Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, July 2020

## Course: Thermodynamics-II Program: B. Tech CE+RP Course Code: CHCE-2016

Semester: IV Max. Marks: 100

## **Instructions:**

- 1. Attempt all questions. Marks are shown against each question.
- 2. Take any missing data with proper justification.

|        | SECTION A<br>(60 marks)                                                                                                                                                                                             |       |     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| S. No. |                                                                                                                                                                                                                     | Marks | CO  |
| Q 1    | A binary mixture of acetone (1) and acetonitrile (2) is flashed at temperature 340 K                                                                                                                                |       |     |
|        | and 115 kPa. The overall mole fraction of acetone in the feed was 0.75. Determine the                                                                                                                               |       |     |
|        | equilibrium mole fraction of liquid and vapor phase formed. Assume that Raoult's law                                                                                                                                | 10    | CO1 |
|        | applies. Antoine equation for acetone and acetonitrile are given below (saturation                                                                                                                                  |       |     |
|        | pressure is in kPa and temperature is in K)                                                                                                                                                                         |       |     |
|        | $\ln P_1^{sat} = 14.3916 - \frac{2795.82}{T - 43.15}$                                                                                                                                                               |       |     |
|        | $\ln P_2^{sat} = 14.7258 - \frac{3271.24}{T - 31.30}$                                                                                                                                                               |       |     |
| Q 2    | The excess Gibbs energy for the system chloroform/ethanol at 328.15 K is represented                                                                                                                                |       |     |
|        | by the Margules equation,                                                                                                                                                                                           |       |     |
|        | $\frac{G^E}{RT} = (1.42 x_1 + 0.59 x_2) x_1 x_2$                                                                                                                                                                    | 10    | CO2 |
|        | Find the expression for activity coefficient for each species at this temperature.                                                                                                                                  |       |     |
| Q 3    | Estimate the fugacity of liquid water at normal boiling point and 80 bar.                                                                                                                                           |       |     |
|        | Data: $T_c = 647.1 K$ ; $P_c = 220.55 bar$ ; $\omega = 0.345$ ; $V_c = 55.9 X 10^{-6} m^3 / mol$                                                                                                                    | 10    | CO2 |
| Q.4    | Estimate the change in entropy when 2 m <sup>3</sup> of carbon dioxide and 4 m <sup>3</sup> of carbon monoxide, each at 1 bar and 500 K are blend to form a gas mixture at the same conditions. Assume ideal gases. | 10    | CO3 |
| Q 5    | A binary liquid system exhibits LLE at 298.15 K. Derive the expressions to estimate<br>Margules's constant and van Laar constants for                                                                               | 10    | CO4 |

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $x_1^{\alpha}$ = | = 0.2, $x_1^\beta = 0.9$ |  |    |     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|--|----|-----|
| Q.6 | A system initially containing 4 mol C <sub>2</sub> H <sub>4</sub> and 6 mol of O <sub>2</sub> undergoes the reaction:<br>$C_2H_4(g) + \frac{1}{2}O_2(g) = C_2H_4O(g)$ $C_2H_4(g) + 3O_2(g) = 2CO_2(g) + 2H_2O(g)$ Develop expressions for the mole fraction of the reacting species as function of reaction coordinates for the two reaction.                                                                                                                                                                                                                                                                                               |                  |                          |  |    | CO5 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | SECTION B<br>(40 marks)  |  |    |     |
| Q 7 | At 298.15 K and atmospheric pressure the volume change of mixing of binary liquid<br>mixtures of species 1 and 2 is given by the equation:<br>$\Delta V = x_1 x_2 (45 x_1 + 25 x_2)$ Where $\Delta V$ is in cm <sup>3</sup> /mol. At these conditions, $V_1 = 110$ and $V_2 = 90$ cm <sup>3</sup> /mol.<br>Determine the partial molar volumes of each species containing 30 mol-% of species<br>1 at the given conditions.                                                                                                                                                                                                                 |                  |                          |  |    | CO3 |
| Q 8 | For the cracking reaction, the equilibrium conversion is negligible at 300 K, but<br>becomes appreciable at temperature above 500 K. For a pressure of 1 bar, determine<br>$C_3H_8(g) = C_2H_4(g) + CH_4(g)$<br>(a) The fractional conversion of propane at 700 K<br>(b) The temperature at which fractional conversion is 80 %The values for $\Delta H_{298}^0$ and $\Delta G_{298}^0$ are 82670 and 42290 J/mol respectively. Heat<br>capacities of gases are: $\frac{C_p^{ig}}{R} = A + BT + CT^2$ $\boxed{ \text{ component } A \ 1.213 \ 28.785 \ -8.824 \ C_2H_4 \ 1.424 \ 14.394 \ -4.392 \ CH_4 \ 1.702 \ 9.081 \ -2.164 \ \hline $ |                  |                          |  | 20 | CO5 |