Name: Enrolment No:	

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, July 2020

Course: Mathematics II
Semester: II
Time: 03 hrs.
Max. Marks: 100
Programme: B.Tech. (All SoE Branches)
Instructions: Attempt all questions from PART A (60 Marks) and PART B (40 Marks). All questions are compulsory.

PART A

Instructions: PART A contains 25 questions for a total of 60 marks. It contains 21 multiple-choice questions and 4 multiple answer questions. Multiple answer questions may have more than one correct option. Select all the correct options. You need to answer PART A within the slot from 10:00 AM to 1:00 PM on 6th July 2020. The due time for PART A is 1:00 PM on 6th July 2020. After the due time, the PART A will not be available.

S. No.		Marks	CO
Q1 (i)	The general solution of the differential equation $\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+15 y=0$ is A. $y=c_{1} e^{3 x}+c_{2} x e^{-5 x}$ B. $y=c_{1} e^{3 x}+c_{2} e^{5 x}$ C. $y=c_{1} x e^{-3 x}+c_{2} e^{5 x}$ D. None of these	2	CO1
Q1 (ii)	Particular integral of the differential equation $\frac{d^{2} y}{d x^{2}}+4 y=\cos 2 x$ is A. $\frac{x}{4} \sin 2 x$ B. $\frac{x}{2} \sin 2 x$ C. $\frac{x}{4} \cos 2 x$ D. $\frac{x}{2} \cos 2 x$	2	$\mathrm{CO1}$
Q1 (iii)	In solving $y^{\prime \prime}+P y^{\prime}+Q y=R$, if $P+Q x=0$ then a part of the Complementary Function (C. F.) is A. x B. x^{3} C. x^{2} D. e^{x}	2	CO1

Q1 (iv)	If $f(z)=u(x, y)+i v(x, y)$ is an analytic function then $f^{\prime}(z)$ equals A. $\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}$ B. $\frac{\partial u}{\partial x}+2 \frac{\partial v}{\partial x}$ C. $\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}$ D. None of these	2	CO2
Q1 (v)	Value of the integration $\int_{0}^{2+i}(\bar{z})^{2} d z$ along the line $y=\frac{x}{2}$ is A. $\frac{5}{3}(2-i)$ B. $\frac{5}{3}(2+i)$ C. $\frac{5}{3}(1-i)$ D. $\frac{5}{3}(1+i)$	2	CO 2
Q1 (vi)	If $I=\oint_{C} \frac{\cos \pi z}{z^{2}-1} d z$ where C is a rectangle with vertices $2 \pm i,-2 \pm i$ then I is equal to A. -1 B. $2 \pi i$ C. πi D. 0	2	CO 3
Q1 (vii)	The transformation $w=\frac{a z+b}{c z+d}$, where a, b, c and d are complex constants, is called the bilinear transformation if A. $a b-c d=0$ B. $a b-c d \neq 0$ C. $a d-b c=0$ D. $a d-b c \neq 0$	2	CO 3
Q1 (viii)	Consider the function $f(z)=\frac{1}{(z-1)^{2}(z-3)}$. The residue of $f(z)$ at the singular point $z=1$ is A. 0 B. $\frac{1}{2}$ C. $-\frac{1}{4}$ D. $-\frac{1}{2}$	2	CO 3

Q1 (ix)	The radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(n!)^{2}}{(2 n)!} z^{n}$ is A. 2 B. $1 / 2$ C. 4 D. $1 / 4$	2	CO 3
Q1 (x)	The nature of the singularity of the function $f(z)=\sin \frac{1}{1-z}$ at $z=1$ is A. Removable Singularity B. Essential Singularity C. Pole of order 1 D. Pole of order 2	2	CO 3
Q1 (xi)	The partial differential equation from the relation $u(x, y)=a(x+y)+b$, where a, b are arbitrary constants is A. $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0$ B. $\frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}=0$ C. $\frac{\partial u}{\partial x}-2 \frac{\partial u}{\partial y}=0$ D. $\frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0$	2	$\mathrm{CO4}$
Q1 (xii)	The solution of $\operatorname{PDE} \frac{\partial^{5} u}{\partial x^{3} \partial y^{2}}-\frac{\partial^{5} u}{\partial x^{2} \partial y^{3}}=0$ is A. $u=f_{1}(y)+x f_{2}(y)+f_{3}(x)+y f_{4}(x)+f_{5}(y+x)$. B. $u=f_{1}(-y)+f_{2}(-y)+f_{3}(x)-y f_{4}(x)+f_{5}(-y-x)$. C. $u=f_{1}(y)+x f_{2}(y)+f_{3}(x)+y f_{4}(x)+f_{5}(y+3 x)$. D. $u=f_{1}(2 y)+x f_{2}(y)+f_{3}(x)+y f_{4}(x)+f_{5}(2 y+x)$.	2	$\mathrm{CO4}$
Q1 (xiii)	While solving the partial differential equation $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$, with method of separation of variables we shall obtain A. One ordinary differential equation B. One ordinary and one partial differential equations. C. Two ordinary differential equations D. Two partial differential equations	2	$\mathrm{CO4}$

Q1 (xiv)	The most general solution of the partial differential equation $u_{x x}=u_{t t}$, satisfying the boundary conditions $u(0, t)=u(1, t)=0$ is A. $u(x, t)=\sum_{n=1}^{\infty} \sin n \pi x\left(A_{n} \cos n \pi t+B_{n} \sin n \pi t\right)$ B. $u(x, t)=\sum_{n=1}^{\infty} \cos n \pi x\left(A_{n} \cos n \pi t-B_{n} \sin n \pi t\right)$ C. $u(x, t)=\sum_{n=1}^{\infty} A_{n} \cos n \pi t \sin n \pi x$ D. $u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin 4 n \pi t \cos n \pi x$	2	CO4
Q1 (xv)	The partial differential equation corresponding to the arbitrary function $f\left(x^{2}+y^{2}+z^{2}, x+y+z\right)=0$ is A. $(z-y) \frac{\partial z}{\partial x}-(x-z) \frac{\partial z}{\partial y}=p y-x$ B. $(z-y) \frac{\partial z}{\partial x}+(x-z) \frac{\partial z}{\partial y}=y-x$ C. $(z-y) \frac{\partial z}{\partial x}+(x-z y) \frac{\partial z}{\partial y}=x-y$ D. $(z-y) \frac{\partial z}{\partial x}-x(x-z) \frac{\partial z}{\partial y}=x-y$	2	CO4
Q1 (xvi)	The general solution of the differential equation $\left(6 x^{2}-e^{-y^{2}}\right) d x+2 x y e^{-y^{2}} d y=0$ is A. $x^{2}\left(2 x-e^{-y^{2}}\right)=c$ B. $x^{2}\left(2 x+e^{-y^{2}}\right)=c$ C. $x\left(2 x^{2}-e^{-y^{2}}\right)=c$ D. $x\left(2 x+e^{-y^{2}}\right)=c$	3	CO1
Q1 (xvii)	The value of n for which the differential equation $\left(3 x y^{2}+n^{2} x^{2} y\right) d x+\left(n x^{3}+3 x^{2} y\right) d y=0 ; x \neq 0$ be exact is (More than one answer can be correct) A. 3 B. 2 C. 1 D. 0	3	CO1
Q1 (xviii)	What is $f(z)=u+i v$ if $u=x^{3}-3 x y^{2}$? A. $z^{3}+c$ B. $3 z^{3}+c$ C. $z^{2}+c$ D. $z^{4}+c$	3	CO2

Q1 (xix)	If $f(t)=\int_{C} \frac{3 z^{2}+7 z+1}{z-t} d z$ where C is the circle $x^{2}+y^{2}=4$ then which statements from the following are true? (More than one answer can be correct) A. $f(3)=0$ B. $f(4)=0$ C. $f(0)=0$ D. $f(1)=0$	3	$\mathrm{CO2}$
Q1 ($\mathbf{x x}$)	In the Taylor's series expansion of $\sin z$ about $z=\pi / 4$, coefficient of $\left(z-\frac{\pi}{4}\right)^{2}$ is A. 0 B. 1 C. $-\frac{1}{2 \sqrt{2}}$ D. $-\frac{1}{\sqrt{2}}$	3	$\mathrm{CO3}$
Q1 (xxi)	In which region from the following, the function $f(z)=1 /((z+1)(z+5))$ cannot be expanded in Laurent's series? A. $1<\|z\|<5$ B. $\|z\|<1$ C. $\|z\|>5$ D. None of these	3	$\mathrm{CO3}$
Q1 (xxii)	Consider the integral $\int_{C} f(z) d z$, where $f(z)=\frac{1}{(z-1)(z+2)^{2}}$ and C is the circle given by $\|z\|=\frac{3}{2}$. Choose the correct statement(s). (More than one answer can be correct). A. $\quad z=1$ is the only singular point of $f(z)$ inside C. B. Residue of $f(z)$ at $z=1$ is $-\frac{1}{9}$. C. Value of the integral is 0 . D. Value of the integral is $\frac{2}{9} \pi i$.	3	$\mathrm{CO3}$
Q1 (xxiii)	General solution of the PDE $x \frac{\partial u}{\partial x}-y \frac{\partial u}{\partial y}=x y$ is A. $f(x)=x e^{-1 / x y}$ B. $f\left(x^{2} e^{-\frac{u}{x y}}\right)=x$ C. $f\left(x y, x e^{-u / x y}\right)=0$ D. $f(u y)=x^{3} e^{-u / x y}$	3	$\mathrm{CO3}$

Q1 (xxiv)	The solution of PDE $\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=g(y+x)$ is A. $u=f_{1}(y-x)+x f_{2}(y-x)+\frac{x^{2}}{4} g(y+x)$ B. $u=f_{1}(y+x)+x f_{2}(y+x)+\frac{x^{2}}{2} g(y+x)$ C. $u=f_{1}(y-x)+f_{2}(y+x)+\frac{x^{2}}{4} g(y+x)$ D. $u=f_{1}(y-x)+f_{2}(y+x)+\frac{x^{2}}{2} g(y+x)$	3	CO4
Q1 (xxv)	The second order partial differential equation $u_{x x}+x u_{y y}=0$ is A. Elliptic for $x>0$ B. Hyperbolic for $x>0$ C. Elliptic for $x<0$ D. Hyperbolic for $x<0$	3	CO4

PART B

The link for PART B will be available from 10:00 AM on 6th July 2020 to 10:00 AM on 7th July 2020. Solve the problems in PART B on a plain A4 sheets and write your name, roll number and SAP ID on each page and then scan them into a single PDF file. Name the file as SAP ID _BRANCH NAME_ROLL NUMBER (for example: 500077624_CCVT_ R103219023.pdf) and upload that PDF file through the link provided over there. PART B solutions sent through WhatsApp or email will not be entertained.

Q2	Solve the initial value problem $4 \frac{d^{2} y}{d t^{2}}-y=0 ; y(0)=2, y^{\prime}(0)=\beta$ Then find β so that the solution approaches zero as $t \rightarrow \infty$.	8	CO1
Q3 (A)	For what value of the integer n the function $u(x, y)=x^{n}-y^{n}$ is harmonic?	4	CO 2
Q3 (B)	Suppose that a function $f(z)=u(x, y)+i v(x, y)$ and its conjugate $\overline{f(z)}=u(x, y)-$ $i v(x, y)$ are both analytic in a given domain D. Show that the function $f(z)$ must be constant through-out D.	4	CO 2
Q4	Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{3-2 \cos \theta+\sin \theta}$ using complex integration.	8	$\mathrm{CO3}$
Q5	Find the integral surface of the linear first order partial differential equation $(x-y) p+(y-x-z) q=z$ which passes through the circle $z=1, x^{2}+y^{2}=1$.	8	CO4
Q6 (A)	Discuss the nature of the singularity of the function $f(z)=\frac{\sin (z-a)}{(z-a)}$ at $z=a$.	4	CO3
Q6 (B)	Solve the partial differential equation $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}-6 \frac{\partial^{2} z}{\partial y^{2}}=0$	4	CO4

