Q1 (ix)	The uniform limit of a sequence of real-valued bounded functions defined on a set is a) bounded b) unbounded c) not defined d) None of the above 	2	CO3
Q1 (x)	The given series $\sum_{n=1}^{\infty} \frac{n!^2}{2n!}$ converges to a) $\frac{1}{4}$ b) $\frac{1}{2}$ c) 1 d) 0	2	CO3

Q1 (xi)	The geometric series $\sum_{n=0}^{\infty} (x)^n$ has radius of convergence a) 1 b) -1 c) 0 d) Infinity	2	CO4
Q1 (xii)	The power series $\sum_{n=1}^{\infty} \frac{1}{n} (x)^n$ has radius of convergence a) 1 b) 2 c) 0 d) None of these	2	CO4
Q1 (xiii)	The power series $\sum_{n=0}^{\infty} \frac{1}{n!} (x)^n$ has radius of convergence a) ∞ b) 1 c) -1 d) 2	2	CO4
Q1 (xiv)	The power series $\sum_{n=0}^{\infty} n! (x)^n$ has radius of convergence a) 0 b) 1 c) -1 d) ∞	2	CO4
Q1 (xv)	If the series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n$ is equal to a) 0 b) 1 c) Infinity d) None of these	2	CO4
Q1 (xvi)	 Select all Riemann integrable functions: a) Continuous function on [a, b] b) A bounded function on [a, b] which is continuous except at finitely many points in [a, b] 	3	CO1

	 c) A monotonic function on [a, b] d) Differentiable function on [a, b] 		
Q1 (xvii)	Let $[a, b]$ be a given interval. A partition P on $[a, b]$ is a finite set of points x_0, x_1, x_2 such that $a = x_0 \le x_1 \le x_2 \dots \dots \le x_n = b$. Let $f(x)$ be real valued function on $[a, b]$, there exist real numbers m and M such that $m \le f(x) \le M$. For all $x \in [a, b]$ a) $m(b - a) \le L(P, f)$ b) $L(P, f) \le U(P, f)$ c) $M(b - a) \le L(P, f)$ d) $m(b - a) \le M(b - a)$	3	CO1
Q1 (xviii)	d) $m(b-a) \leq M(b-a)$ Select all that apply for the integral $\int_a^b \frac{1}{(x-a)^p} dx$ a) Converges if $p < 1$. b) Diverges if $p < 1$. c) Converges if $p \geq 1$. d) Diverges if $p \geq 1$.	3	CO2
Q1 (xix)	Let $\lim_{x \to \infty} x^p f(x) = A$. Then a) $\int_a^{\infty} f(x) dx$ converges if $p > 1$ and A is finite. b) $\int_a^{\infty} f(x) dx$ diverges if $p \le 1$ and $A \ne 0$ (A may be infinite). c) $\int_a^{\infty} f(x) dx$ converges if $p > 1$. d) $\int_a^{\infty} f(x) dx$ diverges if $p \le 1$.	3	CO2
Q1 (xx)	Which of the following is true about $S_n = \frac{1}{n}$? a) The sequence converges to 0. b) $\lim_{n \to \infty} \sum_{i=1}^{n} S_i = L$, for some finite L. c) The series $\sum S_n^2$ converges. d) The series $\sum (-1)^n S_n$ converges	3	CO3
Q1 (xxi)	Suppose that $\langle u_n \rangle$ and $\langle M_n \rangle$ are sequence of real numbers, with $0 \le u_n \le M_n$ for each positive integer <i>n</i> . If $\sum_{n=0}^{\infty} M_n$ converges, then a) $\sum_{n=0}^{\infty} u_n$ converges b) $\sum_{n=0}^{\infty} u_n$ diverges c) $\sum_{n=0}^{\infty} u_n$ oscillates d) None of the above	3	C03
Q1 (xxii)	 If (f_n) and (g_n) are sequence of bounded functions and f_n → f and g_n → g on a set E, then a) {f_n + g_n} converges uniformly on E. b) {f_ng_n} converges uniformly on E. c) {f_n + g_n} diverges. 	3	CO3

	d) $\{f_n g_n\}$ diverges.		
Q1 (xxiii)	The radius of convergence R of the power series $\sum_{n=0}^{\infty} a_n (x-c)^n$ is given by		
	$R = \frac{1}{\limsup_{n \to \infty} \sup_{n \to \infty} a_n ^{1/n}} \text{ where}$ a) $R = 0$ if <i>limsup</i> diverges to ∞ b) $R = \infty$ if <i>limsup</i> is 0 c) $R = 1$ if <i>limsup</i> diverges to ∞ d) $R = c$ if <i>limsup</i> diverges to ∞	3	CO4
Q1 (xxiv)	Suppose that the power series $\sum_{n=0}^{\infty} a_n (x-c)^n$ has radius of convergence <i>R</i> . Then the power series $\sum_{n=0}^{\infty} n a_n (x-c)^{n-1}$ has radius of convergence		
	a) R b) 1 c) R^2 d) 0	3	CO4
Q1 (xxv)	The exponential function has radius of convergence		
	 a) Infinity b) 1 c) 2 d) 0 	3	CO4
problems in them into 500077624	PART B r PART B will be available from 2:00 PM on 6th July 2020 to 2:00 PM on 7th July PART B on a plain A4 sheets and write your name, roll number and SAP ID on each pag a single PDF file. Name the file as SAP ID _BRANCH NAME_ROLL NUMBEI _CCVT_ R103219023.pdf) and upload that PDF file through the link provided over sent through WhatsApp or email will not be entertained.	ge and the R (for ex	en scan ample:
Q2	Show that the function <i>f</i> defined as follows:		
	$f(x) = \frac{1}{2^n}$, when $\frac{1}{2^{n+1}} < x < \frac{1}{2^n}$, $(n = 0, 1, 2,)$, f(0) = 0,	8	CO1
	is integrable on [0, 1], although it has an infinite number of points of discontinuity.		

Q3	Show that the sequence $\{f_n\}$, where $f_n(x) = \frac{1}{x+n}$ is uniformly convergent in any interval $[0, b], b > 0$.	8	CO2
Q4	Find the radius of convergence of the series $x + \frac{1}{2^2}x^2 + \frac{2!}{3^3}x^3 + \frac{3!}{4^4}x^4 + \cdots$	8	CO3
Q5	If a function f is continuous on [a, b], then there exists a number ξ in [a, b] such that $\int_{a}^{b} f dx = f(\xi)(b-a).$	8	CO4
Q6	If a function is monotonic on $[a, b]$, then it is integrable on $[a, b]$.	8	CO4