Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, July 2020

Course: Wind Energy Technology Program: M. Tech REE Course Code: EPEC 8008

Semester: II Time 03 hrs. Max. Marks: 100

Instructions:

- 1. Attempt all the questions (Theory, Numerical, Case study etc.) on A4 size blank sheets.
- 2. Attempt all questions serially as per question paper.
- 3. Answer should be neat and clean. Draw a free hand sketch for circuits/tables/schematics wherever required.
- 4. Scan the whole answer script and check the resolution carefully before you upload on the blackboard. Note that answer scripts will be considered for evaluation only through Blackboard. No other mode of submission is acceptable.
- 5. You are expected to be honest about each attempt which you make to progress in life

S. No.		Marks	CO
Q 1	Calculate the total thrust and aerodynamic power developed in a three-blade wind		
	turbine at a wind velocity of 9m/s. The machine specifications are as follows:		
	Radius = 10m		
	Rotational speed = 100 rpm	20	CO2
	TSR = 5.5		
	Chord length $= 0.45$ m, uniform throughout the blade		
	Pitch angle = 5° , no twist		
	Distance from axis to inner edge of the blade $= 1 \text{ m}$		
	Aerofoil section = NACA 43012A (shown in figure)		
	Note:		
	1. Divide the blade into three number of sections.		
	2. Assume relevant values of C_L and C_D if attack angle exceeds the given range		

NOTE : The submission time of the Question Paper Answer Sheet is 24 Hhrs from the scheduled time (exceptional provision due to extraordinary circumstance due to COVID-19 and due to internet connectivity issues in the farflung areas).

No Submission will be entertained after 24 Hrs

	2.00	C∟ vs i		0.09		C _D vs i				
				0.08 -						
	1.50 -			0.07						
	1.00 -			0.06						
				0.05						
	0.50 -									
				0.04 -						
	0.00 -			0.03						
	-0.50			0.02 -						
				0.01 -						
	-1.00 -10.0 -5.0	0.0 5.0	10.0 15.0	20.() -15.0	-10.0 -5.0	0.0 5.0	10.0 15.0 2	0.(
			Figur	e NACA 430	12A					
Q 2	a. Explain why DC generator and Synchronous generator are not preferred compared to Induction generator for wind turbine applications.									
	b. Derive the ex	•			11		nachina If	this		
	induction ma								10+10	CO4
	demand of an									
	induction gen	erator. As	sume slip	s = -0.036		_				
			SE	CTION B	- 60 Mark	KS				
Q 3	Derive an expression for maximum power extracted from a wind turbine with the									
	following assumptions:								5+5	CO2,C
	a. $\eta_{Generator}$	= 90%							3+3	01
	b. $\eta_{Wind Turbine} = (1/2) * \eta_{Generator}$									
Q 4	The wind data for a site in terms of percentage of time over a year for different speed									
	groups is given be		2 - 1	()	0 1	10 -	16 -	ן ר		
	Speed group	0 < v	3 < v	6 < v	9 < v	12 < v	16 < v			
	(m/s)	≤ 3	≤ 6	<u>≤</u> 9	≤ 12	≤ 16	≤ 20			
	Percentage of	12.36	28.25	29.37	18.96	9.31	1.67		10	CO3
	time									
		-								
	Calculate the annual average power in the wind passing normally through the swept area of a turbine of diameter 30 m.							ept		
Q 5	A four-pole induction generator is rated at 300kVA and 480V. It has the following									
	parameters $Rs=0.012\Omega R'_R=0.015\Omega X_S=X'_R=0.10\Omega X_M=10\Omega$. How much power does								10	
	it produce at a slip	of -0.01?							10	CO4
	mechanical losses)i. Explain the impact of wind resource assessment on the economics of wind farms									
Q 6	1. Explain the imp	act of wind	d resource	assessme	nt on the ec	conomics of	t wind farm	IS	5+5	CO5

NOTE : The submission time of the Question Paper Answer Sheet is 24 Hhrs from the scheduled time (exceptional provision due to extraordinary circumstance due to COVID-19 and due to internet connectivity issues in the far-flung areas).

No Submission will be entertained after 24 Hrs

	ii. Explain in detail about the various components of cost involved in Wind farm project timeline.		
Q 7	Find the size of wind turbine rotor (diameter in m) that will generate 1.2 MW of electrical power in a steady wind of 8 m/s. Assume $\rho = 1.226 \text{ kg/m}^3 \text{ C}_p = 0.45$. Assume $\eta_m = \eta_e = 0.9$.	5	CO1
Q 8	Explain the physical significance of the following terms:a. Pitch angleb. Tower Shadow	5	CO3
Q 9	Draw the equivalent circuit of Induction machine coupled to a wind turbine.	5	CO4
Q 10	Explain in detail about the environmental impacts created by wind farms in the coastal region of India.	5	CO5

NOTE : The submission time of the Question Paper Answer Sheet is 24 Hhrs from the scheduled time (exceptional provision due to extraordinary circumstance due to COVID-19 and due to internet connectivity issues in the far-flung areas).

No Submission will be entertained after 24 Hrs