Name:	upes
Enrolment No:	

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, July 2020

Programme Name: B. Tech. CERP
Course Name : Fluid Mechanics
Course Code : MECH 2007

Semester : IV
Time : 3 hrs
Max. Marks: 100

Nos. of page(s) : 02
Instructions : Assume any missing data. Draw the diagrams, wherever necessary.

Instructions for students:

- Assignment should be attempted on blank white sheets (A4 size) with all the details like program, semester, course name, course code, Enrollment Number, SAP ID at the top and signature at the bottom (right hand side bottom corner)
- Assignments should be uploaded in PDF format on Blackboard on or before $\mathbf{1 3}^{\text {th }}$ July 2020 by 1:59 PM.
- Assignments submitted through WhatsApp and E-mail will not be entertained.
- No submission shall be entertained after 24 Hrs.
(Answer all questions)

1.	A tubular centrifugal bowl with an inside diameter $\mathbf{1 5 0} \mathbf{~ m m}$, rotating at $\mathbf{8 0 0} \mathbf{~ r p m}$, is used to separate chlorobenzene of density $1109 \mathbf{~ k g} / \mathbf{m}^{3}$ and aqueous wash liquid of density $1020 \mathrm{~kg} / \mathrm{m}^{\mathbf{3}}$. The free-liquid surface inside the bowl is $\mathbf{4 0} \mathbf{~ m m}$ from the axis of rotation. If the centrifugal bowl is to contain equal volumes of the two liquids, what should be the radial distance from the rotational axis to the top of the overflow dam of heavy liquid?	15	CO1
2.	Water at $\mathbf{2 0}^{\mathbf{0}} \mathrm{C}$ is being pumped from a tank to an elevated tank at a rate of $5 \times 1 \mathbf{1 0}^{-3} \mathbf{m}^{\mathbf{3}} / \mathbf{s}$. All of the piping in figure is Schedule Number 40 pipe. The pump has an efficiency of $\mathbf{6 5 \%}$. Calculate the power needed by the pump. density of water is $\mathbf{9 9 8 . 2} \mathbf{~ k g} / \mathrm{m}^{\mathbf{3}}$, viscosity is $\mathbf{1 \times 1 0 ^ { - 3 }}$ pa.s, $\boldsymbol{\varepsilon}=\mathbf{4 . 6 \times 1 0 ^ { - 5 }} \mathrm{m}, \mathrm{K}_{f}=\mathbf{0 . 7 5}$ $\mathbf{W s}=-\boldsymbol{\eta} \mathbf{W p}(\mathbf{J} / \mathbf{k g})$, where $\mathbf{W s}$ is shaft work, $\mathbf{W p}$ is pump work, $\boldsymbol{\eta}$ is efficiency of pump	25	CO5

3.	It is desired to agitate a liquid having viscosity of $1.5 \times \mathbf{1 0}^{-3}$ Pa.s and a density of $969 \mathrm{~kg} / \mathrm{m}^{3}$ in a tank having diameter of $\mathbf{0 . 9 1} \mathrm{m}$. The agitator will be a six-bladed open turbine having a diameter of $\mathbf{0 . 3 0 5} \mathbf{~ m}$ operating at $\mathbf{1 8 0} \mathbf{~ r p m}$. The tank has four vertical baffles with a width \mathbf{J} of $\mathbf{0 . 0 7 6} \mathbf{m}$ and also $\mathbf{W}=\mathbf{0 . 0 3 8 1} \mathbf{~ m}$, Calculate the required $\mathbf{k W}$	15	CO6
4.	Soybean oil is being pumped through a uniform diameter pipe at a steady mass flow rate. A pump supplies $\mathbf{2 0 9 . 2} \mathbf{~ J} / \mathbf{k g}$ mass of fluid flowing. The entrance absolute pressure in the inlet pipe to the pump is $\mathbf{1 0 3 . 4} \mathbf{~ k N} / \mathbf{m}^{2}$. The exit section of the pipe downstream from the pump is $\mathbf{3 . 3 5} \mathbf{~ m}$ above the entrance and exit pressure is $\mathbf{1 7 2 . 4} \mathbf{~ k N} / \mathbf{m}^{\mathbf{2}}$. Exit and entrance pipes are of same diameter. The fluid is in turbulent flow. Calculate the friction losses in the system. The temperature of Soybean oil is $\mathbf{3 0 3} \mathbf{~ K}$. The density of Soybean at $\mathbf{3 0 3} \mathbf{~ K}$ is $919 \mathrm{~kg} / \mathrm{m}^{3}$	20	$\mathrm{CO4}$
5.	A packed bed is composed of cubes of $\mathbf{0 . 0 2} \mathbf{~ m}$ on a side. The bulk density of packed bed is $\mathbf{9 8 0} \mathbf{~ k g} / \mathbf{m}^{3}$. The density of solid cubes is $\mathbf{1 5 0 0} \mathbf{~ k g} / \mathbf{m}^{3}$. (i) Calculate void fraction, effective diameter and specific surface area (ii) repeat the same conditions but for cylinders having diameter of $\mathbf{0 . 0 2} \mathbf{~ m}$ and length of 1.5 D	10	$\mathrm{CO2}$
6.	A heavy oil at $\mathbf{2 0}^{\mathbf{0}} \mathbf{C}$ having a density of $\mathbf{9 0 0} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}$ and a viscosity of $\mathbf{6} \mathbf{~ c p}$ is flowing in a 4" Schedule 40 pipe. When the flow rate is $0.0174 \mathrm{~m}^{3} / \mathrm{s}$ it is desired to have a pressure drop reading across the manometer equivalent to $0.93 \times 105 \mathrm{~Pa}$. What size orifice should be used if the orifice coefficient is assumed to be $\mathbf{0 . 6 1}$? What is the permanent pressure losses?	15	$\mathrm{CO3}$

