Name:	
-------	--

Enrolment No:

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

SECTION A (40 marks)

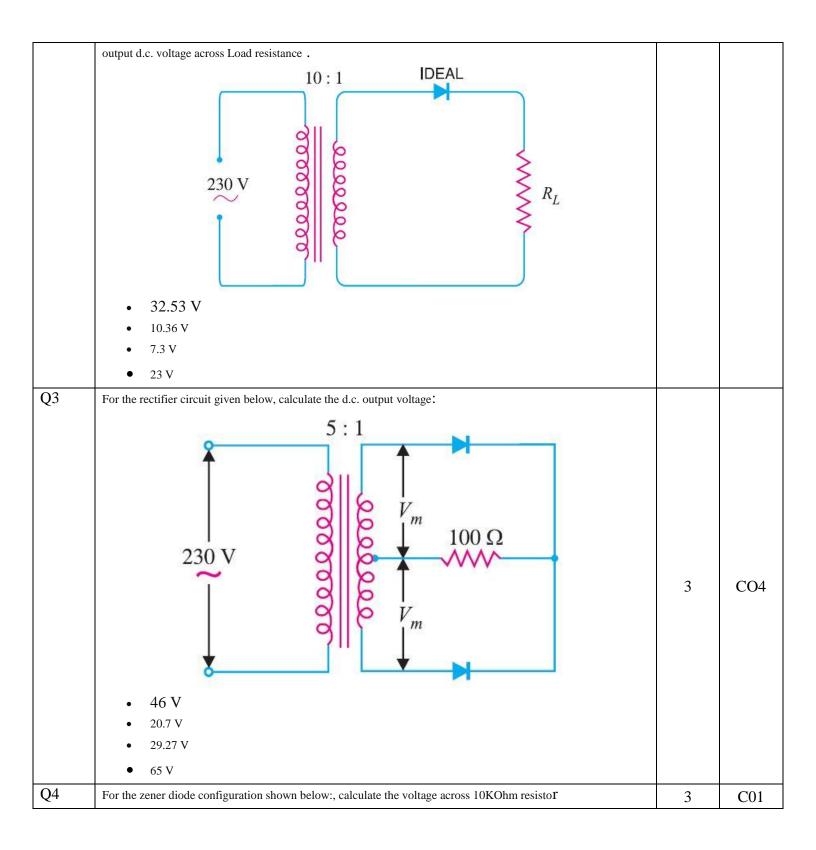
Supplementary Examination, January 2020

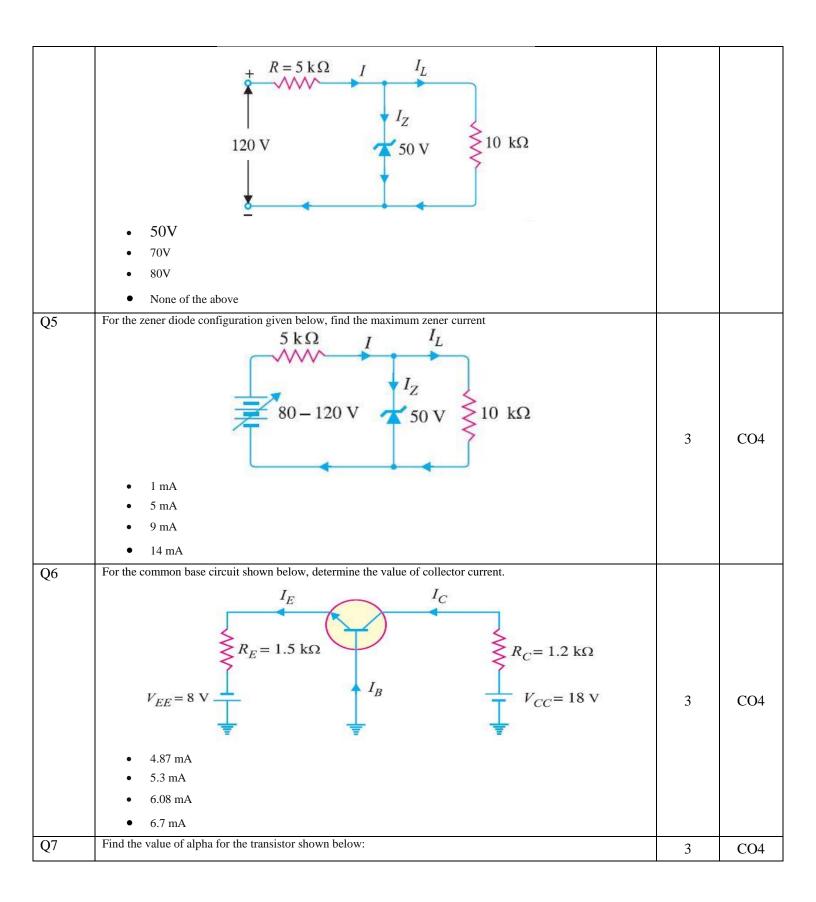
Course: Basic Electronics Engineering Program: B.Tech CSE - B.Tech CSE – BAO, CCVT, GG, IT, BT Course Code: PHYS1003

Semester: II Time : 02 hrs. Max. Marks: 100

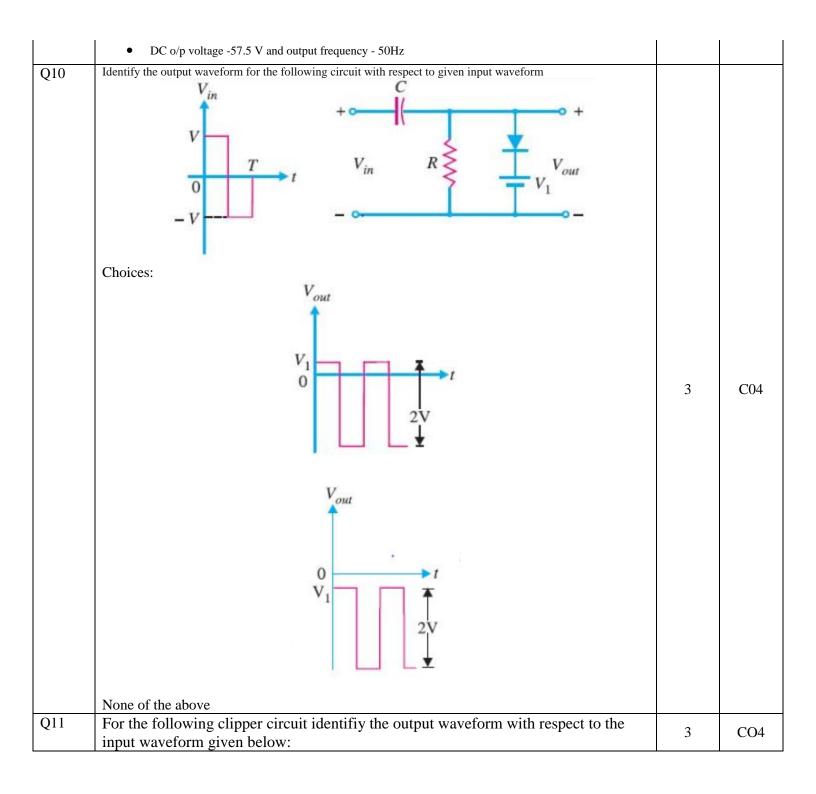
Instructions: 1) Assume any missing data

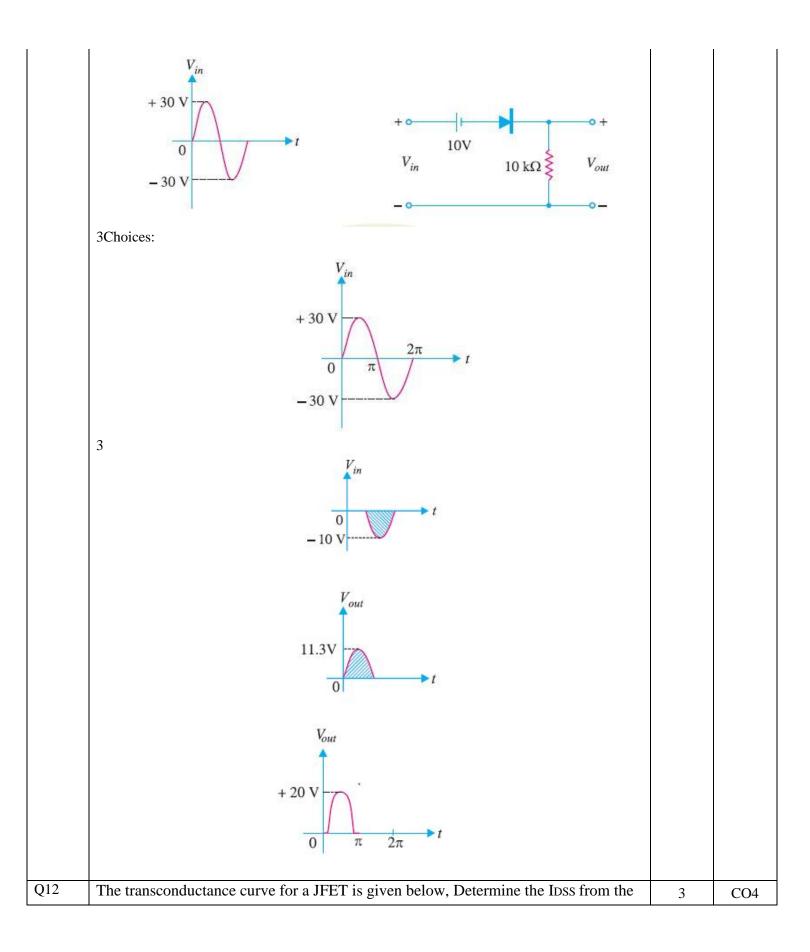
S. No.		Marks	СО
Q 1	The most commonly used semiconductor is		
•	• Germanium		
	• Silicon	1	CO1
	• Carbon		
	• Sulphur		
Q2	A pentavalent impurity has Valence electrons		
	• 3		
	• 5	1	CO1
	• 4		
	• 6		
Q3	An n-type semiconductor is		
	Positively charged		
	Negatively charged	1	CO1
	Electrically neutral	-	001
	• None of the above		
Q4	"Forward biasing a pn junction diode, the width of depletion layer."		
	• Decreases		
	• Increases	1	CO1
	Remains the same		
	• None of the above		
Q5	A reverse bias pn junction has		
	Very narrow depletion layer		
	Almost no current	1	CO1
	• Very low resistance		
	• Large current flow		
Q6	A pn junction acts as a		
	Controlled switch	1	CO1
	Bidirectional switch		

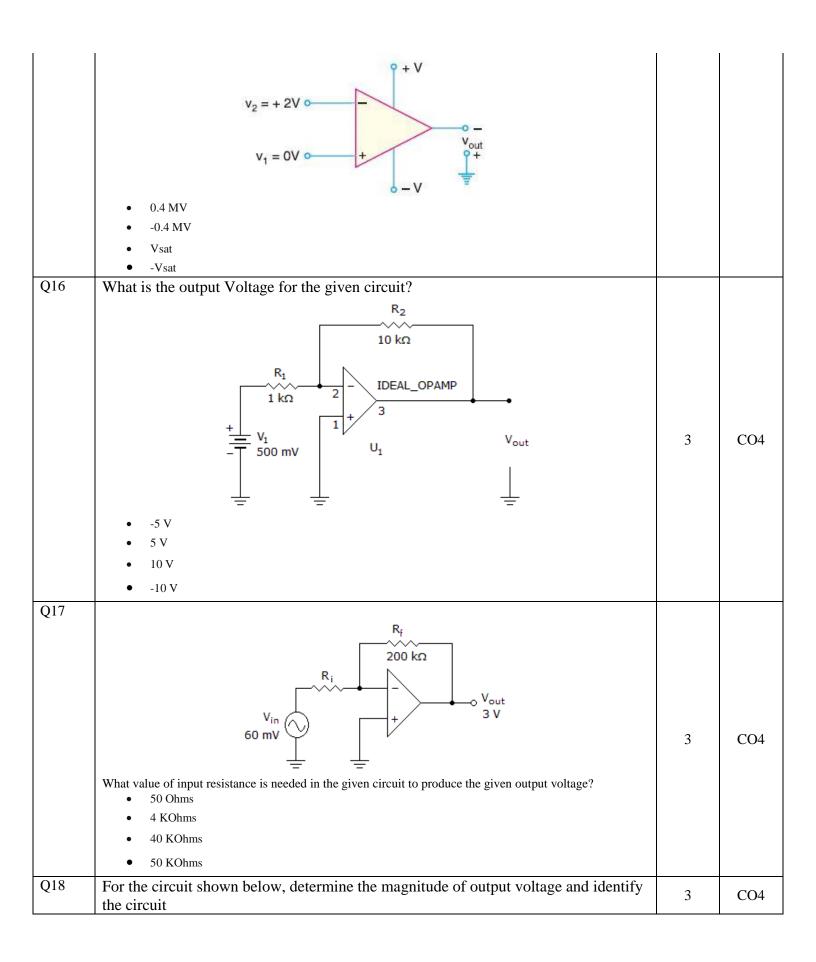

	Unidirectional switch		
	• None of the above		
Q7	The battery connections required to forward bias a pn junction are		
	• Positive terminal to p and negative terminal to n		
	• Negative terminal to p and positive terminal to n	1	CO1
	• Negative terminal to p and negative terminal to n		
	• Positive terminal to p and positive terminal to n		
Q8	Which of the following doping generates a P-type semiconductor?		
	Germanium and boron		
	Germanium and phosphorus	1	CO1
	Germanium and antimony		
	Silicon and Germanium		
Q9	In forward biasing of the p-n junction		
	 the positive terminal of the battery is connected to p-side and the negative terminal of the battery is connected to n-side and depletion region becomes thin. the positive terminal of the battery is connected to n-side and the negative 		
	terminal of the battery is connected to p-side and depletion region becomes thin.	1	CO1
	• the positive terminal of the battery is connected to n-side and the negative terminal of the battery is connected to p-side and depletion region becomes thick.		
	• the positive terminal of the battery is connected to p-side and the negative terminal of the battery is connected to n-side and depletion region becomes thick.		
Q10	Which of the following circuits would require the least amount of filtering?		
-	• A half-wave rectifier		
	• A full-wave rectifier	1	CO1
	• A bridge rectifier	_	001
	• A full-wave rectifier and a bridge rectifier		
Q11	Maximum efficiency of bridge full wave rectifier		
	• 81.20%		
	• 40.60%	1	CO1
	• 25%		
	• 100%		
Q12	The basic purpose of filter is to :		
	 minimize variations in ac input signal 		
	• suppress harmonics in rectified output	1	CO1
	• stabilize dc output voltage		
	• remove ripples from the rectified output		
	** *	l	

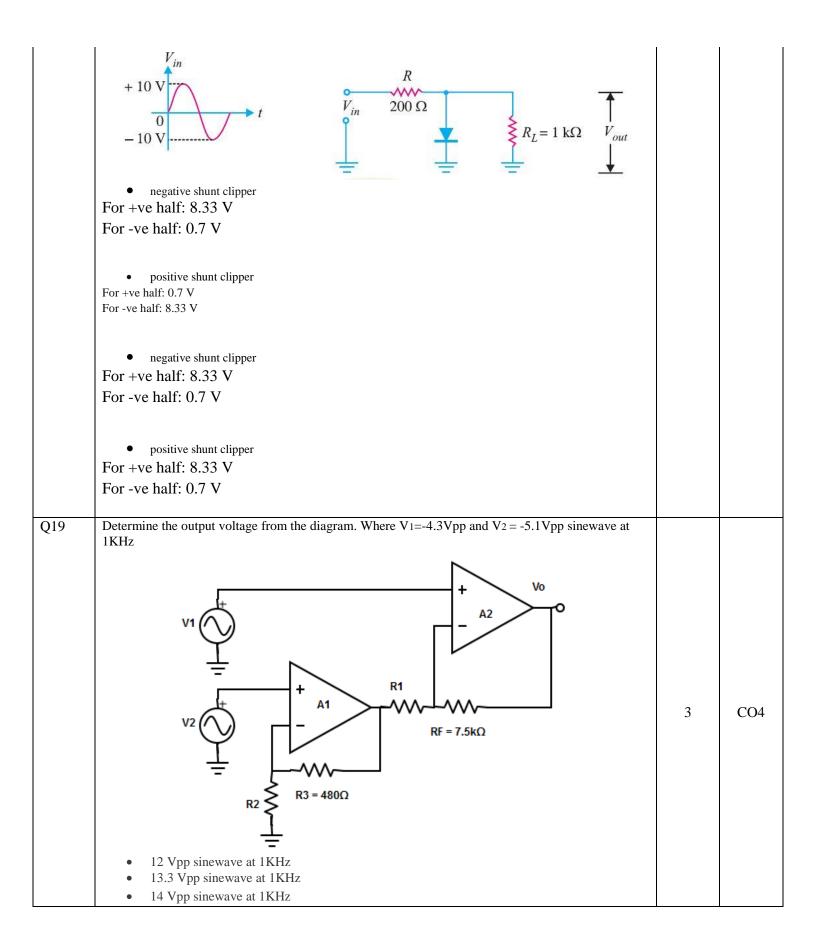

	clamper circuit		
	• a clamper circuit with negative bias		
	• Clipper		
	 a clamper circuit with positive bias 		
Q14	"If the doping level in a diode is increased, the width of depletion layer"		
-	• remains the same		
	• is increased	1	CO1
	• is decreased		
	• none of the above		
Q15	The number of depletion layers in a transistor is		
	• four		
	• three	1	CO2
	• two		
	• one		
Q16	Which rectifier requires four diodes?		
	• Full-wave bridge circuit		
	Half-wave voltage doublers	1	CO2
	• Full-wave voltage doublers		
	• None of the above		
Q17	The main job of a voltage regulator is to provide a nearly output		
	voltage.		
	• constant	1	CO2
	• fluctuating	1	CO2
	• sinusoidal		
	• smooth		
Q18	The base of a transistor is doped		
	• Heavily		
	• moderate	1	CO2
	• lightly		
	• all of the above		
Q19	In a PNP transistor the current carriers are		
	• acceptor ions		
	• donor ions	1	CO2
	• free electrons		
	• holes		
Q20	A transistor is a Controlled device		
	• current		
	• voltage	1	CO2
	• both current and voltage		
	None of the above		
Q21	In a transistor base current is of emitter current	1	CO2

1	- 5 0/	I	1 1
	 5% 25% 		
	• 75%		
0.00	• 99%		
Q22	The input impedance of a transistor is		
	• high		
	• low	1	CO2
	• very high		
	• zero		
Q23	Which of the following holds true for a transistor		
	• $IC = IE + IB$		
	• $IB = IE + IC$	1	CO2
	• $IE = IC - IB$		
	• $IE = IB + IC$		
Q24	The value of α in a transistor is		
	• more than 1		
	• equal to 1	1	CO2
	• less than 1		
	• all of the above		
Q25	"In a transistor, IC = 100 mA and IE = 100.2 mA. The value of β is"		
	• 100		
	• 50	1	CO2
	• 0.2		
	• 200		
Q26	The voltage gain in a transistor connected in arrangement is the highest		
	• common base		
	common collector	1	CO2
	common emitter		
	• None of the above		
Q27	The arrow in the symbol of a transistor indicates the directions of		
	• electron current in the emitter		
	• electron current in the collector	1	CO2
	• hole current in the emitter		
	donor ion current		
Q28	A heat sink is generally used with a transistor to		
	• increase the forward current		
	decrease the forward current	1	CO2
	compensate for excessive doping		
	• prevent excessive temperature ris		
Q29	A Voltage divider bais provides	1	<u> </u>
	• unstable operating point	1	CO2


	• stable operating point	1	
	• a Q point that varies with temperature		
	• all of the above		
Q30	The phase difference between o/p and i/p for a common collector amplifiers is		
	• 270 degrees		
	• 180 degrees	1	CO2
	• 90 degrees		
	• 0 degrees		
Q31	In which region transistor acts as a switch?		
	Active region		
	Cut-off region	1	CO2
	• saturated region		
	• saturated & active region		
Q32	Which of the following is valid for both P-N-P as well as N-P-N transistor		
	• The emitter injects holes into the base region		
	• The electrons are the minority carriers in the base region	1	CO2
	• The EB junction is forward biased for active operation		
	• "When a biased in the active region, current flows into their emitter terminal"		
Q33	For a FET when will maximum current flows?		
	• $Vgs = 0V$		
	• $Vgs = 0 V and Vds >= Vp $	1	CO2
	• $Vds \ge Vp $		
	• $Vds = 0 V$		
Q34	FETs are controlled device		
	• Current		
	• Voltage	1	CO2
	• both current and voltage		
	• None of the above		
Q35	The MOSFET stands for		
	Metal oxidized selenium FET		
	Metal oxide surface FET	1	CO2
	• Metal of surface FET		
	Metal oxide semiconductor FET		
Q36	Choose the correct statement		
	• "MOSFET is a unipolar, voltage controlled, two terminal device"		
	• "MOSFET is a bipolar, current controlled, three terminal device"	1	CO2
	• "MOSFET is a unipolar, voltage controlled, three terminal device"		
	• "MOSFET is a bipolar, current controlled, two terminal device"		
Q37	Negative feedback		
	• is same as the positive feedback	1	CO2
	has no effect on gain of amplifier		


	• Increases the gain of ampllifier		
	• Decreases the gain of ampllifier		
Q38	 The output of a particular op-amp increases 5V in 10 µs. The slew rate is 5 v/µs 0.5 V/µs 5 V/ms 	1	CO3
	• 0.5 V/ms		
Q39	 With 0 volts at both the input terminals of an op-amp. The output of op-amp should be: 0 V equal to slew rate rating equal to CMRR rating equal to the voltage gain 	1	CO3
Q40	A votage follower amplifier configuration has a voltage gain of 1 infinity "2,00,000" -1	1	CO3
	SECTION B (60 marks)		
Q1	Calculate the current flowing through the silicon and germanium diodes if the circuit given below: Consider the forward voltage for Ge as 0.3 V and for Si as 0.7 V $\begin{array}{c} & & & \\ & &$	3	CO4
Q2	An a.c. supply of 230 V is applied to a half-wave rectifier circuit through a transformer of turn ratio 10:1.Find the	3	CO4




	$I_B = 240 \ \mu A \qquad \beta = 49 \ I_E = 12 \ m A$ $I_E = 12 \ m A$		
Q8	• 0.88 For the circuit given in figure below, determine V1 and V2: $+12V \bullet 5i \bullet 4.5 \text{ KOhms} \bullet V_2$ $5i \bullet 4.5 \text{ KOhms} \bullet V_2$ Ge • V1 =12 and V2 =0.3 • V1 =12 and V2 = 0.3 • V1 =11.3 and V2 = 0.3 • None of the above	3	CO4
Q9	 in the bridge rectifier shown in the figure below, the diodes are assumed to be ideal. find the output DC voltage and frequency 4:1 230 V 50 Hz 0 L o/p voltage - 52 V and output frequency - 100 Hz DC o/p voltage - 52 V and output frequency - 50 Hz DC o/p voltage - 57.5 V and output frequency100Hz 	3	CO4

	graph.		
	$-V_{GS} - \frac{1}{5V} = \frac{1}{5}$		
	• 12 mA		
Q13	 A JFET has the following paramters: IDSS=32 mA, VGS(off)= -8V, VGS= -4.5V. Calculate the value of drain current. 32 mA -6.12 mA 6.12 mA 	3	CO4
Q14	For the op-amp configuration given below, calculate the output (assume gain=5) $v_2 = + 2V \circ \qquad $	3	CO4
Q15	Calculate the output voltage for the following op-amp configuration. Assume the op- amp as 741C	3	CO4

	• 11 Vpp sinewave at 1KHz		
Q20	What is the output waveform for the circuit given below?	3	CO4