Name: Enrolment No: UNIVERSITY WITHA PURPOSE	
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination-Online Bb mode, July 2020 (date of exam: 6 $^{\text {th }}$ July 20) Course: Inorganic Chemistry-III Program: \quad B Sc (H) Chemistry Course Code:	
PART- A(Answer ALL questions) $30 \times 2=60 \text { Marks }$ PART A contains 30 questions for a total of 60 marks. Part-A contains multiple (MCQs) choice and multiple answer questions(MAQs)(Negative marks for MAQs incorrect answers)	
Q 1	Lanthanides (Ln) dominated by its +3 oxidation state, which of the following statements is incorrect? A. The ionic sizes of Ln (III) decrease in general with increasing atomic number B. Ln (III) compounds are generally colourless C. Ln (III) hydroxides are mainly basic in character D. Because of the large size of the Ln (III) ions the bonding in its compounds is predominantly ionic in character
Q 2	Lanthanide contraction is caused due to? A. the imperfect shielding on outer electrons by $4 f$ electrons from the nuclear charge B. the same effective nuclear charge from Ce to Lu C. the appreciable shielding on outer electrons by 5d electrons from the nuclear charge D. the appreciable shielding on outer electrons by $4 f$ electrons from the nuclear charge
Q 3	Larger number of oxidation states are exhibited by the actinides than those by the lanthanides, the main reason being A. $4 f$ orbitals more diffused than the $5 f$ orbitals B. more energy difference between $5 f$ and $6 d$ than between $4 f$ and $5 d$ orbitals C. more reactive nature of the actinides than the lanthanides D. lesser energy difference between $5 f$ and $6 d$ than between $4 f$ and $5 d$ orbitals
Q 4	The electronic configurations of Am and Cm are. A. $[\mathrm{Rn}] 5 f^{7} 7 s^{2}$ and $[\mathrm{Rn}] 5 f^{7} 6 d^{1} 7 s^{2}$ B. $[\mathrm{Rn}] 5 f^{7} 6 d^{1} 7 s^{2}$ and $[\mathrm{Rn}] 5 f^{7} 7 s^{2}$ C. $[\mathrm{Rn}] 5 f^{7} 6 d^{1} 7 s^{2}$ and $[R n] 5 f^{7} 6 d^{1} 7 s^{1}$ D. $[\mathrm{Rn}] 5 f^{6} 6 d^{2} 7 s^{2}$ and $[\mathrm{Rn}] 5 f^{7} 6 d^{1} 7 s^{1}$
Q 5	Maximum oxidation state +7 exhibited by element A. Pa B. U C. Np D. None

Q6	Give the oxidation state, d orbital occupation and coordination number of the central metal ion in the following complex $\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ A. Zero B. +1 C. +2 D. +3
Q7	Write down the IUPAC name for each of the complex $\mathrm{K}_{4}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$ A. Potassiumhexacyanomanganeese(II) B. Hexacyanopotassium(IV)manganeese C. Potassiumhexacyanomanganate(II) D. Hexacyanomanganeese (IV) potassium
Q8	How many ions are produced from the complex $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{3}$ in solution? A. 6 B. 2 C. 4 D. 3
Q9	Amongst the following ions which one has the highest magnetic moment value? A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ C. $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ D. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
Q10	Which one of the following complexes can exhibit geometrical isomerism? A. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ (Square planar) B. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ (Tetrahedral) C. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ (Square planar) D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}($ Octahedral)
Q11	A magnetic moment of 1.73 BM will be shown by one among the following A. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ B. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ C. $\mathrm{TiCl}{ }^{4-}$ D. $\left[\mathrm{CoCl}_{6}\right]^{4-}$
Q12	Among the ligands NH_{3}, ethylene diamine (en), CN - and CO , the order of increasing field strength, is A. en $<\mathrm{CN}^{-}<\mathrm{NH}_{3}<\mathrm{CO}$ B. $\mathrm{NH}_{3}<\mathrm{en}<\mathrm{CN}^{-}<\mathrm{CO}$ C. $\mathrm{NH}_{3}=\mathrm{en}<\mathrm{CN}^{-}=\mathrm{CO}$ D. $\mathrm{NH}_{3}<\mathrm{en}=\mathrm{CN}^{-}<\mathrm{CO}$
Q13	According to Crystal Field Theory, Identify the true statements A. Low spin complexes contain strong field ligands.

	B. In high spin octahedral complexes, $\Delta_{\text {oct }}$ is less than the electron pairing energy, and is relatively very small C. Diamagnetic metal ions cannot have an odd number of electrons. D. In an octahedral crystal field, the d electrons on a metal ion occupy the e_{g} set of orbitals before they occupy the $\mathrm{t}_{2 \mathrm{~g}}$ set of orbitals.
Q14	Facial and meridional isomerism will not be shown by A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$ B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ C. $\left[\mathrm{Co}(\mathrm{en})_{3}\right]_{\mathrm{Cl}_{3}}$ D. $\left.\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$.
Q15	Which one will not show optical isomerism? A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$ B. cis-[Co(en) $\left.2_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ C. trans-[Co(en) $\left.{ }_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
Q16	In the following Latimer diagram, the species that undergoes disproportionation reaction is: (A) MnO_{4}^{2-} (B) MnO_{4}^{3-} (C) $\mathrm{Mn}_{2} \mathrm{O}_{3}$ (D) $\quad \mathrm{Mn}(\mathrm{OH})_{2}$
Q17	In which of the following complex oxidation number of Fe is +1 ? A. $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$ B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}^{2}\right] \mathrm{SO}_{4}$ C. $\left[\mathrm{FeBr}_{4}\right]^{-}$ D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2-}$
Q18	Number of $\mathrm{C} \equiv \mathrm{N}$ and $\mathrm{C} \equiv \mathrm{O}$ ligands bonded to iron in the Sodium nitroprusside (SNP) with formula $\mathrm{C}_{5} \mathrm{FeN}_{6} \mathrm{Na}_{2} \mathrm{O}$ A. 5 B. 1 C. 2 D. 4
Q19	IUPAC name of Sodium cobalt nitrite and oxidation state of Co in $\mathrm{Na}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]$ A. Sodium hexanitrocobaltate B. Sodium nitrocobaltate(II) and oxidation state Co is +2 C. Sodium hexanitrocobaltate(III) and oxidation state of Co is +3 D. Oxidation state of Co is 3
Q20	The reactions of $\left[\mathrm{PtCl}_{4}\right]^{2-}$ with NH_{3} (reaction I) and of $\left[\mathrm{PtCl}_{4}\right]^{2-}$ with $\left[\mathrm{NO}_{2}\right]^{-}$followed by NH_{3} (reaction II) are ways of preparing: A. I: trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$; II: trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)\left(\mathrm{NO}_{2}\right)\right]^{-}$ B. I: cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$; II: trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)\left(\mathrm{NO}_{2}\right)\right]^{-}$ C. I: trans-[$\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$; II: cis-[$\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)\left(\mathrm{NO}_{2}\right)\right]^{-}$ D. I: cis-[$\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$; Il: trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)\left(\mathrm{NO}_{2}\right)\right]^{-}$
Q21	Which statement about the trans-effect and the trans-influence is correct? A. The trans-influence is a ground-state effect, whereas the trans-effect has a kinetic origin B. e trans-effect is a ground-state effect, whereas the trans-influence has a kinetic origin C. Both the trans-effect and trans-influence are ground-state effects D. Rates of substitution are affected by the trans-effect but have nothing to do with the trans-influence of ligands
Q22	The Trans effect is increasing in the order of A. $\mathrm{NO}_{2}>\mathrm{Cl}^{-}>\mathrm{NH}_{3}$ B. $\mathrm{NO}_{2}^{-}<\mathrm{Cl}^{-}<\mathrm{NH}_{3}$ c. $\mathrm{NO}_{2}^{-}<\mathrm{Cl}^{-}<\mathrm{NH}_{2}$

	D. $\mathrm{NO}_{2}^{-}>\mathrm{Cl}^{-}>\mathrm{NH}_{2}$
Q23	A. A: $\mathrm{NH}_{3} \mathrm{~B}: \mathrm{NO}_{2}^{-} \mathrm{C}: \mathrm{NO}_{2}^{-}$D: NH_{3} B. A: NO_{2}^{-}B: $\mathrm{NH}_{3} \mathrm{C}: \mathrm{NO}_{2}^{-}$D: NH_{3} c. A: NO_{2}^{-}B: $\mathrm{NH}_{3} \mathrm{C}: \mathrm{NH}_{3}$ D: $\mathrm{NO}_{2}{ }^{-}$ D. A: NH_{3} B: $\mathrm{NH}_{3} \mathrm{C}: \mathrm{NO}_{2}^{-} \mathrm{D}: \mathrm{NO}_{2}^{-}$
Q24	To identify the physical and chemical properties of transition elements which differ from main group elements (sblock). Properties of transitionelements include: A. have small charge/radius ratio B. form coloured ions and compounds C. form compounds with profound catalytic activity D. show variable oxidation states
Q25	Identify the correct electron configuration of Pb^{2+} [${ }^{82} \mathrm{pb} 207.2$] A. $[\mathrm{Xe}] 6 \mathrm{~s}^{2} 5 \mathrm{~d}^{10} 4 \mathrm{f}^{14}$ B. $[\mathrm{Xe}] 6 \mathrm{~s}^{2} 5 \mathrm{~d}^{10} 4 \mathrm{f}^{12}$ C. $[\mathrm{Xe}] 4 \mathrm{f}^{14} 5 \mathrm{~d}^{10} 6 \mathrm{~s}^{2} 6 \mathrm{p}^{0}$ D. $[X e] 4 f^{12} 5 d^{10} 6 s^{2} 6 p^{2}$
Q26	The relative rates of various ligands (L) like $\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{NO}_{2}>\mathrm{Br}^{>}>\mathrm{Cl}^{-}$increases as the trans effect ... ${ }^{\mathrm{A}}$. , however activation energy.... ${ }^{\mathrm{B}} \ldots$ in the same way. How A and B will vary in the above statement for trans effect? A. A: Increases, B: Decreases B. A: Increases C. B: Decreases D. A: Decreases, B: Increases
Q27	According to this theory the polarization (effect of σ-bonding) of a ligand would be directly related to its Trans effect. In case of $[\operatorname{Pt}(\mathrm{X}) 4]$ type complex, the overall dipole generated will be \qquad hence we observedtrans effect. A. Zero, No B. double, Yes C. Triple, No D. increases, No
Q28	The first step in the Eigen-Wilkins mechanism for ML_{6} undergoing Y for L substitution is: A. loss of L B. addition of Y C. formation of a weakly bound encounter complex D. formation of a 7-coordinate complex in the rate-determining step

