Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, July 2020

Course: Fluid Mechanics and Machinery Program: B. Tech (Mechatronics) Course Code: MECH 2025

Semester: IV Time 03 hrs. Max. Marks: 100

Note:

1

- 1. Read the instruction carefully before attempting.
- 2. This question paper has two section, Section A and Section B.
- 3. There are total of six questions in this question paper. One in Section A and five in Section В
- 4. Section A consist of multiple choice based questions and has the total weightage of 25%.
- 5. Section A will be conducted online on BB Collaborate platform
- 6. Section B consist of long answer based questions and has the total weightage of 75%. The questions for section B shall also appear in BB Collaborate
- 7. The maximum time allocated to Section A is one Hrs.
- 8. Section B to be submitted within 24 hrs from the scheduled time (exceptional provision due extraordinary circumstance due to COVID-19 and due to internet connectivity issues in the far-flung areas).
- 9. No submission of Section B shall be entertained after 24 Hrs.
- 10. Section B should be attempted after Section A
- 11. The section B should be attempted in blank white sheets (hand written) with all the details like programme, semester, course name, course code, name of the student, Sapid at the top (as in the format) and signature at the bottom (right hand side bottom corner)
- 12. Both section A & B should have questions from entire syllabus.
- 13. The COs mapping, internal choices within a section is same as earlier

Section – A (Attempt all the questions) (25 × 1 marks) S. No. Marks CO MCQ A U-tube is made up of two capillaries of diameters 1.0 mm and 1.5 mm respectively. The U (A) tube is kept vertically and partially filled with water of surface tension 0.0075kg/m and zero 1 **CO1** contact angles. What will be difference in the level of the menisci caused by the capillarity ?

	а	10 mr	n			b	20 m	im				
	с	40 mr	n			d	50 m	im				
(B)	Hydrostatic l	aw of pr	essure i	s given a	S							
	а		$\frac{\partial p}{\partial z}$	$\frac{\rho}{z} = \rho g$		b		$\frac{\partial p}{\partial z}$	= 0		1	CO1
	с		$\frac{\partial}{\partial}$	$\frac{p}{dz} = z$		d		$\frac{\partial p}{\partial z} =$	const.			
(C)	The reading of	-	-	-					-	-		
	is 1.03 bar ar			is 9.81n	$1/s^2$. The	-			the vess	el is	1	CO1
	а	23.97				b	25.0				1	
	С	26.03				d	34.84					
(D)	If B is the ce					-	-	M is th	ne Meta	centre of a		
	floating body a	, the boo MG=0	-	be in stat	ne equili	brium : b		below G	6		1	C01
	c c											
(E)				noido the	Sustam	-				and calact		
(E)	Match List I (Flows Over or Inside the Systems) with List II (Type of Flow) and select the correct answer:											
	List I List II											
	A. Flow over		e				1. Tw		nsional	flow		
	B. Flow over	-		cylinder			2. On	e dimei	nsional	flow		
	C. Flow in a	pipe ber	nd				3. Ax	isymm	etric flo	W		
	D. Fully developed flow in a pipe at constant flow rate 4. Three dimensional flow.								1	CO2		
	Codes :											
		А	В	С	D		А	В	С	D		
	а	3	1	2	4	b	3	1	4	2		
	с	1	4	3	2	d	1	4	2	3		
(F)	Which one o	f the fol	lowing	is the ex	pression	of the	rotatio	nal com	ponent	for a two-		
	dimensional	fluid ele	ment in	x-y plan	e?				-			
	dimensional fluid element in x-y plane? a $1 (\partial v \partial u)$ b $1 (\partial v \partial u)$									1/\		
		$\omega_z = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \qquad \qquad b \qquad \qquad \omega_z = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$								1	CO2	
	с				2					•		
	Ĭ		$\omega_{\tau} = \frac{1}{2}$	$\frac{1}{2}\left(\frac{3}{2}-\frac{3}{2}\right)$	<u> </u>	~	ω	$z = \frac{1}{2}$	$\frac{3}{2}$ $-\frac{3}{2}$	$\left(\frac{\pi}{2}\right)$		
	c $\omega_z = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$ d $\omega_z = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$ The velocity potential of a velocity field is given by $= x^2 - y^2 + \text{const.}$ Its stream											
(G)	The velocity							_		<i></i>		

	a $-2xy + constant$ b	-2xy + f(y)	
	c + 2xy + constant d	-2xy + f(x)	
(H)	 Which of the following assumptions are made for der 1. Flow is steady and incompressible 2. Flow is unsteady and compressible 3. Effect of friction is neglected and flow is a 4. Effect of friction is taken into consideration Select the correct answer using the codes given below a 2 and 3 b c 1 and 4 d 	long a streamline. n and flow is along a streamline. 1	CO2
(I)	A horizontal pipe of cross-sectional area 5 cm2 is conr area 3 cm ² as shown in the below figure. The manom cm of water. The discharge in cm ³ /s is nearly a 0.45 b c 21.0 d Water \rightarrow		CO2
(J)	A simple Pitot tube can be used to measure which of 1. Static head 2.Datum head 3.Dynamic head Select the correct answer using the codes given below a 2,3 and 4 b c 2,3 and 5 d	4.Friction head 5.Total head	CO2
(K)	A. Pitot tube 1. Flow s	st II tatic pressure 1 f flow (indirect)	CO2

	Codes:											
		А	В	С	D		А	В	С	D		
	а	4	2	3	1	b	4	3	1	2		
	с	4	3	2	1	d	1	2	3	4		
(L)	If a fluid jet	discharg	ging fron	n a 50 m	m diame	eter ori	fice has	a 40 n	nm diar	neter at its		
	vena contrac	ta, then	its coeffi	cient of	contract	ion wil	l be					
	а	0.32				b	0.96				1	CO
	с	0.64				d	1.64					
(M)	The Bernoul											
	а	linea	r momer	ntum		b	energ	gу				
	с	angu	lar mom	entum		d	Mass	8			1	CO
(N)	Match List I (Dimensionless numbers) with List II (Definition as the ratio of) and											
	select the correct answer :											
		List I										
	A. I	Reynolds	s number	•	1							
	B. I	Froude n	umber		2							
	C. V	Weber nu	umber		3.	1	CO					
	D. 1	Mach nu	mber		4.	4. Inertia force and viscous force.						
	Codes :											
		А	В	С	D		А	В	С	D		
	а	4	2	3	1	b	4	3	1	2		
	с	4	3	2	1	d	1	2	3	4		
(0)	Consider the	followi	ng staten	nents:								
			al analys		d to dete	rmine	he num	ber of	variable	es involved		
		-			ables in	dimens	ional ar	nalvsis	should	include all		
			ital units	-				J				CO
				orem stip	ulates th	e numt	per of di	mensio	onless g	roups for a	1	
	-	n phenon										
	4. Th Which of th			Chezy's e	quation	nas no	dimensi	ion.				
		000 000 -	orrantil									

	а	1, 2, 3 and 4	b	2 and 3		
	С	2, 3 and 4	d	1 and 4		
(P)	1. C dyna 2. D due t 3. Ii negle 4. T prote	mic similarities only. Distorted models are neces to practical reasons. n testing of model of a ected.	sary where geo ship, the surfact of the effect of c	ototype envisages geometric metric similarity is not poss ce tension forces are gener dissimilarity between model 2 and 3 2 and 4	aible rally	CO4
(Q)	In a steady f a b c d	Constant across the pi Zero at the centre and Maximum at the centre pipe wall boundary	pe increases towar re an decreases	ar regime, the shear stress is ds the pipe wall. parabolically towards the nearly towards the centre.	s: 1	CO2
(R)	(viscosity 1.	liameter 2m long straight	t uniform pipe of 3.0 liters per	carries a steady flow of w minute. What is the approxir		CO3
(S)		flow through a pipe, meas round 1600.What is the av 2 m/s 0.5 m/s		er is found to be 4 m/s. Reyn n the pipe? 1.7 m/s 1 m/s	olds 1	CO2
(T)	to it.	ns allel 1 ated	CO2			

	d. The hydraulic grade line slopes upvexit of flow.	wards	s meeting the energy grade at the		
(U)	Kaplan turbine is				
	a. a high head mixed flow turbine b.	a low	v axial flow turbine		
	c. an outward flow reaction turbine d.	an in	npulse inward flow turbine	1	CO
			1		
(V)	Consider the following statements in respect of	f cent	trifugal pumps:		
	1. Heat developed is proportional to the	-	-		
	2. Backward curved bladed impellers a	-			
	3. These pumps generally do not requir	-	-		
	4. Multistage pumps would give highe	r aisc	charge proportional to the number	1	CO
	of stages. Which of these statements are correct?			_	
	a 1 and 2	b	3 and 4 1.7 m/s		
	c 1 and 4	d	2 and 3		
			2 and 5		
(W)	Manometric efficiency of a centrifugal pump is	s defi	ned as the ratio of		
	a Suction head to the head impar	ted b	by the impeller to water		
	b head imparted by the impeller				
	c head imparted by the impeller	1	CO		
	d manometric head to the head in				
(X)	In a Pelton wheel, the bucket peripheral speed is	s 10 r	m/s, the water jet velocity is 25m/s		
	and volumetric flow rate of the jet is $0.1 \text{m}^3/\text{s}$.	If th	e jet deflection angle is 1200 and		
	the flow is ideal, the power developed is				
	a 7.5kW	b	22.5kW	1	CO
	c 15.0 kW	d	37.5kW		
(Y)	Match List I with II and select the correct answ				
	List I	Lis			
	(Turbines) A. Kaplan turbine	(Spe	ecific speeds in MKS units)		
	Δ Kaplan furbine	1. 10 to 35	1	CO	
	_		$2,25 \pm 60$		
	B. Francis turbine C.Pelton wheel with single jet		2. 35 to 60 3. 60 to 300		

	Codes:												
		А	В	С	D		А	В	С	D			
	а	4	2	3	1	b	4	3	1	2			
	с	4	3	2	1	d	1	2	3	4			
					<u>Sec</u>	tion B	<u>B</u>						
Q1	Answer follo	owing											
×-	A) For the		ng set o	f veloci	tv comn	onents	verify	wheth	er the	continuity			
			-		• •		•						
	-	equation is satisfied. If so, determine the acceleration vector at point A (Last digit of your Enrollment no., Last digit of your Enrollment no.+1, Last digit of your											
	-	Storyour	7	CON									
	Enrollment no.+2): $u = 2x^2 + 3y$											CO2	
						- /	$^{3} \pm 37$	v					
	$v = -2xy + 3y^3 + 3zy$ $w = -\frac{3}{2}z^2 - 2xz - 9y^2z$												
	B) The effic												
	-	-						•	-	η in terms			
	of dimen												
		8	CO2										
Q2	A jet of (La	_	-							-			
	m/s. It strike	s a flat p	plate incl	ined at 4	5° to the	e axis c	of jet. F	Find the	force of	n the plate			
	when.										15	CO3	
	a. The plate i	s statior	nary										
	b. The plate	is movin	ig with a	velocity	of 15 m	/s alon	g and a	way fro	om the jo	et.			
	Also find po	wer and	efficiend	cy in case	e (b)								
Q3	Two pipes 1	and 2, ea	ach of 10) cm diar	neter bra	nch of	f from a	a point A	A in a pi	peline and	15	CO4	
	rejoin at B. P	ipe 1 is	400 m lo	ong and p	ipe 2 is 6	500 m I	long. T	he total	head at	A is (Last	10		

	two digits of your Enrollment no.+30) m A short pipe 8 cm diameter if fitted at B		
	and the flow is discharged into atmosphere through it (Fig. given below). Assuming f		
	= 0.02 for both the pipes, find the total discharge and division if discharge in pipes 1		
	and 2.		
	A 10 cm dia, 400 m 10 cm dia, 600 m 8 cm dia		
Q4	A centrifugal pump is running at (Last two digits of your Enrollment no.+1000)		
	rpm. The outlet vane angle of the impeller is 45° and velocity of flow at outlet is 2.5		
	m/s. The discharge through the pump is 200 liters/s when the pump is working against	15	CO5
	a total head of 20 m. If the manometric efficiency of the pump is 80%, determine:		
	(a) Outlet diameter of the impeller, and (b) the width of the impeller at outlet.		
Q5	A Francis turbine has a wheel diameter of 1.2 m at the entrance and 0.6 m at the exit.		
	The blade angle at the entrance is 90° and the guide vane angle is (Last digit of your		
	Enrollment no.+15)°. The water at the exit leaves the blades without any tangential	15	CO5
	velocity. The available head is 30 m and the radial component of flow velocity is	15	005
	constant. What would be the speed of wheel in rpm and blade angle at exit? Neglect		
	friction		