SAP ID No.:	
-------------	--

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Examination, July 2020

Programme: Course Name: Course Code: No. of page/s: Semester : Max. Marks : 100 Attempt Duration : 3 Hrs.

Note:

- 1. Read the instruction carefully before attempting.
- 2. This question paper has two section, Section A and Section B.
- 3. <u>Section A</u> consist of 30 multiple choice based questions and has the total weightage of 60 marks.

(6 Questions x 4M, 6 Questions x 3M, 18 Questions x 1M)

- 4. Section A will be conducted online on BB Collaborate platform
- 5. <u>Section B</u> consist of long answer based questions and has the total weightage of 40 marks. The questions for section B shall also appear in BB Collaborate
- 6. The maximum time allocated to **<u>Section A</u>** is 1.5 Hr.
- 7. <u>Section B</u> is to be submitted within 24 hrs from the scheduled time i.e. if the examination starts at 10:00 AM, the long answers must be submitted by 09:59:59 AM next day. Similarly, if the examination starts at 2:00 PM it must be submitted by 01:59:59 PM next day. (*Exceptional provision due extraordinary circumstance due to COVID-19 and due to internet connectivity issues in the far-flung areas*).
- 8. No submission of Section B shall be entertained after 24 Hrs.
- 9. Section B should be attempted after Section A
- 10. <u>Section B</u> should be attempted on blank white sheets (hand written) with all the details like programme, semester, course name, course code, name of the student, Sap id at the top (as in the format) and signature at the bottom (right hand side bottom corner)
- 11. Both section A & B should have questions from entire syllabus.
- 12. The COs mapping, internal choices within a section is same as earlier

1

Question	CO3	
	Two batteries of emfs 6 V and 2 V having internal resistances of 2 Ω and 3 Ω , respectively are connected in parallel across a 5 Ω resistance. Calculate the voltage across 5 Ω resistance-	
Answer	⊘ 3.55 V	
	Infinite	
	0.5 V	
	None of the above	
Multiple Choice	e: Q 2.: CO3 A sinusoidal voltage of 230 V is	Points:
Question	CO3	
	A sinusoidal voltage of 2 0 V is applied across a series RL circuit.	

It is found that the power dissipated is 3200 W and the current is given by the equation

 $i = 28.28 \sin(315t - \theta)$. Find the value of inductance (L) used in the of the circuit

Dointo:

3. Multiple Choice: Q 3: CO4 Two coils A and B consisting of ...

Question	CO4	
	Two coils A and B consisting of 100 and 500 turns respectively are wound side by side on a closed iron circuit of section 10 mean length 200 cm. If the permeability of iron is 3000; find the emf to 20 A in 0.02 second.)0 crn ² and mly from 0
Answer	335 volts	
	942 volts	
	1219 volts	
	None of the above	
Multiple Choid	pice: Q 4: co\$ A parallel plate cap	Points:
Question	coS	
	A parallel plate capacitor has circular plates of radius R = 5.0 cm. While charging, the electric field increases at the rate of . The disp current would be-	placement
Answer	2.5 x 10 ⁻⁴ mA	

	0	
	None of the above	
Multiple Choice	e: Q 5: CO3 The R-L-C circuit has inductance	Point
Question	CO3	
	The R-L-C circuit has inductance of 12 mH and resistance of 3 ohms. What is the value of capacitance that will produce resonan frequency of 9000 Hz?	ce
Answer	0.0026 microfarad	
	0.0026 picofarad	
	O.026 microfarad	
	None of the above	
		Point
Multiple Choice	e: Q 6: CO1 You are given three point charge	FUIII

C01 You are given three point charges q1, q2 and q3. When q1 and q2 are placed together to form a single point charge, the force on q3, at distance L from this combination is a repulsion of 2 units magnitude. When q3 and q1, are so combined, the force on q2 at the same distance L is an attraction of 18 units and when q2 and q3 are combined the force on q1 at distance L is an attraction of 4 units. The ratio q1:q2:q3 will be Answer -3:1:4 Image: Place distance L is an attraction of the above None of the above

□ 7. Multiple Choice: Q 7: CO4

Question	CO4
	Which of the following is correct for a capacitor?
	(a) $W = \frac{1Q^2}{2C}$ (b) $W = \frac{1}{2}CI^2$
	(c) $W = \frac{1}{2}VC^2$ (d) $W = \frac{1}{2}CV^2$
Answer	а
	b
	C
	S d

□ 8. Multiple Choice: Q 8: CO2 The maximum value of permeabilit...

Question	CO2	
	The maximum value of permeability of a material is 0.126 N/A^2 The susceptibility will be –	
Answer	✓ 99999	
	100001	
	-100001	
	None of the above	
		Deinte
	e: Q 9: CO4 A parallel plate capacitor has p	Points
	 CO4 A parallel plate capacitor has p CO4 A parallel plate capacitor has plate area A, Separated by a distance d, and contains dielectric of permittivity ε. When a voltage V₀Sinωt, is applied to its plate, the magnitude of displacement current J_D and Conduction current J_C are – 	Points
Question	CO4 A parallel plate capacitor has plate area A, Separated by a distance d, and contains dielectric of permittivity ε. When a	Points
Multiple Choice Question Answer	CO4 A parallel plate capacitor has plate area A, Separated by a distance d, and contains dielectric of permittivity ϵ . When a voltage V ₀ Sin ω t, is applied to its plate, the magnitude of displacement current J _D and Conduction current J _C are –	Points

	JD=0
). Multiple Cho	pice: Q 10: CO3 A coil of 100 turns islin
Question	CO3
	A coil of 100 turns is linked with a flux of 0.01 Wb when carrying current of 10 A. Calculate the induced e.m.f, if this current is reversed in 0.01 seconds
Answer	300 V
	200 ∨
	400 V
	None
I. Multiple Cho	iice: Q 11: CO4 Poi
Question	

	001	
	The magnetic flux dens N turn will be	sity at the end of a one-metre-long solenoid carrying current of I amp and havin
	(<i>a</i>) μ NI	$(b) \frac{\mu \text{ NI}}{\sqrt{4 \text{ R}^2 + \text{ I}^2}}$
	(c) $\frac{\mu \text{ NI}}{2}$	$(d) \frac{\mu \mathrm{NI}}{\sqrt{\mathrm{R}^2 + \mathrm{I}^2}}$
Answer	а	
	b	
	v	
	d	
2. Multiple Choi	ce: Q 12:CO2	Po
Question	CO2	
	By inserting a plate of a dielectric material between the plates of a parallel plate capacitor, the ene (stored) is increased five times. The dielectric constant of the material is	
	(<i>a</i>) 1/25	(b) 1/5
	(c) 5	(<i>d</i>) 25
Answer	а	
	b	

CO4

👩 с

d

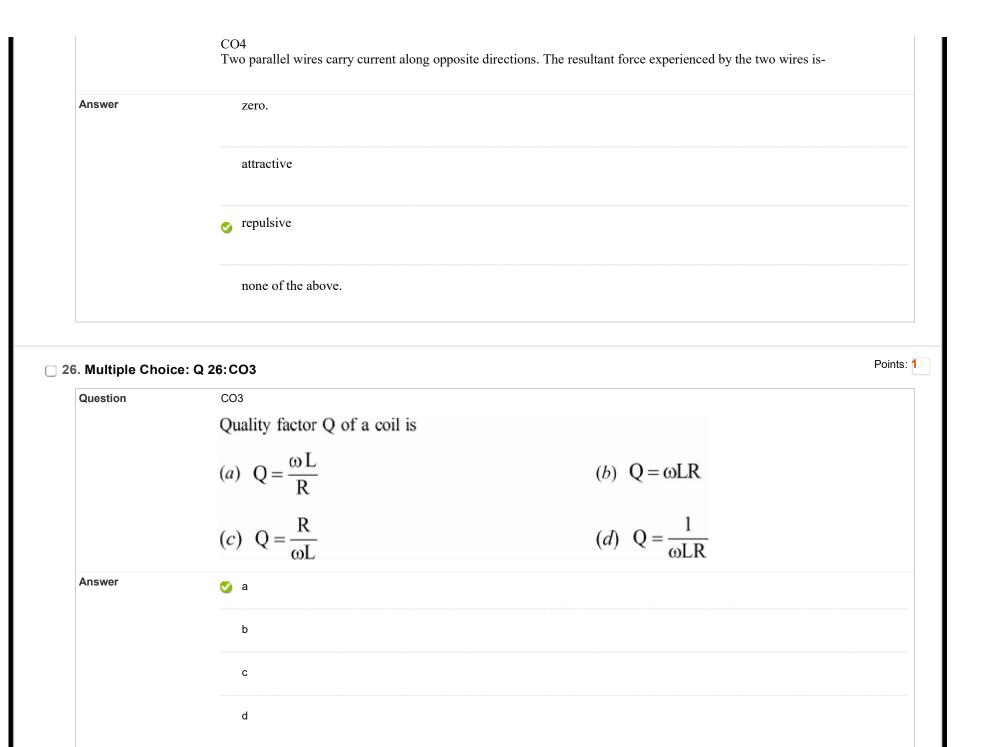
Question	CO1	
	Gauss's divergence theorem is used to transfmm:	
Answer	🥑 a volume integral into is used surface integral	
	a line integral into surface integral	
	volume integral to line integral	
	none of the above	
. Multiple Choi	ce: Q 14: CO2 By induction weproduce	Poi
Question	CO2	
	By induction we produce	
Answer	equal charges	
	equal and like charges	

equal and opposite charges	

unequal and similar charges.

□ 15. Multiple Choice: Q 15: CO4 The force of attraction or repul...

The force of attraction or repulsion between charges follows	
square law	
 inverse squarelaw both (a) and (b) 	
none of (a) and (b)	
6: CO2 Two charges q1 and q2 are placed	Point
	 inverse squarelaw both (a) and (b) none of (a) and (b)


	CO2 Two charges q ₁ and q ₂ are placed close to each other; if a third charge q ₃ is brought near it, the force exerted by q ₁ on	q ₂ now
Answer	Increases	
	decreases	
	vermains the same	
	reduces to practically zero.	
	ce: Q 17: CO2 Electric field intensity due to CO2 Electric field intensity due to a point charge—	Points
Question	CO2	Points
. Multiple Choid Question Answer	CO2 Electric field intensity due to a point charge—	Points
Question	CO2 Electric field intensity due to a point charge— Falls inversely proportional to the distance	Points

	It does not change with distance.	
3. Multiple Choic	ce: Q 18: CO1 Which of the following is a vect	Poir
Question	CO1	
	Which of the following is a vector field ?	
Answer	distribution of temperature	
	magetic and electrostatics potentials	
	density of any non-dilected quantity in a given region of space	
	the distribution of electric or magnetic field intensity	
). Multiple Choic	ce: Q 19: CO2 The electric field intensity of	Poir
Question	CO2	
	The electric field intensity of an infinite long charge line varies	
Answer	Inversely proportional to the square of the distance from it	

	force per unit charge	
	🧭 work per unit charge	
	electric field per unit charge	
Answer	work	
	The dimensions of potential are same as that of	
0. Multiple Choi Question	ce: Q 20: CO1 The dimensions of potential are CO1	Poin
	It remains constant.	
	Inversely proportional to the square root of the distance from it.	

	CO1 Electric field fines and equipotential lines are	
Answer	🥑 always orthogonal	
	orthogonal only when electric field is uniform	
	orthogonal only when potential does not change	
	none of the above is correct.	
22. Multiple Cho	ce: Q 22: CO1 Electric field potential due to	Points: 1
Question	CO1 Electric field potential due to a point charge	
Answer	falls inversely proportional to the distance	
	falls inversely proportional to the square of the distance	
	falls inversely pmportional to the square root of the distance	
	it does not change with distance	

Question	CO2	
	The electric dipole moment (P) is a vector, it points	
Answer	from positive to negative charge	
	from negative to positive charge.	
I. Multiple Choi	ce: Q 24: CO1 The paramagnetic materials have	Po
Question	CO1	
	The paramagnetic materials have a permanent net magnetic moment per atom because of	
Answer	paired electrons	
	o unpaired electrons	
	both paired and unpaired electrons	
	neither paired not unpaired electrons	

27. Multiple Choice: Q 27: CO1

CO1	
Poisson's equation states that	
(a) $\nabla^2 \mathbf{V} = -\frac{\rho}{\epsilon}$	(b) $\nabla^2 \mathbf{V} = \frac{\rho}{\varepsilon}$ (d) $\nabla \mathbf{V} = \frac{\rho^2}{\varepsilon}$
(c) $\nabla V = \frac{\rho}{\epsilon}$	(d) $\nabla V = \frac{\rho^2}{\epsilon}$
🥑 a	
b	
C	
d	
	Poisson's equation states that (a) $\nabla^2 V = -\frac{\rho}{\epsilon}$ (c) $\nabla V = \frac{\rho}{\epsilon}$

🗌 28. Multiple Choice: Q 28: CO1

Points: 1

Question	$\nabla \cdot \vec{D} = \rho$ is based on	
	(a) Ampere's law(c) Ohm's law	(b) Faraday's law(d) Gauss's law
Answer	а	
	b	
	C	

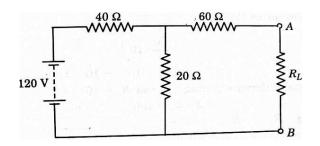
Question	CO4	
	A compass needle is placed near a box and experiences deflection. The box does not have a magnet inside. It may have	
Answer	a charge bodyinside	
	capacitor fully inside	
	✓ current carrying conductor	
	none of these	
. Multiple Choi	ce: Q 30: CO3 Magnetic flux density emerging o	Po
Question	CO3	
	Magnetic flux density emerging out of a closed surface is	
Answer	infinite	
	zero	

	depends upon the magnetic movement inside the closed boundary	
	both (b) and (c) are correct	
Select: <u>All None</u> Sélect by Type	e: - Question Type - 🗸	
Delete and Regrade Poir	Update and Regrade Hide Question Details	

PART B

1- CO1

For a position vector r = ix + jy + kz, find the values of (i) grad (1/r) and (ii) grad r^m


[6 M]

2- CO2

Define Hysteresis loss in magnetic materials. The area of a hysteresis loop is $100m^2$. Each unit space along the vertical axis represent 0.01 Wb/m² and each unit space along the horizontal axis represents 40A/m. Determine the hysteresis loss per cycle. [6 M]

3- CO3

Calculate the value of load resistance R_L to which maximum power may be transferred from the circuit shown in the following figure. Also find the maximum power-

[5 M]

4- CO3

A series LCR circuit has $L = 100 \mu$ H, $C = 100 \mu$ F, and $R = 0.1 \Omega$. Find the resonant frequency and the impedance of the circuit at this frequency. A voltage of 5 millivolts at the resonant frequency is applied to the circuit. Determine the resulting voltage across L. What is the impedance of the series circuit at a frequency less than the resonant frequency by 5000 cycles? [6 M] 5- CO4 [6 M]

Derive the electrostatic boundary conditions for a conductor-dielectric boundary.

6- CO4

What are the various methods of measuring unknown capacitances? Discuss De-Sauty's bridge method.

7- CO3

A 20 volts 5 watts lamp is to be used on a. c. mains with 200 volts and 50 Hz. Calculate the (i) Capacitor, (ii) Inductor to be put in series to run the lamp. What value of pure resistance should be included in place of the above components so that the lamp can run on its rated voltage?

[5 M]

[6 M]