Name: Enrolm				
Course Progra Course Note: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	UNIVERSITY OF End Se Fluid Mechanics and Machinery : B. Tech (Mechatronics) Code: MECH 2025 Read the instruction carefully befo his question paper has two sectio There are total of six questions in Section A consist of multiple choic ection A will be conducted onlin Section B consist of long answer b questions for section B shall also ap he maximum time allocated to $\underline{\text { Se }}$ Section B to be submitted within 24 circumstance due to COVID-19 and due to int No submission of Section B shall ection B should be attempted af he section B should be attempt ke programme, semester, course (as in the format) and signature at Both section A \& B should have qu The COs mapping, internal choice	D ENERGY STUDIES , July 2020 Semester: Time 03 hrs Max. Marks Section B. One in Section A and fiv and has the total weightag e platform has the total weightage of 7 rate eduled time (exceptional provis in the far-flung areas). 24 Hrs. sheets (hand written) with e, name of the student, Sa and side bottom corner) syllabus. is same as earlier	100 in Sec of 25% \%. The on due extr all the de id at the	n rdinary ils op
		he questions)		
S. No.			Marks	CO
1	MCQ			
(A)	A U-tube is made up of two capillaries tube is kept vertically and partially fille contact angles. What will be difference	and 1.5 mm respectively. The U e tension $0.0075 \mathrm{~kg} / \mathrm{m}$ and zero isci caused by the capillarity ?	1	CO1

	a 10 mm b 20 mm c 40 mm d 50 mm		
(B)	Hydrostatic law of pressure is given as a $\frac{\partial p}{\partial z}=\rho g$ b $\frac{\partial p}{\partial z}=0$ c $\frac{\partial p}{\partial z}=z$ d $\frac{\partial p}{\partial z}=$ const.	1	CO1
(C)	The reading of the pressure gauge fitted on a vessel is 25 bar. The atmospheric pressure is 1.03 bar and the value of g is $9.81 \mathrm{~m} / \mathrm{s}^{2}$. The absolute pressure in the vessel is a $\quad 23.97$ bar b $\quad 25.00 \mathrm{bar}$ c 26.03 bar d $\quad 34.84$ bar	1	CO1
(D)	If B is the centre of buoyancy, G is the centre of gravity and M is the Metacentre of a floating body, the body will be in stable equilibrium if	1	CO1
(E)	Match List I (Flows Over or Inside the Systems) with List II (Type of Flow) and select the correct answer: List I A. Flow over a sphere B. Flow over a long circular cylinder C. Flow in a pipe bend D. Fully developed flow in a pipe at constant flow rate 4. Three dimensional flow. Codes :	1	CO2
(F)	Which one of the following is the expression of the rotational component for a twodimensional fluid element in $x-y$ plane? a $\omega_{z}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)$ $\begin{array}{ll} \mathrm{b} & \omega_{z}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \\ \mathrm{d} & \omega_{z} \end{array}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)$ b $\text { c } \quad \omega_{z}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)$	1	CO2
(G)	The velocity potential of a velocity field is given by $=x^{2}-y^{2}+$ const. Its stream function will be given by	1	CO2

	a $-2 x y+$ constant b $-2 x y+f(y)$ c $+2 x y+$ constant d $-2 x y+f(x)$		
(H)	Which of the following assumptions are made for deriving Bernoulli's equation? 1. Flow is steady and incompressible 2. Flow is unsteady and compressible 3. Effect of friction is neglected and flow is along a streamline. 4. Effect of friction is taken into consideration and flow is along a streamline. Select the correct answer using the codes given below:	1	CO 2
(I)	A horizontal pipe of cross-sectional area 5 cm 2 is connected to a venturimeter of throat area $3 \mathrm{~cm}^{2}$ as shown in the below figure. The manometer reading is equivalent to 5 cm of water. The discharge in $\mathrm{cm}^{3} / \mathrm{s}$ is nearly a $\quad 0.45$ b $\quad 5.5$ c $\quad 21.0$ d $\quad 370$	1	CO2
(J)	A simple Pitot tube can be used to measure which of the following quantities? 1. Static head 2.Datum head 3.Dynamic head 4.Friction head 5.Total head Select the correct answer using the codes given below codes a 2,3 and 4 b 1,2 and 4 c 2,3 and 5 d 1,3 and 5	1	CO2
(K)	Match List I (Measuring Devices) with List II (Measured Parameter) and select the correct answer using the codes given below: List I A. Pitot tube B. Micro-manometer C. Pipe band meter D. Wall pressure tap List II 1. Flow static pressure 2. Rate of flow (indirect) 3. Differential pressure 4. Flow stagnation pressure.	1	CO2

	a $1,2,3$ and 4 b 2 and 3 c 2,3 and 4 d 1 and 4		
(P)	Consider the following statements: 1. Complete similarity between model and prototype envisages geometric and dynamic similarities only. 2. Distorted models are necessary where geometric similarity is not possible due to practical reasons. 3. In testing of model of a ship, the surface tension forces are generally neglected. 4. The scale effect takes care of the effect of dissimilarity between model and prototype. Which of these statements are correct?	1	CO4
(Q)	In a steady flow of an oil in the fully developed laminar regime, the shear stress is: a Constant across the pipe b Zero at the centre and increases towards the pipe wall. c Maximum at the centre an decreases parabolically towards the pipe wall boundary d Zero at the boundary and increases linearly towards the centre.	1	CO2
(R)	A 40 mm diameter 2 m long straight uniform pipe carries a steady flow of water (viscosity 1.02 centipoises) at the rate of 3.0 liters per minute. What is the approximate value of the shear stress on the internal wall of the pipe? a $\quad 0.0166$ dyne $/ \mathrm{cm}^{2}$ b $\quad 8.12$ dyne/cm ${ }^{2}$ c $\quad 0.0812$ dyne $/ \mathrm{cm}^{2}$ d 0.9932 dyne/cm ${ }^{2}$	1	CO 3
(S)	Velocity for flow through a pipe, measured at the center is found to be $4 \mathrm{~m} / \mathrm{s}$. Reynolds number is around 1600 .What is the average velocity in the pipe? a $\quad 2 \mathrm{~m} / \mathrm{s}$ b $\quad 1.7 \mathrm{~m} / \mathrm{s}$ c $\quad 0.5 \mathrm{~m} / \mathrm{s}$ d $\quad 1 \mathrm{~m} / \mathrm{s}$	1	CO2
(T)	Which one of the following statements is correct? a. Hydraulic grade line and energy grade line are the same in fluid problems b. Energy grade line lies above the hydraulic grade line and is always parallel to it. c. Energy grade line lies above the hydraulic grade line and they are separated from each other by a vertical distance equal to the velocity head.	1	CO2

	d. The hydraulic grade line slopes upwards meeting the energy grade at the exit of flow.		
(U)	Kaplan turbine is a. a high head mixed flow turbine b. a low axial flow turbine c. an outward flow reaction turbine d. an impulse inward flow turbine	1	CO5
(V)	Consider the following statements in respect of centrifugal pumps: 1. Heat developed is proportional to the square of the speed of rotation 2. Backward curved bladed impellers are generally used in centrifugal pumps 3. These pumps generally do not require priming 4. Multistage pumps would give higher discharge proportional to the number of stages. Which of these statements are correct? a $\quad 1$ and 2 b $\quad 3$ and $41.7 \mathrm{~m} / \mathrm{s}$ c $\quad 1$ and 4 d 2 and 3	1	$\mathrm{CO5}$
(W)	Manometric efficiency of a centrifugal pump is defined as the ratio of a Suction head to the head imparted by the impeller to water b head imparted by the impeller to water to the suction head c head imparted by the impeller to water to the manometric head d manometric head to the head imparted by the impeller to water	1	$\mathrm{CO5}$
(X)	In a Pelton wheel, the bucket peripheral speed is $10 \mathrm{~m} / \mathrm{s}$, the water jet velocity is $25 \mathrm{~m} / \mathrm{s}$ and volumetric flow rate of the jet is $0.1 \mathrm{~m}^{3} / \mathrm{s}$. If the jet deflection angle is 1200 and the flow is ideal, the power developed is a $\quad 7.5 \mathrm{~kW}$ b $\quad 22.5 \mathrm{~kW}$ c $\quad 15.0 \mathrm{~kW}$ d $\quad 37.5 \mathrm{~kW}$	1	$\mathrm{CO5}$
(Y)	Match List I with II and select the correct answer using the codes given below the lists List I (Turbines) A. Kaplan turbine B. Francis turbine C.Pelton wheel with single jet D. Pelton wheel with two or more jets List II (Specific speeds in MKS units) 1. 10 to 35 2. 35 to 60 3. 60 to 300 4. 300 to 1000	1	$\mathrm{CO5}$

	Codes:											
		A	B	C	D		A	B	C	D		
	a	4	2	3	1	b	4	3	1	2		
	c	4	3	2	1	d	1	2	3	4		
Section B												
Q1 Answer following A) For the following set of velocity components verify whether the continuity equation is satisfied. If so, determine the acceleration vector at point A (Last digit of your Enrollment no., Last digit of your Enrollment no.+1, Last digit of your Enrollment no.+2): $\qquad$$u=2 x^{2}+3 y$ v $=-2 x y+3 y^{3}+3 z y$ w $=-\frac{3}{2} z^{2}-2 x z-9 y^{2} z$											7	CO 2
	B) The efficiency η of a fan depends upon the kinematic viscosity (v) of the fluid, the angular velocity ω, diameter D of the rotor and the discharge Q . Express η in terms of dimensionless parameters using Buckingham's pi theorem as$\eta=f n\left(\frac{\omega D^{2}}{v}, \frac{Q}{\omega D^{3}}\right)$										8	CO 2
Q2	A jet of (Last digit of your Enrollment no.+ 75) mm diameter has a velocity of 30 m / s. It strikes a flat plate inclined at 45° to the axis of jet. Find the force on the plate when. a. The plate is stationary b. The plate is moving with a velocity of $15 \mathrm{~m} / \mathrm{s}$ along and away from the jet. Also find power and efficiency in case (b)										15	CO 3
Q3	Two pipes 1 and 2, each of 10 cm diameter branch off from a point A in a pipeline and rejoin at B. Pipe 1 is 400 m long and pipe 2 is 600 m long. The total head at A is (Last										15	CO 4

	two digits of your Enrollment no.+30) m A short pipe 8 cm diameter if fitted at B and the flow is discharged into atmosphere through it (Fig. given below). Assuming f $=0.02$ for both the pipes, find the total discharge and division if discharge in pipes 1 and 2.		
Q4	A centrifugal pump is running at (Last two digits of your Enrollment no.+1000) rpm. The outlet vane angle of the impeller is 45° and velocity of flow at outlet is 2.5 m / s. The discharge through the pump is 200 liters $/ \mathrm{s}$ when the pump is working against a total head of 20 m . If the manometric efficiency of the pump is 80%, determine: (a) Outlet diameter of the impeller, and (b) the width of the impeller at outlet.	15	CO5
Q5	A Francis turbine has a wheel diameter of 1.2 m at the entrance and 0.6 m at the exit. The blade angle at the entrance is 90° and the guide vane angle is (Last digit of your Enrollment no.+15) ${ }^{\circ}$. The water at the exit leaves the blades without any tangential velocity. The available head is 30 m and the radial component of flow velocity is constant. What would be the speed of wheel in rpm and blade angle at exit? Neglect friction	15	CO5

