Name: Enrolment No:			
Cours Progr Cours Instru 1. 2.			
SECTION A (60 marks)			
S. No.		Marks	CO
Q 1	A binary mixture of acetone (1) and acetonitrile (2) is flashed at temperature 340 K and 115 kPa . The overall mole fraction of acetone in the feed was 0.75 . Determine the equilibrium mole fraction of liquid and vapor phase formed. Assume that Raoult's law applies. Antoine equation for acetone and acetonitrile are given below (saturation pressure is in kPa and temperature is in K) $\begin{aligned} & \ln P_{1}^{\text {sat }}=14.3916-\frac{2795.82}{T-43.15} \\ & \ln P_{2}^{\text {sat }}=14.7258-\frac{3271.24}{T-31.30} \end{aligned}$	10	CO1
Q 2	The excess Gibbs energy for the system chloroform/ethanol at 328.15 K is represented by the Margules equation, $\frac{G^{E}}{R T}=\left(1.42 x_{1}+0.59 x_{2}\right) x_{1} x_{2}$ Find the expression for activity coefficient for each species at this temperature.	10	CO2
Q 3	Estimate the fugacity of liquid water at normal boiling point and 80 bar. Data: $T_{c}=647.1 \mathrm{~K} ; P_{c}=220.55 \mathrm{bar} ; \omega=0.345 ; V_{c}=55.9 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{mol}$	10	CO2
Q. 4	Estimate the change in entropy when $2 \mathrm{~m}^{3}$ of carbon dioxide and $4 \mathrm{~m}^{3}$ of carbon monoxide, each at 1 bar and 500 K are blend to form a gas mixture at the same conditions. Assume ideal gases.	10	CO3
Q 5	A binary liquid system exhibits LLE at 298.15 K. Derive the expressions to estimate Margules's constant and van Laar constants for	10	CO4

	$x_{1}^{\alpha}=0.2, \quad x_{1}^{\beta}=0.9$		
Q. 6	A system initially containing $4 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4}$ and 6 mol of O_{2} undergoes the reaction: $\begin{gathered} \mathrm{C}_{2} \mathrm{H}_{4}(g)+\frac{1}{2} \mathrm{O}_{2}(g)=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(g) \\ \mathrm{C}_{2} \mathrm{H}_{4}(g)+3 \mathrm{O}_{2}(g)=2 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) \end{gathered}$ Develop expressions for the mole fraction of the reacting species as function of reaction coordinates for the two reaction.	10	CO5
	SECTION B (40 marks)		
Q 7	At 298.15 K and atmospheric pressure the volume change of mixing of binary liquid mixtures of species 1 and 2 is given by the equation: $\Delta V=x_{1} x_{2}\left(45 x_{1}+25 x_{2}\right)$ Where ΔV is in $\mathrm{cm}^{3} / \mathrm{mol}$. At these conditions, $V_{1}=110$ and $V_{2}=90 \mathrm{~cm}^{3} / \mathrm{mol}$. Determine the partial molar volumes of each species containing 30 mol - $\%$ of species 1 at the given conditions.	20	CO 3
Q 8	For the cracking reaction, the equilibrium conversion is negligible at 300 K , but becomes appreciable at temperature above 500 K . For a pressure of 1 bar, determine $C_{3} H_{8}(g)=C_{2} H_{4}(g)+C H_{4}(g)$ (a) The fractional conversion of propane at 700 K (b) The temperature at which fractional conversion is 80% The values for ΔH_{298}^{0} and ΔG_{298}^{0} are 82670 and $42290 \mathrm{~J} / \mathrm{mol}$ respectively. Heat capacities of gases are:$\frac{C_{p}^{i g}}{R}=A+B T+C T^{2}$component A $10^{3} \mathrm{~B}$ $10^{6} \mathrm{C}$ $\mathrm{C}_{3} \mathrm{H}_{8}$ 1.213 28.785 -8.824 $\mathrm{C}_{2} \mathrm{H}_{4}$ 1.424 14.394 -4.392 CH_{4} 1.702 9.081 -2.164	20	$\mathrm{CO5}$

