Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2020

Course: Differential Equations **Course Code:** MATH 1031

Programme: B.Sc. (H) Mathematics

Instructions: Attempt all questions from **PART A** (60 Marks) and **PART B** (40 Marks). All questions are compulsory.

PART A

Instructions: PART A contains 25 questions for a total of 60 marks. It contains 22 multiple choice questions and 3 multiple answer questions. Multiple answer questions may have more than one correct option. Select all the correct options. You need to answer PART A within the slot from 10:00 AM to 1:00 PM on 8th July 2020. The due time for PART A is 1:00 PM on 8th July 2020. After the due time, the PART A will not be available.

S. No.		Marks	СО
Q1 (i)	The solution of differential equation $(x + 1)\frac{dy}{dx} = x(y^2 + 1)$ is given by A. $\tan^{-1} x = y - \log(1 + y) + c$ B. $\tan^{-1} y = x - \log(1 + x) + c$ C. $\tan^{-1} x = y + \log(1 + y) + c$ D. $\tan^{-1} y = x - \log(1 + y) + c$	2	C01
Q1 (ii)	Find the value of λ for which the differential equation $(xy^2 + \lambda x^3y^2)dx + (x^3y + yx)x dy = 0$ is exact. A. $\lambda = 2$ B. $\lambda = -2$ C. $\lambda = 1$ D. $\lambda = 0$	2	CO2
Q1 (iii)	The solution of $(x + 1)\frac{dy}{dx} - y = e^x(x + 1)^2$ is given by A. $\frac{y}{x+1} = e^x + c$ B. $y = (x + 1)e^{xc}$ C. $y = (x - 1)e^{-x} + c$ D. None of these	3	CO2
Q1 (iv)	The solution of $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 0$ is given by	2	CO3

Semester: II Time: 03 hrs.

Max. Marks: 100

	A. $y = e^{-2x}(A\cos x + B\sin x)$ B. $y = e^{2x}(A\cos x + B\sin x)$ C. $y = e^{-x}(A\cos 2x + B\sin 2x)$ D. $y = e^{x}(A\cos 2x + B\sin 2x)$		
Q1 (v)	The particular integral of $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 6e^{3x}$ is given by A. $\frac{1}{2}x^2e^{3x}$ B. $3x^2e^{3x}$ C. $\frac{1}{2}xe^{3x}$ D. Not defined	3	CO3
Q1 (vi)	The solution of $x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y = 0$ is given by A. $y = C_1 e^{-x} + C_2 e^{4x}$ B. $y = C_1 e^{-z} + C_2 e^{4z}$ C. $y = \frac{C_1}{x} + C_2 x^4$ D. $y = C_1 x + \frac{C_2}{x^4}$	3	CO3
Q1 (vii)	$y = e^{-x}$ is a part of complementary function of differential equation $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$. If A. $1 + P + Q = 0$ B. $1 - P - Q = 0$ C. $1 - P + Q = 0$ D. $1 + P - Q = 0$	2	CO3
Q1 (viii)	Normal form of the second order differential equation $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$ is given by $\frac{d^2v}{dx^2} + Av = B$ where A and B are given by A. $A = Q + \frac{1}{2}\frac{dP}{dx} + \frac{P^2}{4}, B = \frac{R}{U}$ B. $A = Q + \frac{1}{2}\frac{dP}{dx} - \frac{P^2}{4}, B = \frac{R}{U}$ C. $A = Q - \frac{1}{2}\frac{dP}{dx} + \frac{P^2}{4}, B = \frac{R}{U}$ D. $A = Q - \frac{1}{2}\frac{dP}{dx} - \frac{P^2}{4}, B = \frac{R}{U}$	2	CO3
Q1 (ix)	Which of the following equation represents an exponential decay? A. $N = n_0 e^{-kt}$ B. $N = n_0 e^{kt}$	2	CO4

		1	1
	C. $N = -n_0 e^{-kt}$ D. $N = -n_0 e^{kt}$		
Q1 (x)	Maximum number of individuals, an environment can support is known as A. Density growth model B. Harvesting C. Carrying capacity D. None of these	2	CO4
Q1 (xi)	If x is population at any time t and k is carrying capacity of population, then logistic equation is given by A. $\frac{dx}{dt} = rx\left(1 - \frac{x}{k}\right)$ B. $\frac{dx}{dt} = r\left(1 - \frac{x}{k}\right)$ C. $\frac{dx}{dt} = rx\left(1 + \frac{x}{k}\right)$ D. $\frac{dx}{dt} = r\left(1 + \frac{x}{k}\right)$	2	CO4
Q1 (xii)	 In lake pollution model, we take the following assumptions (check all correct answers) A. Pollution are well mixed in the lake. B. Lake has constant volume. C. The flow of mixture into lake is equal to flow of mixture out of the lake. D. Pollution may collect in any part of the lake. 	3	CO4
Q1 (xiii)	The number of bacteria in a culture is growing at a rate of $3000e^{2t/5}$ per unit of time <i>t</i> . At $t = 0$, the number of bacteria present was 7,500 . Find the number present at $t = 5$. A. ≈ 55418 B. ≈ 60418 C. ≈ 65418 D. ≈ 70418	3	CO4

Q1 (xiv)	A slow economy caused a company's annual revenues to drop from \$ 530,000 in 2008 to \$ 386,000 in 2010. If the revenue is following an exponential pattern of decline, what is the expected revenue in 2012? A. \$ 81,124 B. \$ 181,124 C. \$ 381,124 D. \$ 281,124	3	CO4
Q1 (xv)	If C_{in} is concentration of pollution of incoming water, C_0 is concentration of pollution in the lake at time $t = 0$, F is volume of water flowing in and out of the lake and V is the volume of lake then Concentration of pollutant in lake at any time 't' is given by A. $C(t) = C_{in} + e^{-\frac{F}{V}t}(C_0 - C_{in})$ B. $C(t) = C_{in} - e^{-\frac{F}{V}t}(C_{in} - C_0)$ C. $C(t) = C_{in} - C_{in}e^{-\frac{F}{V}t} + C_0e^{-\frac{F}{V}t}$ All are correct	2	CO4
Q1 (xvi)	The time required for a quantity to reduce to half its initial value is known as A. Double life B. Decay C. Life D. Half life	2	CO4
Q1 (xvii)	In Drug Assimilation Model, we take following compartment A. Liver and blood B. GI-Tract and Blood C. Kidney and blood D. GI-Tract and Kidney	2	CO4
Q1 (xviii)	Given that, the initial population is 100. Suppose the population can be modelled using the differential equation $\frac{dx}{dt} = 0.2x - 0.001 x^2$ with a time step of one month. Find the value of r , k and x_0 in logistic equation A. $r = 0.2$, $k = -200$, $x_0 = 100$ B. $r = -0.2$, $k = -0.001$, $x_0 = 100$ C. $r = 0.2$, $k = 0.001$, $x_0 = 100$	3	CO4

Q1 (xix) The			
Q1 (xix) The			
	equilibrium points of the system $\frac{dx}{dt} = 3x - 2xy$, $\frac{dy}{dt} = xy - y$ are		
	A. (1,0) and $\left(0,\frac{3}{2}\right)$		
]	B. (0,1) and $\left(1,\frac{3}{2}\right)$	3	CO5
	C. (0,0) and $(1,\frac{3}{2})$		
	$(0,1)$ and $\left(0,\frac{3}{2}\right)$		
	he between infection and the ability to infect someone else with the		
	ase is known as		
	Incubation Period		
	Latent Period	2	CO5
	A & B are correct		
D. 1	A & B are wrong		
Q1 (xxi) The	system of equations of Predator-Prey Model is also known as		
	A. Lotka-Volterra Model		
	B. SIR Model	_	
	C. A & B are correct	2	CO5
	D. A & B are wrong		
Q1 (xxii) The	lines which divides phase plane in different regions where the		
dire	ctions of trajectories are different are known as		
	A. Nullcurves		
	B. Tangent line	2	CO5
	C. Asymptote		
	D. Nullclines		
Q1 (xxiii) Those	people who are infected from disease and are capable of spreading		
	ners are known as		
	Contagious infectives	2	CO5
	Recovered		
C. S	Susceptibles		

	None of these		
Q1 (xxiv)	In Epidemic Model of Influenza, the word equation of infectives compartment is given by A. $\begin{cases} Rate of change \\ of infectives \end{cases} = \begin{cases} rate of \\ infectives \\ recovered \end{cases} - \begin{cases} Rate of \\ susceptibles \\ infected \end{cases}$ B. $\begin{cases} Rate of change \\ of infectives \end{cases} = \begin{cases} rate of \\ infectives \\ recovered \end{cases}$ C. $\begin{cases} Rate of change \\ of infectives \end{cases} = -\begin{cases} Rate of \\ susceptibles \\ infected \end{cases}$ D. $\begin{cases} Rate of change \\ of infectives \end{cases} = \begin{cases} Rate of \\ susceptibles \\ infected \end{cases} - \begin{cases} rate of \\ infectives \\ recovered \end{cases}$	3	CO5
Q1 (xxv)	In Predator-Prey Model, If x is number of prey per unit area, y is number of predator per unit area, a_1 is per capita natural death rate of prey, b_1 is per capita birth rate of prey and others are constant then the differential equation of Prey compartment is given by (Check all correct answers) A. $\frac{dx}{dt} = (b_1 - a_1)x - c_1xy$ B. $\frac{dx}{dt} = \lambda_1 x - c_1xy$ C. $\frac{dx}{dt} = b_2 y + kc_1xy - a_2y$ D. $\frac{dx}{dt} = c_2xy - \lambda_2y$	3	CO5
problems in them into 500077624	PART B r PART B will be available from 10:00 AM on 8th July 2020 to 10:00 AM on 9th July a PART B on a plain A4 sheets and write your name, roll number and SAP ID on each pag a single PDF file. Name the file as SAP ID _BSC_MATH_ROLL NUMBER _BSC_MATH_ R103219023.pdf) and upload that PDF file through the link provided ov sent through WhatsApp or email will not be entertained.	ge and the R (for example a state)	en scan ample:
Q2 (A)	An integrating factor of the following equation is of the form y^n . Find n and hence solve the equation $y \sec^2 x dx + \left[3 \tan x - \left(\frac{\sec y}{y}\right)^2\right] dy = 0.$	4	CO2

Q2 (B)	Find the nature of solution of the differential equation $\frac{dy}{dx} = \frac{x^2}{1+y^2}$.	4	CO1
Q3	Prove that the complete solution of differential equation $(D^2 - 1)y = \cosh x \cos x$ is $y = C_1 e^x + C_2 e^{-x} + \frac{2}{5} \sin x \sinh x - \frac{1}{5} \cos x \cosh x$.	8	CO3
Q4	Given that the developed model to describe the levels of antihistamine and decongestant in a patient taking a course of cold pills is $\frac{dx}{dt} = I - k_1 x, \qquad x(0) = 0,$ $\frac{dy}{dt} = k_1 x - k_2 y, \qquad y(0) = 0.$ Here k_1 and k_2 describe rates at which the drugs move between the two compartments (the GI-tract and the bloodstream) and <i>I</i> denotes the amount of drug released into the GI-tract in each time step. The levels of the drug in the GI-tract and the bloodstream are <i>x</i> and <i>y</i> respectively. By solving the equations sequentially show that the solution is $x(t) =$ $\frac{I}{k_1}(1 - e^{-k_1 t}), y(t) = \frac{I}{k_2} \left(1 - \frac{1}{k_2 - k_1}(k_2 e^{-k_1 t} - k_1 e^{-k_2 t})\right)$	8	CO4
Q5	Let in a lake, the pollution level is 7%. If the concentration of incoming water is 2% and 10000 litres per day water is allowed to enter the lake, find time when pollution level is 5%. Volume of the lake is 200000 litres. Also, find the pollution after 32 days.	8	CO4
Q6	Consider the aimed fire battle model $\frac{dR}{dt} = -a_1 B, \qquad \frac{dB}{dt} = -a_2 R.$ Find the exact solution using theoretical techniques as follows: (a) Take the derivative of the first equation to get second-order differential equation and then eliminate $\frac{dB}{dt}$ from this equation by substituting the second equation into this second-order differential equation.	8	CO5

(b) Now assume the solution to be an exponential of the form $e^{\lambda t}$. Substitute it into the second-order equation and solve for the two		
possible values of λ . The general solution for R will be of the form		
$R(t) = c_1 e^{\lambda_1} + c_2 e^{\lambda_2}$, where c_1 and c_2 are the arbitrary constants of		
integration. The solution for B is then found using the equation $\frac{dR}{dt} =$		
$-a_1B$.		
(c) Now find the arbitrary constants by applying the initial conditions $R(0) = r_0$ and $B(0) = b_0$, when $t = 0$.		
	Substitute it into the second-order equation and solve for the two possible values of λ . The general solution for R will be of the form $R(t) = c_1 e^{\lambda_1} + c_2 e^{\lambda_2}$, where c_1 and c_2 are the arbitrary constants of integration. The solution for B is then found using the equation $\frac{dR}{dt} = -a_1B$. (c) Now find the arbitrary constants by applying the initial conditions	Substitute it into the second-order equation and solve for the two possible values of λ . The general solution for R will be of the form $R(t) = c_1 e^{\lambda_1} + c_2 e^{\lambda_2}$, where c_1 and c_2 are the arbitrary constants of integration. The solution for B is then found using the equation $\frac{dR}{dt} = -a_1B$. (c) Now find the arbitrary constants by applying the initial conditions