

Q6.	Consider a composite shaft fabricated from a 6-cm-diameter solid aluminum alloy, G $=28 \mathrm{GPa}$, surrounded by a hollow steel circular shaft of outside diameter 7 cm and inside diameter 6 cm , with $\mathrm{G}=84 \mathrm{GPa}$. The two metals are rigidly connected at their juncture. If the composite shaft is loaded by a twisting moment of 154 KNm , calculate the maximum shearing stress in the steel and also in the aluminum.	10	$\mathrm{CO4}$
Q7.	A simply supported beam is loaded by a couple M as shown in Fig. below. The beam is 2 m long and of square cross section 50 mm on a side. If the maximum permissible deflection in the beam is 5 mm , and the allowable bending stress is 150 MPa , find the maximum allowable load M. Use $\mathrm{E}=200 \mathrm{GPa}$.	10	$\mathrm{CO5}$
Q8.	The cylindrical pressure vessel with hemispherical end-caps is made of steel. The vessel has a uniform thickness of 18 mm and an outer diameter of 400 mm . When the vessel is pressurized to 3.6 MPa , determine the change in the overall length of the vessel. Use $\mathrm{E}=200 \mathrm{GPa}$ and $\vartheta=0.3$ for steel. Neglect localized bending.	10	$\mathrm{CO4}$
Q9.	Axial loads are applied to the compound rod that is composed of an aluminum segment rigidly connected between steel and bronze segments. What is the stress in each material given that $\mathrm{P}=10 \mathrm{kN}$?	10	CO2
SECTION-C			
Q10.	A simply supported beam of length L subjected to UDL of intensity w is shown in Fig. below, The young modulus of beam is E . The cross-section of beam is square of side ' a '. Find (a) the maximum bending stress in the beam, (b) the maximum shearing stress in the beam, and	20	$\mathrm{CO3}$

