

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, July 2020

Course: Organic. Chemistry.I Semester: II

Course

Code: CHEM1005 Time: 3 hrs
Programme: B.Sc. H Chemistry Max. Marks:

Instructions: Section A questions carry 2 marks each. The weightage of questions in section B is mentioned against them.

B.Sc. Organic Chemistry MCQ's

PART-A (30x2=60)

- 1. Which of the following is an alkane which can exhibit optical activity?
- a) Neopentane
- b) Isopentane
- c) 3-Methylpentane
- d) 3-Methylhexane

Ans: d

- 2. Which of the following compounds can exhibit geometrical isomerism?
- a) 1-Hexene
- b) 2-Methyl-2-Pentene
- c) 3-methyl-1-pentene
- d) 2-Hexene

Ans:d

- 3. A solution of 0.1 g/mL of a pure R enantiomer in a 1.0 dm (i.e., 10 cm) polarimeter rotates plane polarized light by +4.8°. What is the rotation observed on this solution in a 2 dm polarimeter?
- a) $+2.4^{\circ}$
- b) $+4.8^{\circ}$
- c) +19°
- d) +9.6°

Ans:d

- 4. Which of the following groups has the highest priority according to the Cahn-Ingold-Prelog sequence rules?
- a) CH₃
- b) CH₂CI
- c) CH₂OH
- d) CHO

Ans: b

- 5. Which of these is a comparatively insignificant factor affecting the magnitude of specific optical rotation?
- a) Concentration of the substance of interest
- b) Purity of the sample

- c) Temperature of the measurement
- d) Length of the sample tube

Ans: c

- 6. Which of the following statements regarding optical rotation is not true?
- a) All R enantiomers are dextrorotatory
- b) All (+) enantiomers are laevorotatory
- c) All (-) enantiomers rotate plane polarized light in a counter clockwise direction
- d) (+) and (-) enantiomers rotate plane polarized light in opposite directions

Ans:c

- 7. Which of the following is the definition of chirality?
- a) The superimposability of an object on its mirror image
- b) A molecule with a mirror image
- c) The non-superimposability an object on its mirror image
- d) A molecule that has a carbon atom with four different substituents

Ans: c

- 8. Which of the following is the definition of a pair of diastereomers?
- a) A pair of stereoisomers each of which has two chirality centers
- b) Any pair of stereoisomers
- c) A pair of stereoisomers that are not mirror images of one another
- d) A pair of stereoisomers that are non-superimposable mirror images of one another

Ans: c

- 9. Which of the following is rate determining step in electrophilic substitution reaction?
- a) Generation of electrophile
- b) Attack by an electrophilic reagent on benzene ring
- c) Formation of product
- d) All of the mentioned

Ans: b

- 10. Which of the following act as catalysis in the nitration of benzene?
- a) Conc. HCI
- b) Dil. HCl
- c) Conc. H₂SO₄
- d) Dil. H₂SO₄

Ans: c

- 11. A deactivating substituent group directs _____
- a) Ortho position
- b) Para position
- c) Both ortho and para positions
- d) Meta position

Ans: d

- 12. Which of the following is ortho-para directing group?
- a) -NHCOCH₃
- b) -NO₂
- c) -CN
- d) -CHO

Ans: a

- 13. Identify the incorrect statement regarding aromaticity
- a) It is the extra stability possessed by a molecule
- b) p-orbitals must be planar and overlap
- c) Cyclic delocalization takes place
- d) It does not follow Huckel's rule

Ans: d

- 14. Which of the following is not true about the five membered rings?
- a) Five membered rings are more stable than 4 membered rings
- b) Five membered rings are more stable than 6 membered rings
- c) Five membered rings are more stable than 7 membered rings
- d) Five membered rings are more stable than 8 membered rings

Ans: b

- 15. Why would a compound be anti-aromatic?
- a) If a compound has a 4n number of pi electrons, it will be anti-aromatic.
- b) If a compound fits Huckel s Rule.
- c) If a compound cannot escape being planar and has 4n number of pi electrons.
- d) If a compound has an odd number of atoms in its ring structure.

Ans: c

- 16. Which among the following is strongest acid
- a. phenol
- b. 2,4,6-trinitrophenol
- c. 2-nitrophenol
- d. 2,4-dinitrophenol
 - 17. Which is most basic among the following
 - a. H₂O
 - b. CH₃OH
 - c. CH₃OCH₃
 - d. C₆H₅OH

- 18. Which effect is responsible for the o,p-directing nature of toluene
 - a. Inductive effect
 - b. Electromeric effect
 - c. Hyperconjugation
 - d. Inductive and Electromeric effect
- 19. What product will be formed on reaction of HBr on CH3-CH=CH2 in the presence of hydrogen peroxide
 - a. n-propylbromide
 - b. iso-propylbromide
 - c. n-hexane
 - d. iso-hexane
- 20. Which product will be formed by the following reaction

21. Which of the following compounds will react with Na

- a. CH₃CH₂C≡CCH₂CH₃
- b. CH₃CH₂CH₂C≡CCH₃
- c. CH₃CH₂CH₂CH₂C≡CH
- d. CH₃C≡C-CH₂CH≡CHCH₃

22. Mention the main product formed by the reaction of

- CH₃CH₂CH₂CH=CH₂ +
- a. Pentane-1,2-dibromide
- b. 1-bromo-1-pentene
- c. 2-bromo-1-pentene
- d. 3-bromo-1-pentene

23. Predict the main product in the following reaction

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{C} \\ \text{CH}_{3} \end{array} \text{CH} = \text{CH}_{2} \xrightarrow{\text{(1) Hg(OAc)}_{2}/\text{THF} - \text{H}_{2}\text{O}} \xrightarrow{\text{(2) NaBH}_{4}, \text{OH}^{-}}$$

3,3-Dimethyl-1-butene

b.

c.

d.

Instruction	on:
PART-B	(Subjective test) 40 marks Duration 24 hours
u.	C115, 5003, NO2, AIC13
	CH ₃ ⁺ , NO ₂ ⁺ , H ₂ O, CH ₃ OH CH ₃ ⁺ , SO ₃ , NO ₂ ⁺ , AlCl ₃
	CH ₃ ⁺ , AlCl ₃ , BF ₃ , SO ₃ H ⁺
	CH ₃ ⁺ , NO ₂ ⁺ , SO ₃ , H ₂ O
	hich among the following groups have all electrophiles
d.	H_2O/H^+
c.	B_2H_6/H_3PO_4
b.	OsO ₄
	Alkaline KMnO ₄ solution
	hich reagents are used to form diols
	CH ₂ =CH-CH ₂ -CH ₂ -CH=CH-CH ₃
	CH ₂ =CH-CH ₂ -CH=CH ₂
	CH ₃ -CH=CH-CH=CH ₂
	CH ₃ -CH ₂ -CH=CH ₂
	hich is an example of conjugated diene
	Nucleophilic substitution reactions
	Electrophilic substitution reactions
	Nucleophilic addition reactions
	Electrophilic addition reactions
	Thich main type of reactions alkenes undergo
	2-pentene
	1-pentene
	2-butene
	1-butene
	Rearrangement reactions a alkene on reductive ozonolysis gave two moles of acetaldehyde. The alkene was
	Elimination reactions Reserve generations
	Substitution reactions
	Addition reactions
	ytzeff Rule is used for
	120
b.	10
a.	6

24. How many conformations are there for ethane

All students have to attempt all the subjective questions. There are two ways to attempt this section:

- 1. You can write your answer on word file and then converted into PDF and upload on the blackboard.
- 2. You can write your answer on A4 sheet, take a picture and then converted into PDF and upload on the blackboard.

Assignment Questions:

Q1	Discuss the difference between Friedel Craft alkylation and Friedel Craft acylation.
----	--

Q2 Discuss the aromaticity in seven and eight membered rings? 10 marks CO3

- Q3 Conversions:
 - a. Ethylene to benzene
 - b. Ethane to Ethylene
 - c. Ethane to Methane
 - d. Propyne to 2-butyne 10 marks CO2

10 marks

CO₃

- Q4 Discuss the mechanism of:
 - a. Oxymercuration-demercuration reaction
 - b. Hydroboration reaction 10 marks CO3.