Name: Enrolment No:	t No: UNIVERSITY WITH A PURPOSE					
UNIVERSITY OF PET	ROLEUM AND ENERGY STUDIES					
End Semester Examination, JUNE 2020						
Course: Systems Analysis and Optimization	Semester: II					
Program: Chemical Engineering: MTech PD	Time: 03 hrs.					
Course Code: CHPD 7012	Max. Marks: 100					
No. of Pages: 1 + 3						
 (including your textbook in xeroxed form), your own class notes and solutions to assignment problems, <u>etc.</u> (Obviously, now) <u>PLEASE RETURN THE FILLED TABLES IN PROBLEM 2 OF THIS QUESTION PAPER AND SUBMIT THE</u> <u>SCAN OF ONLY THIS PAGE (WITH CALCULATIONS IN YOUR ANSWER SCRIPTS)</u> <u>Also, p</u>lease show all <u>intermediate</u> steps to earn full credit. 						
SECTION A: (<u>Open Books Exam</u>) XXX						
S. No.	Marks	CO				
Q XXX		CO1				
SECTION B: (<u>Open Books Exam</u>) XXX						
Q XXX		CO4				
SECTION C: ALL THREE QUESTIONS HERE ARE COMPULSORY [TOTAL: 100 Points)						

Q.1 We wish to optimize the following problem using particle swarm optimization (PSO) with *two* particles (*SHOW YOUR CALCULATIONS IN YOUR ANSWER SCRIPTS AND* <u>SUBMIT ITS SCANNED COPY</u>): CO3

Minimize $f(x_1, x_2) \equiv (x_1 - 5)^2 + (x_2 - 3)^2$

subject to the bounds:

 $0 \le x_1 \le 9$

 $0 \le x_2 \le 9$

Continued...

(a) Fill up Table 1.

Table 1: Initial, (0)th, solutions

Particle No., j	$x_{1,j}^{(0)}$	$x_{2,j}^{(0)}$	$I_j^{(0)}$
1			
2			

(07)

 $(\mathbf{08})$

(5)

b) Use each of the initial velocities, $V_{i,j}^{(0)}$, as 0. Fill up Table 2 below (using *constant* values of w = 0.6, $k_1 = k_2 = 5$) [some values may need to be copied from Table 1]. Random numbers with a seed of 0.88876 are provided IN THE TEXT

Table 2:

Part. No., <i>j</i>	<i>V</i> ⁰ _{1,j}	<i>V</i> ⁰ _{2,<i>j</i>}	$x_{1,j}^{0}$	$x_{2,j}^{0}$	I_j^0	Pbest ⁰ _{1,j}	Pbest ⁰ _{2,j}	Gbest ⁰ _{1,j}	Gbest ⁰ _{2,j}
1	0	0							
2	0	0							

Q. 2 Consider the (same) function,
$$f(x_1, x_2)$$
, to be minimized: CO3

Minimize
$$f(x_1, x_2) \equiv (x_1 - 5)^2 + (x_2 - 3)^2$$

subject to the bounds:

 $0 \le x_1 \le 9$

$$0 \le x_2 \le 9$$


We wish to use *Simulated Annealing* to solve this problem.

- (a) Write the expression (with numbers substituted) between u_i and x_i (5)
- (b) Generate an initial point, u_j^0 , j = 1, 2

(5)
(5)
ad $x_j^1, j = 1, 2$
(5)
(2)
(3)

Q. 3 We would like to solve a modified TSP (Travelling Salesman) problem discussed in the (BB) Lecture, with Headquarter as Node 1, and four *additional* nodes/shops numbered 2, 3, 4 and 5, as shown in the diagram below, using <u>Single-Objective BINARY-CODED GA</u>. CO3, 5

(30 Points)

Develop the algorithm you would use to minimize the total distance covered by the salesman from Node 1 and back to node 1 but with and <u>additional</u> step that the salesman has to get back to node 1 after every node which is an even number (to pick up material at the headquarters, point 1, as well as to report to the headquarters of what has happened at the last few nodes). The coordinates, x_i , y_i , are given for each node and the distance between the i^{th} and j^{th} nodes is d_{ij} . (40 Points)

* * *