Name: Enrolment No:					
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES				
	r Examination, July 2020				
Programme Name: B. Sc. (H) (Physics + Cher					
Course Name : Calculus	Time : 03 hrs				
Course Code : MATH 1033	Max. Marks : 100				
Nos. of page(s) : 11	PART A				
(All questions 1. PART A contains 25 questions for a total of	tions are compulsory)				
2. You need to answer PART A within the sl	ot from 10:00 AM to 1:00 PM on 12th July 2020 .				
3. The due time for PART A is 1:00 PM on 1	2 th July 2020.				
4. After the due time, the PART A will not b	e available.				
S. No.	Ma rks	CO			
Q 1. A Which of the following sta	atements is/are incorrect				
A. The identity functi		GO 4			
B. The constant funct	ion is constant ²	CO 1			
C. Every differential	function is continuous.				
D. Every continuous	function is differential.				

Q 1. B			
Q I. В	What should be the value of a such that the function f is contin		
	$f(x) = \begin{cases} \frac{a\cos x}{\pi}, & \text{if } x \neq \pi/2\\ \frac{\pi}{2} - x & \text{if } x = \pi/2 \end{cases}$	3	CO 1
	A. 1		
	B. 2		
	C. 3		
	D. 4		
Q 1.C			
	The function $f(x) = \frac{4-x^2}{4x-x^3}$ is		
	A. discontinuous at only one point	3	CO 1
	B. discontinuous at exactly two points		
	C. discontinuous at exactly three points		
	D. none of these		
Q 1. D	<u> </u>		
	If $x = a t^2$ and $y = 2at$ then dy/dx is		
	A.t	3	CO 1
	B. 1/ <i>t</i>	3	
	C. 2/ <i>t</i>		
	D. <i>t</i> ²		

Q 1. E	Let $f(x) = \sin x $, Then A. $f(x)$ is everywhere differentiable. B. $f(x)$ is everywhere continuous but not differentiable C. $f(x)$ is everywhere continuous but not differentiable D. none of these	2	CO1
Q 1. F	Derivative of $sin (cos x)$ is A. $tan (cos x)$ B. $-cos (cos x) sin x$ C. $tan x$ D. $cot x$	3	CO 1
Q 1. G	The derivative of <i>sin x</i> with respect to <i>cos x</i> is A. Sec 2x B. –tan x C. –cosec 2x D. –cot x	2	CO 1
Q 1. H	If $f(x, y, z) = x^2 + xyz + z^4$, then f_x at (1, 1, 1) is A. 0 B. 1 C. 3 D1	3	CO 2

Q 1. I			
	$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2} \text{ is equal to}$ A1 B. 0 C. 2 D. d. H.	3	CO 2
	D. the limit does not exist		
Q 1. J	For a homogeneous function if critical points exist the valu A. 1 B. equal to its degree C. 0 D1	3	CO 2
Q 1. K	 For homogeneous function with no saddle points we must have a subscription of the saddle points we must have a subscription of the saddle points we must have a subscription of the saddle points we must have a subscription of the saddle points we must have a subscription of the saddle points we must have a subscription of the saddle points we must have a subscription of the saddle points we must have a subscription of the saddle points we must have a subscription of the saddle points we must have a subscription of the saddle points we must have a subscription of the saddle points we must have a subscription of the saddle points we must have a subscription of the saddle points we must have a subscription of the saddle points a subscription of the saddle points we must have a subscription of the saddle points we must have a subscription of the saddle points a subscription of	3	CO 2
Q 1. L	 For homogeneous function the linear combination of rates of axes is A. Integral multiple of function value B. no relation to function value C. real multiple of function value D. depends if the function is a polynomial 	2	CO 2

Q 1. M	If $u = \frac{\left(\sqrt{x} + \sqrt{y}\right)\sin^{-1}\left(\frac{y}{x}\right)}{x^3 + y^3}$ then value of $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$ is A2.5 u B1.5 C. 0 D. 0.5 u	2	CO 2
Q 1. N	The value of 'c' of Rolle's Theorem for the function $f(x) =$ A. $\pi/2$ B. $\pi/6$ C. $\pi/2$ D. 0	2	CO 3
Q 1. O	 If f (a) is equals to f (b) in Mean Value Theorem, then it bec A. Morera's Theorem B. Rolle's Theorem C. Taylor Series of a function D. Leibnitz theorem 	2	CO 3

Q 1. P	 Mean Value theorem is applicable to the A. Functions differentiable in closed interval [a, b] and a B. Functions continuous in closed interval [a, b] only an 'b' C. Functions continuous in closed interval [a, b] and differentiable in open interval (a, b) only a and 'b' 	2	CO 3
Q 1. Q	To find the value of <i>sin</i> (9) the Taylor Series expansion shou A. 9 B. 8 C. 7 D. Some delta (small) interval around 9	2	CO 3
Q 1. R	$\lim_{x \to 0} \frac{\sin(\sin x)}{x} \text{ is}$ A. 1 B. ∞ C. 0 D1	2	CO 3

Q 1. S	Value of $\lim_{x\to 0} (1 + \sin x)^{\cos ecx}$ is <i>A. e</i> B. 0	2	CO 3
	C. 1 D. ∞		
Q 1. T	The curvature of a function $f(x)$ is zero. Which of the follow A. $ax + b$ B. $ax^2 + bx + c$ C. $sin x$ D. $cos x$	3	CO 4
Q 1. U	The curve represented by the equation $a^2x^2 = y^3(2a - y)$ is A. symmetrical about <i>x</i> -axis and passing through (2 <i>a</i> , 0) B. symmetrical about both <i>x</i> -axis and <i>y</i> -axis and passin C. symmetrical about <i>y</i> -axis and passing through (0, 2 <i>a</i>) D. symmetrical about both <i>x</i> -axis and <i>y</i> -axis and passin		CO 4

Q 1. V	The equation of tangents to the curve at origin represented by		
	A. $y = 0, y = 0$ B. $x = 0, x = 2a$ C. $x = 0, x = 0$	2	CO 4
	D. $x = 2a, x = 2a$		
Q 1. W	The equation of asymptotes parallel to y-axis to the curve repre $y(1 + x^2) = x$ is A. $x = 1, x = -1$ B. $x = 0$ C. $y = x$ D. $y = 0$	2	CO 4
Q 1. X	The curve represented by the equation $ay^2 = (x - a)(x - 5a)^2$ A. Symmetric about <i>x</i> - axis and not passing through on B. Symmetric about <i>y</i> - axis and passing through origin C. Symmetric about <i>x</i> - axis and passing through origin D. Symmetric about <i>y</i> - axis and not passing through or	5	CO 4

Q 1. Y			
	The equation of tangent to the curve at origin represented by t		
	A. $y = x$	-	
	B. $y = -x$	2	CO 4
	C. $x = 1, x = -1$		
	D. $y = 0$		

SECTION B (All questions are compulsory)

- 1. The link for PART B will be available from 10:00 AM on 12th July 2020 to 10:00 AM on 13th July 2020.
- 2. Solve the problems in PART B on a plain A4 sheets and write your name, roll number and SAP ID on each page and then scan them into a single PDF file. Name the file as SAP ID _BRANCH NAME_ROLL NUMBER (for example: 500077624_CCVT_ R103219023.pdf) and upload that PDF file through the link provided over there.
- 3. PART B solutions sent through WhatsApp or email will not be entertained.

Q 2	Show that for all $x > 0$, $1 - x < e^{-x} < 1 - x + \frac{x^2}{2}$.	8	CO 1
Q 3	Prove that, if f is derivable at c and $f(c) \neq 0$ then the function $1/f$ is also derivable thereat and $\left(\frac{1}{f}\right)'(c) = \frac{-f(c)}{\{f(c)\}^2}$	8	CO 2
Q 4	Find the <i>n</i> th derivative of <i>y</i> where $y = e^{ax}$. Cos (<i>bx</i> + <i>c</i>).	8	CO 3
Q 5	Find the total differentiation coefficient of x^2y with respect to x when x, y are connected by $x^2 + xy + y^2 = 1$.	8	CO 4
Q 6	Find the asymptotes of the curve $(2x + 3) y = (x-1)^2$.	8	CO 4