Name:

Enrolment No:

Semester

Time

: **IV**

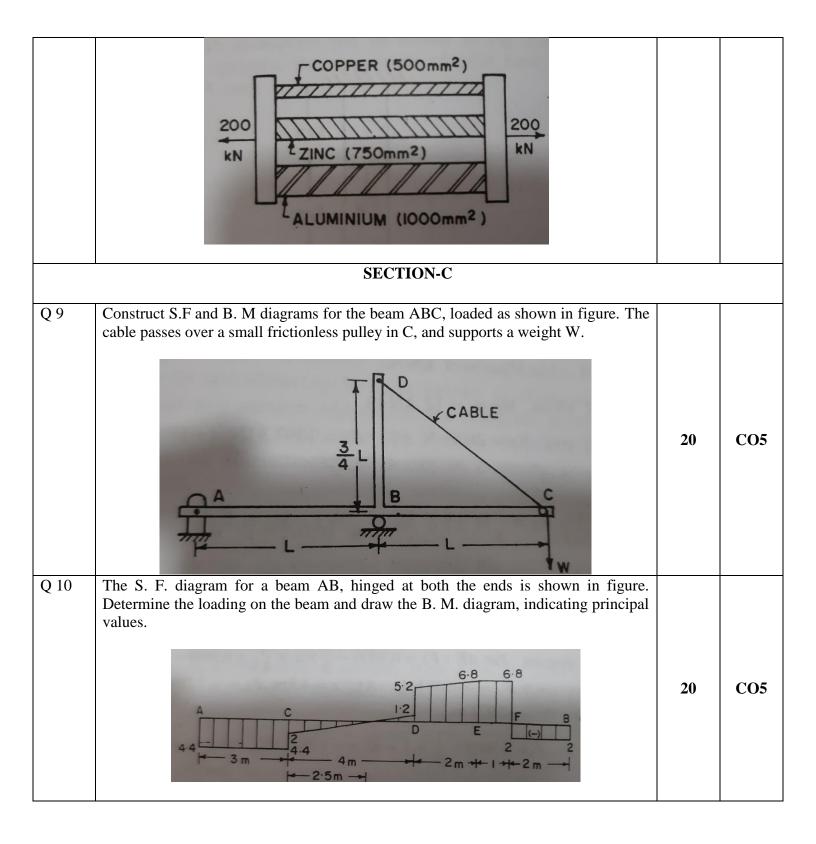
Max. Marks: 100

: 03 hrs.

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, July 2020

Programme Name: B. Tech. FSE


Course Name Strength of Materials

Course Code MECH 2018

Nos. of page(s)

SECTION A				
S. No.		Marks	CO	
Q 1	A composite bar is made up by connecting a steel member and a copper member, rigidly fixed at their ends as shown in fig. A mm²	5	CO1	
	mm ² for another half of the length, while that for the copper member is A mm ² . The coefficient of expansion for the steel and copper are α and 1.3 α , while elastic modulii are E and 0.5E respectively. Determine the stresses induced in both the members when the composite bar is subjected to a rise of temperature of t degrees.			
Q 2	A piece of material is subjected to tensile stress of 70 N/mm ² and 50 N/mm ² at right angles to each other. Find fully the stresses on a plane the normal of which makes an angle of 35 degree with large tensile stress.	5	CO2	
Q 3	A circular sheet of metal has radius R. if a hole of radius r is made as shown in figure, determine the position of centroid of the remaining part.	5	CO3	

Q 4	Two elastic bars of the same material and length, one of circular section of diameter d and the other of square section of side d, absorb the same amount of energy delivered by axial forces. Compare the stresses in two bars.	5	CO3
	SECTION B		
Q 5	Determine the SF and BM at every point of the overhang beam as shown in figure.	10	CO4
Q 6	A timber beam of rectangular section is to support a load of 20 kN over a span of 4 m. If the depth of the section is to be twice the breath, and the stress in the timber is not to exceed 60 N/mm ² , find the dimensions of the cross-section.	10	CO3
Q 7	As shown in figure, a rigid bar ABC hinged at A and suspended at two points B and C by two equal bars BD and CE made of aluminum and steel respectively. The bar carries a load of 20 kN midway between B and C. The cross sectional area of the aluminum bar is 3 mm² and that of steel bar is 2 mm². Determine the load taken by two bars. Assume modulus of elasticity of aluminum = 0.07*10^6 N/mm² and modulus of elasticity of steel = 0.2*10^6 N/mm².	10	CO4
Q 8	Three bars, made of copper, zinc and aluminum are of equal length and have cross-section 0f 500, 750 and 1000 sq. mm respectively. The are rigidly connected at their ends, as shown in figure. If this compound member is subjected to a longitudinal pull of 200 kN, estimate the proportion of load carried by each rod and the induced stresses. Take $E_c = 1.3*10^5 \ N/mm^2$, $E_z = 1*10^5 \ N/mm^2$, $E_a = 0.8*10^5 \ N/mm^2$	10	CO4

