Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 End Semester Examination, May 2020

Course: Differential Equations
Course Code: MATH 1031

Semester: II
Time: 03 hrs.
Max. Marks: 100

Programme: B.Sc. (H) Mathematics

Instructions: Attempt all questions from PART A (60 Marks) and PART B (40 Marks). All questions are compulsory.

PART A

Instructions: PART A contains 25 questions for a total of 60 marks. It contains 22 multiple choice questions and 3 multiple answer questions. Multiple answer questions may have more than one correct option. Select all the correct options. You need to answer PART A within the slot from 10:00 AM to 1:00 PM on 8th July 2020. The due time for PART A is 1:00 PM on 8th July 2020. After the due time, the PART A will not be available.

S. No.		Marks	CO
Q1 (i)	The solution of differential equation $(x+1) \frac{d y}{d x}=x\left(y^{2}+1\right)$ is given by A. $\tan ^{-1} x=y-\log (1+y)+c$ B. $\tan ^{-1} y=x-\log (1+x)+c$ C. $\tan ^{-1} x=y+\log (1+y)+c$ D. $\tan ^{-1} y=x-\log (1+y)+c$	2	CO1
Q1 (ii)	Find the value of λ for which the differential equation $\left(x y^{2}+\lambda x^{3} y^{2}\right) d x+$ $\left(x^{3} y+y x\right) x d y=0$ is exact. A. $\lambda=2$ B. $\lambda=-2$ C. $\lambda=1$ D. $\lambda=0$	2	$\mathrm{CO2}$
Q1 (iii)	The solution of $(x+1) \frac{d y}{d x}-y=e^{x}(x+1)^{2}$ is given by A. $\frac{y}{x+1}=e^{x}+c$ B. $y=(x+1) e^{x c}$ C. $y=(x-1) e^{-x}+c$ D. None of these	3	$\mathrm{CO2}$
Q1 (iv)	The solution of $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=0$ is given by	2	$\mathrm{CO3}$

	A. $y=e^{-2 x}(A \cos x+B \sin x)$ B. $y=e^{2 x}(A \cos x+B \sin x)$ C. $y=e^{-x}(A \cos 2 x+B \sin 2 x)$ D. $y=e^{x}(A \cos 2 x+B \sin 2 x)$		
Q1 (v)	The particular integral of $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=6 e^{3 x}$ is given by A. $\frac{1}{2} x^{2} e^{3 x}$ B. $3 x^{2} e^{3 x}$ C. $\frac{1}{2} x e^{3 x}$ D. Not defined	3	CO 3
Q1 (vi)	The solution of $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=0$ is given by A. $y=C_{1} e^{-x}+C_{2} e^{4 x}$ B. $y=C_{1} e^{-z}+C_{2} e^{4 z}$ C. $y=\frac{C_{1}}{x}+C_{2} x^{4}$ D. $y=C_{1} x+\frac{C_{2}}{x^{4}}$	3	CO 3
Q1 (vii)	$y=e^{-x}$ is a part of complementary function of differential equation $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+$ $Q y=R$. If A. $1+P+Q=0$ B. $1-P-Q=0$ C. $1-P+Q=0$ D. $1+P-Q=0$	2	CO 3
Q1 (viii)	Normal form of the second order differential equation $\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R$ is given by $\frac{d^{2} v}{d x^{2}}+A v=B$ where A and B are given by A. $A=Q+\frac{1}{2} \frac{d P}{d x}+\frac{P^{2}}{4}, B=\frac{R}{U}$ B. $A=Q+\frac{1}{2} \frac{d P}{d x}-\frac{P^{2}}{4}, B=\frac{R}{U}$ C. $A=Q-\frac{1}{2} \frac{d P}{d x}+\frac{P^{2}}{4}, B=\frac{R}{U}$ D. $A=Q-\frac{1}{2} \frac{d P}{d x}-\frac{P^{2}}{4}, B=\frac{R}{U}$	2	CO 3
Q1 (ix)	Which of the following equation represents an exponential decay? A. $N=n_{0} e^{-k t}$ B. $N=n_{0} e^{k t}$	2	$\mathrm{CO4}$

	C. $N=-n_{0} e^{-k t}$ D. $N=-n_{0} e^{k t}$		
Q1 (x)	Maximum number of individuals, an environment can support is known as A. Density growth model B. Harvesting C. Carrying capacity D. None of these	2	CO4
Q1 (xi)	If x is population at any time t and k is carrying capacity of population, then logistic equation is given by A. $\frac{d x}{d t}=r x\left(1-\frac{x}{k}\right)$ B. $\frac{d x}{d t}=r\left(1-\frac{x}{k}\right)$ C. $\frac{d x}{d t}=r x\left(1+\frac{x}{k}\right)$ D. $\frac{d x}{d t}=r\left(1+\frac{x}{k}\right)$	2	CO4
Q1 (xii)	In lake pollution model, we take the following assumptions (check all correct answers) A. Pollution are well mixed in the lake. B. Lake has constant volume. C. The flow of mixture into lake is equal to flow of mixture out of the lake. D. Pollution may collect in any part of the lake.	3	CO4
Q1 (xiii)	The number of bacteria in a culture is growing at a rate of $3000 e^{2 t / 5}$ per unit of time t. At $t=0$, the number of bacteria present was 7,500 . Find the number present at $t=5$. A. $\cong 55418$ B. $\cong 60418$ C. $\cong 65418$ D. $\cong 70418$	3	CO4

Q1 (xiv)	A slow economy caused a company's annual revenues to drop from \$ 530,000 in 2008 to $\$ 386,000$ in 2010. If the revenue is following an exponential pattern of decline, what is the expected revenue in 2012 ? A. $\$ 81,124$ B. $\$ 181,124$ C. $\$ 381,124$ D. $\$ 281,124$	3	CO4
Q1 (xv)	If $C_{i n}$ is concentration of pollution of incoming water, C_{0} is concentration of pollution in the lake at time $t=0, F$ is volume of water flowing in and out of the lake and V is the volume of lake then Concentration of pollutant in lake at any time ' t ' is given by A. $C(t)=C_{i n}+e^{-\frac{F}{V} t}\left(C_{0}-C_{i n}\right)$ B. $C(t)=C_{i n}-e^{-\frac{F}{V} t}\left(C_{i n}-C_{0}\right)$ C. $C(t)=C_{\text {in }}-C_{i n} e^{-\frac{F}{V} t}+C_{0} e^{-\frac{F}{\bar{V}} t}$ All are correct	2	CO4
Q1 (xvi)	The time required for a quantity to reduce to half its initial value is known as A. Double life B. Decay C. Life D. Half life	2	CO4
Q1 (xvii)	In Drug Assimilation Model, we take following compartment A. Liver and blood B. GI-Tract and Blood C. Kidney and blood D. GI-Tract and Kidney	2	CO4
Q1 (xviii)	Given that, the initial population is 100. Suppose the population can be modelled using the differential equation $\frac{d x}{d t}=0.2 x-0.001 x^{2}$ with a time step of one month. Find the value of r, k and x_{0} in logistic equation A. $r=0.2, k=-200, x_{0}=100$ B. $r=-0.2, k=-0.001, x_{0}=100$ C. $r=0.2, k=0.001, x_{0}=100$	3	CO4

	D. $r=0.2, k=200, x_{0}=100$		
Q1 (xix)	The equilibrium points of the system $\frac{d x}{d t}=3 x-2 x y, \frac{d y}{d t}=x y-y$ are A. $(1,0)$ and $\left(0, \frac{3}{2}\right)$ B. $(0,1)$ and $\left(1, \frac{3}{2}\right)$ C. $(0,0)$ and $\left(1, \frac{3}{2}\right)$ $(0,1) \text { and }\left(0, \frac{3}{2}\right)$	3	C05
Q1 (xx)	Time between infection and the ability to infect someone else with the disease is known as A. Incubation Period B. Latent Period C. A \& B are correct D. A \& B are wrong	2	C05
Q1 (xxi)	The system of equations of Predator-Prey Model is also known as A. Lotka-Volterra Model B. SIR Model C. A \& B are correct D. A \& B are wrong	2	C05
Q1 (xxii)	The lines which divides phase plane in different regions where the directions of trajectories are different are known as A. Nullcurves B. Tangent line C. Asymptote D. Nullclines	2	C05
Q1 (xxiii)	Those people who are infected from disease and are capable of spreading it to others are known as A. Contagious infectives B. Recovered C. Susceptibles	2	C05

	None of these		
Q1 (xxiv)	In Epidemic Model of Influenza, the word equation of infectives compartment is given by A. $\left\{\begin{array}{c}\text { Rate of change } \\ \text { of infectives }\end{array}\right\}=\left\{\begin{array}{c}\text { rate of } \\ \text { infectives } \\ \text { recovered }\end{array}\right\}-\left\{\begin{array}{c}\text { Rate of } \\ \text { susceptibles } \\ \text { infected }\end{array}\right\}$ B. $\left\{\begin{array}{c}\text { Rate of change } \\ \text { of infectives }\end{array}\right\}=\left\{\begin{array}{c}\text { rate of } \\ \text { infectives } \\ \text { recovered }\end{array}\right\}$ C. $\left\{\begin{array}{c}\text { Rate of change } \\ \text { of infectives }\end{array}\right\}=-\left\{\begin{array}{c}\text { Rate of } \\ \text { susceptibles } \\ \text { infected }\end{array}\right\}$ D. $\left\{\begin{array}{c}\text { Rate of change } \\ \text { of infectives }\end{array}\right\}=\left\{\begin{array}{c}\text { Rate of } \\ \text { susceptibles } \\ \text { infected }\end{array}\right\}-\left\{\begin{array}{c}\text { rate of } \\ \text { infectives } \\ \text { recovered }\end{array}\right\}$	3	C05
Q1 (xxv)	In Predator-Prey Model, If x is number of prey per unit area, y is number of predator per unit area, a_{1} is per capita natural death rate of prey, b_{1} is per capita birth rate of prey and others are constant then the differential equation of Prey compartment is given by (Check all correct answers) A. $\frac{d x}{d t}=\left(b_{1}-a_{1}\right) x-c_{1} x y$ B. $\frac{d x}{d t}=\lambda_{1} x-c_{1} x y$ C. $\frac{d x}{d t}=b_{2} y+k c_{1} x y-a_{2} y$ D. $\frac{d x}{d t}=c_{2} x y-\lambda_{2} y$	3	C05

PART B

The link for PART B will be available from 10:00 AM on 8th July 2020 to 10:00 AM on 9th July 2020. Solve the problems in PART B on a plain A4 sheets and write your name, roll number and SAP ID on each page and then scan them into a single PDF file. Name the file as SAP ID _BSC_MATH_ROLL NUMBER (for example: 500077624_BSC_MATH_R103219023.pdf) and upload that PDF file through the link provided over there. PART B solutions sent through WhatsApp or email will not be entertained.
Q2 (A) An integrating factor of the following equation is of the form y^{n}. Find n and hence solve the equation $y \sec ^{2} x d x+\left[3 \tan x-\left(\frac{\sec y}{y}\right)^{2}\right] d y=0$.

Q2 (B)	Find the nature of solution of the differential equation $\frac{d y}{d x}=\frac{x^{2}}{1+y^{2}}$.	4	CO1
Q3	Prove that the complete solution of differential equation $\left(D^{2}-1\right) y=$ $\cosh x \cos x$ is $y=C_{1} e^{x}+C_{2} e^{-x}+\frac{2}{5} \sin x \sinh x-\frac{1}{5} \cos x \cosh x$.	8	CO3
Q4	Given that the developed model to describe the levels of antihistamine and decongestant in a patient taking a course of cold pills is $\begin{array}{cc} \frac{d x}{d t}=I-k_{1} x, & x(0)=0 \\ \frac{d y}{d t}=k_{1} x-k_{2} y, & y(0)=0 \end{array}$ Here k_{1} and k_{2} describe rates at which the drugs move between the two compartments (the GI-tract and the bloodstream) and I denotes the amount of drug released into the GI-tract in each time step. The levels of the drug in the GI-tract and the bloodstream are x and y respectively. By solving the equations sequentially show that the solution is $x(t)=$ $\frac{I}{k_{1}}\left(1-e^{-k_{1} t}\right), y(t)=\frac{I}{k_{2}}\left(1-\frac{1}{k_{2}-k_{1}}\left(k_{2} e^{-k_{1} t}-k_{1} e^{-k_{2} t}\right)\right)$	8	CO4
Q5	Let in a lake, the pollution level is 7%. If the concentration of incoming water is 2% and 10000 litres per day water is allowed to enter the lake, find time when pollution level is 5%. Volume of the lake is 200000 litres. Also, find the pollution after 32 days.	8	CO4
Q6	Consider the aimed fire battle model $\frac{d R}{d t}=-a_{1} B, \quad \frac{d B}{d t}=-a_{2} R .$ Find the exact solution using theoretical techniques as follows: (a) Take the derivative of the first equation to get second-order differential equation and then eliminate $\frac{d B}{d t}$ from this equation by substituting the second equation into this second-order differential equation.	8	CO5

	(b) Now assume the solution to be an exponential of the form $e^{\lambda t}$. Substitute it into the second-order equation and solve for the two possible values of λ. The general solution for R will be of the form $R(t)=c_{1} e^{\lambda_{1}}+c_{2} e^{\lambda_{2}}$, where c_{1} and c_{2} are the arbitrary constants of integration. The solution for B is then found using the equation $\frac{d R}{d t}=$ $-a_{1} B$. (c) Now find the arbitrary constants by applying the initial conditions $R(0)=r_{0}$ and $B(0)=b_{0}$, when $t=0$.	

