Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2020

Course: Mathematics II Course Code: MATH1005

Semester: II Time: 03 hrs. Max. Marks: 100

Programme: B.Tech. (All SoCS Branches)

Instructions: Attempt all questions from PART A (60 Marks) and PART B (40 Marks). All questions are compulsory.

PART A

Instructions: PART A contains 25 questions for a total of 60 marks. It contains 20 multiple choice questions and 5 multiple answer questions. Multiple answer questions may have more than one correct option. Select all the correct options. You need to answer PART A within the slot from 10:00 AM to 1:00 PM on 6th July 2020. The due time for PART A is 1:00 PM on 6th July 2020. After the due time, the PART A will not be available.

S. No.		Marks	со
Q1 (i)	Change the independent variable x to z by the relation $z = f(x)$ in the differential equation, $\frac{d^2y}{dx^2} + P \frac{dy}{dx} + Qy = R$ to get a new differential equation $\frac{d^2y}{dz^2} + P_1 \frac{dy}{dx} + Q_1y = R_1$ where P_1, Q_1 and R_1 are: A. $P_1 = \frac{\left(P \frac{d^2z}{dx^2} + \frac{dz}{dx}\right)}{\frac{dz}{dx}}, Q_1 = \frac{Q}{\left(\frac{dz}{dx}\right)^2} R_1 = \frac{R}{\left(\frac{dz}{dx}\right)^2}$ B. $P_1 = \frac{\left(\frac{d^2z}{dx^2} + P \frac{dz}{dx}\right)}{\left(\frac{dz}{dx}\right)^2}, Q_1 = \frac{Q}{\left(\frac{dz}{dx}\right)^2} R_1 = \frac{R}{\left(\frac{dz}{dx}\right)^2}$ C. $P_1 = \frac{\left(P \frac{d^2z}{dx^2} + \frac{dz}{dx}\right)}{\frac{dz}{dx}}, Q_1 = \frac{Q}{\frac{dz}{dx}} R_1 = \frac{R}{\frac{dz}{dx}}$ D. $P_1 = \frac{\left(\frac{d^2z}{dx^2} - P \frac{dz}{dx}\right)}{\left(\frac{dz}{dx}\right)^2}, Q_1 = \frac{Q}{\left(\frac{dz}{dx}\right)^2} R_1 = \frac{R}{\left(\frac{dz}{dx}\right)^2}$	2	CO1
Q1 (ii)	The linear differential equation $\frac{1}{2}(\frac{1}{x} - y) dx - \frac{1}{2}(\frac{1}{y} + x) dy = 0$ is Exact differential equation if A. $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = -\frac{1}{2}$ B. $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y} = -\frac{1}{2}$ C. $M + N = 0$ D. $x \frac{\partial M}{\partial x} = y \frac{\partial N}{\partial y} = -\frac{1}{2}$	2	C01

Q1 (iii)	The complete solution of $(D^2 + 1)^2(D - 1)y = 0$ is		
	A. $y = c_1 cosx + c_2 sinx + c_3 e^x$		
	B. $y = (c_1 + c_2 x)e^x + (c_3 + c_4 x)e^{-x} + c_5 cosx$	2	CO1
	C. $y = (c_1 + c_2 x)cosx + (c_3 + c_4 x)sinx + c_5 e^x$	_	001
	D. None of these		
Q1 (iv)	In kurtosis, frequency curve that has flatten top than normal curve of bell shaped distribution is classified as		
	A. leptokurtic	2	CO3
	B. platykurtic	2	CO2
	C. mega curve		
	D. mesokuttic		
Q1 (v)	The second moment about mean represents	-	
	A. Mean		
	B. Variance	2	CO2
	C. Skewness		
	D. Expected Value		
Q1 (vi)	Match the correct sequence of the following		
	a. Newton-Raphson 1. Integration		
	b. Runge-Kutta 2. Root finding		
	c. Gauss-Seidel 3. Ordinary Differential Equations		
	d. Simpson's Rule 4. Solution of system of Linear Equations	2	CO3
	A. a2-b3-c4-d1		000
	B. a3-b2-c1-d4		
	C. a2-b1-c3-d4		
	D. a3-b4-c1-d2		

Q1 (vii)	If $f(x) =$	$x^2 - 1$	66 = 0, t	then the	iterative	formula	for New	ton Rapl	nson met	thod is			
	A. <i>x</i>	n+1 = 0	$0.25 [x_n \cdot$	+ 166									
			$0.5 [x_n +$	20.14								2	CO3
	112		$0.5 [x_n -$	n								2	005
			$0.25 \left[x_n \cdot \right]$										
Q1 (viii)	The value	e of ∆()	x + cosx), taking	g h =1 is								
	Δ 1	+ 2 5 1	$n\left(\frac{x+1}{2}\right).$	$sin\left(\frac{1}{2}\right)$									
			$n\left(\frac{2x+1}{2}\right)$	101	Y.							2	CO2
			N	141	/							2	CO3
			$n\left(\frac{x-1}{2}\right).$	141									
	D. 1	l + 2si	$n\left(\frac{x-1}{2}\right).$	$sin\left(\frac{2}{2}\right)$									
Q1 (ix)			egral $\int_{a}^{b} f($	(x) dx by	using Sim	pson's $\frac{1}{3}rd$	as well as	s Simpson'	$s\frac{3}{8}th$ rule,	, the number (of sub		
	intervals m	ust be											
	A. multiple	of 6										2	CO3
	B. multiple	of 3										4	003
	C. multiple	of 2											
	D. none of	these											
Q1 (x)	A river i	s 80 m	wide. T	he deptl	1 y of th	e river a	t a dista	nce x f	rom one	bank is giv	ven		
	by the fo	llowin	g table:								2012 - 2013 - 2013 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014		
	x:	0	10	20	30	40	50	60	70	80			
	<i>y</i> :	0	4	7	9	12	15	14	8	3			
	The appr	roxima	te area o	f cross-	section	of the riv	ver usin	g Simps	on's $\frac{1}{3}$ r	l rule is		2	CO3
	A. 7	10											
	B. 7												
	C. 7												
	D. 7	01											

Q1 (xi)	Consider the following table. $ \frac{x 5 7 11 13 17}{y 15 41 141 241 541} $ The entries in the divided difference table corresponding to the first divided difference are (respectively from top to bottom):. A. 12, 24, 25, 30 B. 13, 25, 50, 75 C. 14, 26, 40, 80 D. none of these	2	CO3
Q1 (xii)	Consider the following table. x 5 7 11 13 17 y 15 41 141 241 541 The entries in the divided difference table corresponding to the second divided difference are (respectively from top to bottom):. A. 2, 4, 6 B. 1, 2.5, 5.1 C. 2, 4.16, 4.16 D. none of these D.	2	CO3
Q1 (xiii)	A relation is said to be partial order relation if it is A. symmetric, reflexive and transitive B. anti-symmetric, reflexive and transitive C. anti- symmetric, reflexive but not transitive D. None of these	2	CO4

Q1 (xiv)	The Hasse diagram associated with the partial order on the power set of the two element set, $\{a, b\}$ is		
	shown in the figure. $\{g, b\}$		
	(56.0) ×		
	$\{a\}$ $\langle \rangle$ $\{b\}$		
		•	004
	<u>ě</u>	2	CO4
	Which one is correct		
	A. The minimal element is \emptyset and maximal element is $\{a, b\}$.		
	B. The maximal element is \emptyset and minimal element is $\{a, b\}$.		
	C. The minimal element is $\{a\}$ and maximal element is $\{b\}$.		
	D. The minimal element is $\{b\}$ and maximal element is $\{a\}$.		
Q1 (xv)	A lattice (S, Λ, ν) which is bounded and every element in the lattice (S, Λ, ν) has a complement, then the		
	lattice (S, \wedge, \vee) is known as a		
	A. Bounded lattice		
	B. Modular lattice	2	CO4
	C. Distributive lattice		
	D. Complemented lattice		
Q1 (xvi)	The value of $\left(\frac{1}{D+1} - \frac{1}{D+2}\right) e^{e^x}$ is		
	$\Delta e^{-2x}e^{e^x}$		
	A. $e^{-2x}e^{e^x}$ B. $e^{2x}e^{e^x}$	3	CO1
	C. $e^{x}e^{e^{x}}$		
	D. $e^{-x}e^{e^x}$		
	D. $e^{-\kappa}e^{\epsilon}$		
Q1 (xvii)	The complete solution (C.F & P.I) of the differential equation		
	$\frac{d^2y}{dx^2} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = e^{2x} + x^2 + x$ is given by (choose all options that apply)		
	A. $C.F. = c_1 + (c_2 + c_3 x)e^{-x}$		
	B. P.I. = $\frac{e^{2x}}{18} + \frac{x^8}{2} + \frac{3x^2}{2} + 4x$	3	CO1
	C. C.F. = $c_1 + (c_2 + c_3 x)e^x$		
	D. P.I. = $\frac{e^{2x}}{18} + \frac{x^3}{3} - \frac{3x^2}{2} + 4x$		
	18 3 2 14		
			1

Q1 (xviii)	In a test on 2000 electric bulbs, it was found that the life of a particular make, was normally distributed with an average life of 2040 hours and S.D. of 60 hours. Estimate the number of bulbs likely to burn for more than 2150 hours: (Given: Area against z = 1.83 is equal to 0.4664) A. 97 B. 67 C. 17 D. 7	3	CO2
Q1 (xix)	It is given that $\frac{dy}{dx} = \sqrt{x + y}$ and $y (0.4) = 0.41$ then the approximate value of $y (0.6)$ using Runge Kutta fourth order method with the step length $h = 0.2$ is A. 0.6103476 B. 0.6203476 C. 0.6003476 D. 0.5923476	3	CO3
Q1 (xx)	The positive root of the equation $3x - cosx - 1 = 0$, using Regula-Falsi method is A. 0.6701 B. 0.5071 C. 0.6071 D. 0.5701	3	CO3
Q1 (xxi)	The speed, v meters per second, of a car, t seconds after it starts, is shown in the following table: t 0 12 24 36 48 60 72 84 96 108 120 v 0 3.60 10.08 18.90 21.60 18.54 10.26 5.40 4.50 5.40 9.00 Using Simpson's rule, the distance travelled by the car in 2 minutes is A. 1236.96 B. 1296.96 C. 1296.36 D. 1336.96	3	CO3
Q1 (xxii)	In which of the following methods, we approximate the curve of solution by the tangent in each interval (Select all the correct answers) A. Picard's method B. Euler's method C. Newton's method D. Modified Euler's Method	3	CO3

Q1 (xxiii)	Consider the following table.		
	x100150200250300350400y10.6313.0315.0416.8118.4219.9021.27	3	
	 Use forward difference table to choose the correct options. A. Δ²y at x = 100 is -0.39 B. Δ²y at x = 200 is -0.39 		CO3
	C. The value of y when $x = 218$ is approximately between 15 and 16 D. The value of y when $x = 218$ is approximately between 16 and 17		
Q1 (xxiv)	 Consider the (P(S), ⊆), where S = {a, b, c} and the partial order relation (⊆) is 'inclusion'. Then (select all the correct options) A. It is not a bounded lattice B. It is a complemented lattice C. Neither it is a bounded nor a complemented lattice D. It is bounded as well as complemented lattice. 	3	CO4
Q1 (xxv)	 Consider the set S = {2, 4, 5, 8, 10, 15, 20, 30, 40, 60} with the partial order relation defined as a b i.e. "a divides b". Then choose the correct options (select all) A. The minimal and maximal elements do not exist. B. First and last elements do not exist. C. The minimal elements are 2, 5 and maximal elements are 40, 60. D. The first element is 2 and the last element is 60. 	3	CO4
problems in them into 500077624 B solutions	PART B r PART B will be available from 10:00 AM on 6th July 2020 to 10:00 AM on 7th July PART B on a plain A4 sheets and write your name, roll number and SAP ID on each pag a single PDF file. Name the file as SAP ID _BRANCH NAME_ROLL NUMBER _CCVT_ R103219023.pdf) and upload that PDF file through the link provided over sent through WhatsApp or email will not be entertained.	ge and the R (for ex	en scan ample:
Q2 (A)	Determine the solution of $\left(1 + e^{\frac{x}{y}}\right)dx + \left(1 - \frac{x}{y}\right)e^{\frac{x}{y}}dy = 0.$	4	C01
Q2 (B)	If $y = e^{x^2}$ is a solution of the differential equation $y'' - 4x y' + (4x^2 - 3) y = 0$, then determine a second independent solution.	4	CO1
Q3 (A)	Out of 320 families with 5 children each, what percentage would be expected to have (<i>i</i>) 2 boys and 3 girls, and (<i>ii</i>) at least one boy? Assuming equal probability for boys and girls.	4	CO2

Q3 (B)	Perform two iterations to determine the real root of $\cos x - 3x + 1 = 0$ by Bisection method in the interval [0.60, 0.61].	4	CO3
Q4 (A)	If δ and μ denote the central and average difference operators respectively, then prove the relation $1 + \delta^2 \mu^2 \cong \left(1 + \frac{\delta^2}{2}\right)^2$.	4	CO3
Q4 (B)	Perform two iteration to solve the system of linear equations 2x + y - z = 4, $x - y + 2z = -2$, $-x + 2y - z = 2by Gauss Seidel's method correct up to three places of decimal with the initial guessx = 0.75$, $y = 0.75$ and $z = -0.75$.	4	CO3
Q5 (A)	The value of the integral $\int_{1}^{9} x^{2} dx$ by Trapezoidal rule is $2\left[\frac{1}{2}(1+9^{2}) + \alpha^{2} + \beta^{2} + 7^{2}\right]$ for $n = 4$. Determine the value of α and β .	4	CO3
Q5 (B)	Using Runge-Kutta fourth order method, evaluate $y(0.1)$ of the differential equation $\frac{dy}{dx} = x + y^2$, with $y(0) = 1$, taking $h = 0.1$.	4	CO3
Q6	 Draw the Hasse diagram for the poset P = ({2, 4, 6, 9, 12, 18, 27, 36, 48, 60, 72},), where "a b" means " a divides b". Answer the following questions: (<i>i</i>) Find the maximal elements. (<i>ii</i>) Find the minimal elements. (<i>iii</i>) Find the greatest lower bound of {2, 9}, if it exists. (<i>iv</i>) Find the least upper bound of {2, 9}, if it exists. 	8	CO4