UPES SAP ID No.:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Examination, July 2020

Programme: B.Tech: Mechanical, APE UP, APE GAS, CHEM CE&RP

Semester : II

Course Name: Engineering Graphics Max. Marks : 100
Course Code: MECH 1004 Attempt Duration : 24

Hrs. No. of page/s: 04

Section – A (Attempt all the questions) (25 × 1 marks)

	(25 × 1 marks)		
Q1	Match the following lines to their applications	CO1	1
	1. Wavy line - 1. Short break lines		
	2. Zigzag line - 2. Long break lines		
	3. Dashed line - 3. Hidden edges		
	4. Chain line - 4. Center lines		
Q2	A datum dimensions represents	CO1	1
	a) Length b) breadth c) height d) position		
Q3	Match the different projection systems with the position of FV and TV	CO1	1
	1. 2nd Angle Projection - 1. FV and TV above XY		
	2. 1st Angle Projection - 2. FV above XY and TV below XY		
	3. 3rd Angle Projection - 3. FV below XY and TV above XY		
	4. 4th Angle Projection - 4. FV and TV below XY		
Q4	A point is in the VP and 20 mm below HP. Its projection is	CO1	1
	A. FV in XY line and TV 20 mm above XY line.		
	B. FV in XY line and TV 20 mm below XY line.		
	C. FV 20 mm below the XY line and TV in the XY line		
	D. FV 20 mm above the XY line and TV in the XY line		
Q5	Identify the FV in 1st Angle Projection of the 3D object shown in Figure below	CO1	1
	Option A Option B Option C Option D		
Q6	A line is parallel to both HP and VP. Its side view will be	CO1	1
Q7	True length of a line inclined to VP will be visible in:	CO1	1
	a) FV b) TV c) SV d) information not sufficient		
Q8	The perspective view of an object at infinite distance from the observer will be on the	CO1	1
	·	Dage	1 1

UNIVERSITY OF PETROLEUM & ENERGY STUDIES

	UNIVERSITY OF PETROLEUM & ENERGY STUDIES		
	picture plane at the		
Q9	A plane is perpendicular to one of the principal planes, the projection on that principle	CO1	1
	plane will be		
Q10	When a surface of an object is inclined to a plane of projection, it will appear-	CO1	1
	in the view.		
	(i) foreshortened (ii) in true size and shape (iii) as a line (iv) as a point		
Q11	A square plate of a negligible thickness is inclined to HP. The front view will appear as	CO1	1
	(i) Rhombus (ii) square (iii) Line (iv) Rectangle		
Q12	Depending on its relationship to the projection plane on which the view is projected, a	CO1	1
	line may project:		
	(i) true length (ii) foreshortened (iii) as a point (iv) all of the above		
Q13	The two main classification of solids are (Select two correct answers)	CO1	1
	A. Pyramid		
	B. Polyhedron		
	C. Cylinder		
	D. Cone		
	E. Surface of revolution		
	F. Prism		
Q14	Name of the solid formed by revolving right angle triangle with one of its	CO1	1
	perpendicular side fixed is,		
	(i) Cone ii) Cylinder iii) Tetrahedron iv) Octahedron		
Q15	The solid having a polygon for a base and triangular lateral faces intersecting at a	CO1	1
	vertex is		
	(i) Pyramid ii) Prism iii) Cone iv) Torus		
Q16	A cube is resting on the HP with a solid diagonal perpendicular to it. The top view will	CO1	1
	appears as		
	(i) Square ii) rectangle iii) irregular hexagon iv) regular hexagon		
Q17	The need of section of solid in engineering graphics is	CO1	1
	A. it makes the projection of complex objects easier		
	B. it shows the inner complexities of an object		
	C. It shows the true shape		
	D. it shows the hidden lines		
Q18	To obtain true shape of the section of solid, an auxiliary plane is set	CO1	1
	(i) Inclined at an angle of 45 to a cutting plane		
	(ii) Parallel to XY		
	(iii) Parallel to cutting plane		
	(iv) Perpendicular to cutting plane		
Q19	When a cone resting on its base on VP is cut by a section plane parallel to VP then the	CO1	1
	true shape is and can be seen in view.		
	(i) Circle, Front (ii) Ellipse, Front (iii) Ellipse, Top (iv) Circle, Top		
Q20	In isometric projection, the square faces of the cube are seen as	CO1	1
,	(i) squares		
	(ii) rectangles		
	(iii) rhombuses		
	(iv) any of the above		
Q21	The rhombus method is used to draw the isometric projection of	CO1	1
- 	A. Cylinders		_
	B. Cones		
	C. Spheres		
	D. All of the above		
Q22	Box method is used to draw isometric view of	CO1	1
	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

UNIVERSITY OF PETROLEUM & ENERGY STUDIES

	CHIVERSHIT OF TETROLEGING ENERGY STODIES		
	(A) Pyramid		
	(B) Prism		
	(C) Cylinder		
	(D) All of the above		
Q23	A point P having coordinates (5, 7) is rotated anticlockwise about the z axis by 30	CO1	1
	degree. The new coordinates of the point is		
Q24	The mirror matrix about y-axis is gives as,	CO1	1
	(i) [1, 0; 0, 1]		
	(ii) [-1, 0; -1, 0]		
	(iii) [1, -1; -1, 1]		
	(iv) [-1, 0; 0, 1]		
Q25	The development of a pentagonal pyramid will have	CO1	1
	Five triangles		
	Five rectangles		
	Six triangles		
	Six rectangles		

Section – B (Attempt all the questions) (5 × 15 marks)

15
15
15
15
15
15
15
