Name: Enrolment No:					
Programme Name: B. Sc. (H) (Physics + Chemistry) Semester Course Name $:$ Calculus Time Course Code $:$ MATH 1033 Max. Mar Nos. of page(s) $: 11$					
PART A (All questions are compulsory) 1. PART A contains 25 questions for a total of 60 marks. 2. You need to answer PART A within the slot from 10:00 AM to 1:00 PM on $\mathbf{1 2}^{\text {th }}$ July 2020. 3. The due time for PART A is $\mathbf{1 : 0 0}$ PM on $\mathbf{1 2}^{\text {th }}$ July 2020. 4. After the due time, the PART A will not be available.					
S. No.				Ma rks	CO
Q 1. A	Whic A B C. D	h of the following stateme The identity function is The constant function is Every differential funct Every continuous functi		2	CO 1

Q 1. B	What should be the value of a such that the function f is contir $f(x)=\left\{\begin{array}{l} \frac{\operatorname{acos} x}{\frac{\pi}{2}-x}, \text { if } x \neq \pi / \\ 1, \quad \text { if } x=\pi / 2 \end{array}\right.$ A. 1 B. 2 C. 3 D. 4	3	CO 1
Q 1.C	The function $f(x)=\frac{4-x^{2}}{4 x-x^{3}}$ is A. discontinuous at only one point B. discontinuous at exactly two points C. discontinuous at exactly three points D. none of these	3	CO 1
Q 1. D	If $x=a t^{2}$ and $y=2 a t$ then $d y / d x$ is A. t B. $1 / t$ C. $2 / t$ D. t^{2}	3	CO 1

Q 1. E	Let $f(x)=\|\sin x\|$, Then A. $f(x)$ is everywhere differentiable. B. $f(x)$ is everywhere continuous but not differentiable C. $f(x)$ is everywhere continuous but not differentiable D. none of these	2	CO1
Q 1.F	Derivative of $\sin (\cos x)$ is A. $\tan (\cos x)$ B. $-\cos (\cos x) \sin x$ C. $\tan x$ D. $\cot x$	3	CO 1
Q 1. G	The derivative of $\sin x$ with respect to $\cos x$ is A. $\operatorname{Sec} 2 x$ B. $-\tan x$ C. $-\operatorname{cosec} 2 x$ D. $-\cot x$	2	CO 1
Q 1. H	If $f(x, y, z)=x^{2}+x y z+z^{4}$, then f_{x} at $(1,1,1)$ is A. 0 B. 1 C. 3 D. -1	3	CO 2

Q 1. I	$\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ is equal to A. -1 B. 0 C. 2 D. the limit does not exist	3	CO 2
Q 1. J	For a homogeneous function if critical points exist the valu A. 1 B. equal to its degree C. 0 D. -1	3	CO2
Q 1. K	For homogeneous function with no saddle points we must h A. 90 B. 1 C. equal to degree D. 0	3	CO 2
Q 1. L	For homogeneous function the linear combination of rates o axes is A. Integral multiple of function value B. no relation to function value C. real multiple of function value D. depends if the function is a polynomial	2	CO2

Q 1. M	If $u=\frac{(\sqrt{x}+\sqrt{y}) \sin ^{-1}\left(\frac{y}{x}\right)}{x^{3}+y^{3}}$ then value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$ is A. $-2.5 u$ B. -1.5 C. 0 D. $0.5 u$	2	CO 2
Q 1.N	The value of ' c ' of Rolle's Theorem for the function $f(x)=$ A. $\pi / 2$ B. $\pi / 6$ C. $\pi / 2$ D. 0	2	CO3
Q 1. O	If $f(a)$ is equals to $f(b)$ in Mean Value Theorem, then it bec A. Morera's Theorem B. Rolle's Theorem C. Taylor Series of a function D. Leibnitz theorem	2	CO3

Q 1. P	Mean Value theorem is applicable to the A. Functions differentiable in closed interval $[a, b]$ and B. Functions continuous in closed interval $[a, b]$ only ar ' b ' C. Functions continuous in closed interval $[a, b]$ and dif D. Functions differentiable in open interval (a, b) only a and ' b '	2	CO3
Q 1. Q	To find the value of $\sin (9)$ the Taylor Series expansion shou A. 9 B. 8 C. 7 D. Some delta (small) interval around 9	2	CO3
Q 1. R	$\lim _{x \rightarrow 0} \frac{\sin (\sin x)}{x}$ is A. 1 B. ∞ C. 0 D. -1	2	CO3

Q 1. S	Value of $\lim _{x \rightarrow 0}(1+\sin x)^{\operatorname{cosec} x}$ is A. e B. 0 C. 1 D. ∞	2	CO3
Q 1. T	The curvature of a function $f(x)$ is zero. Which of the follow A. $a x+b$ B. $a x^{2}+b x+c$ C. $\sin x$ D. $\cos x$	3	CO 4
Q 1. U	The curve represented by the equation $a^{2} x^{2}=y^{3}(2 a-y)$ is A. symmetrical about x-axis and passing through ($2 a, 0$ B. symmetrical about both x-axis and y-axis and passir C. symmetrical about y-axis and passing through $(0,2 a)$ D. symmetrical about both x-axis and y-axis and passin	2	CO 4

Q 1.V	The equation of tangents to the curve at origin represented b. A. $y=0, y=0$ B. $x=0, x=2 a$ C. $x=0, x=0$ D. $x=2 a, x=2 a$	2	CO 4
Q 1. W	The equation of asymptotes parallel to y-axis to the curve repre $y\left(1+x^{2}\right)=x$ is A. $x=1, x=-1$ B. $x=0$ C. $y=x$ D. $y=0$	2	CO 4
Q 1. X	The curve represented by the equation $a y^{2}=(x-a)(x-5 a$ A. Symmetric about x - axis and not passing through or B. Symmetric about y-axis and passing through origir C. Symmetric about x - axis and passing through origir D. Symmetric about y-axis and not passing through or	3	CO 4

Q 1. Y	The equation of tangent to the curve at origin represented by A. $y=x$ B. $y=-x$ C. $x=1, x=-1$ D. $y=0$	2	CO 4
	SECTION B (All questions are compulsory) The link for PART B will be available from 10:00 AM on $12^{\text {th }}$ July 2020 to 10:00 AM on 13 olve the problems in PART B on a plain A4 sheets and write your name, roll number ach page and then scan them into a single PDF file. Name the file as SAP NAME_ROLL NUMBER (for example: 500077624_CCVT_ R103219023.pdf) and upload hrough the link provided over there. ART B solutions sent through WhatsApp or email will not be entertained.		2020. ID on ANCH DF file
Q 2	Show that for all $x>0,1-x<e^{-x}<1-x+x^{2} / 2$.	8	CO 1
Q 3	Prove that, if f is derivable at c and $f(c) \neq 0$ then the function $1 / f$ is also derivable thereat and $\left(\frac{1}{f}\right)^{\prime}(c)=\frac{-f(c)}{\{f(c)\}^{2}}$	8	CO2
Q 4	Find the $n^{\text {th }}$ derivative of y where $y=e^{a x} . \operatorname{Cos}(b x+c)$.	8	CO 3
Q 5	Find the total differentiation coefficient of $x^{2} y$ with respect to x when x, y are connected by $x^{2}+x y+y^{2}=1$.	8	CO 4
Q 6	Find the asymptotes of the curve $(2 x+3) y=(x-1)^{2}$.	8	CO 4

