Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2020

Course: Computer System Architecture Semester: II

Course Code: CSEG2004 Time: 12PM-2PM

Programme: BCA BFSI, IOT Max. Marks: 80

Instructions: All questions are compulsory

The difference between the output states of J-K flip flop and S-R flip flop is	The S-R flip flop has invali d state	C or re ct	The J-K flip flop has inval id state	In co rr ec t	The S-R flip flop has race aroun d condit ion	In co rr ec t	The J-K flip flop has race aroun d condition	In co rr ec t
		co rr		co		co		C or re
To implement full adder using 8:1 MUX, the no. of 8:1 MUX required are	1	ec t C	3	ec t In co	4	ec t In co	2	ct In
	x'y+x	or re	x'y'+	rr ec	xy'+x'	rr ec	xy+x'	co rr ec
Simplify $F=x'yz + x'yz' + xz$	z x'y'z'	ct	XZ	t In	Z	t In	z'	t
Let $f(w,x,y,z) = \Sigma(0,4,5,7,8,9,13,15)$. Which of the following expressions are NOT equivalent to f ?	+w'x y'+w y'z+x z	or re ct	w'y'z' +wx' y'+xz	co rr ec t	w'y'z' +wx'y '+xyz +xy'z	co rr ec t	x'y'z' +wx' y'+w' y	or re ct
Full adder circuit can be implemented by	Multi plexe rs	C or re ct	Half Adde rs	In co rr ec t	AND and OR gates	In co rr ec t	deco ders	In co rr ec t
Register that interact with the secondary storage is	MAR	C or	PC	In co rr	IR	In co rr	R0	In co rr

The minimum number of 2 to 1 multiplexers required to realize a 4 to 1 multiplexer is	4 Proce ssor	re ct In co rr ec t	3	ec t C or re ct	2	ec t In co rr ec t	1	ec t In co rr ec t
The internal components of the processor are connected by	intra- conne ctivit y circui try	In co rr ec t	Proc essor bus	C or re ct	Mem ory bus	In co rr ec t	Ram bus	In co rr ec t
The Johnson counter is also known as	twiste d ring count er	C or re ct In co	ring count er	In co rr ec t In co	Rippl e count er	In co rr ec t	None of these	In co rr ec t In co
In an SR Latch made by cross coupling two NAND gates, if both S and R inputs are set to 0, then it will result in	Q=0, Q'=1 Amer ican Natio	rr ec t	Q=1, Q'=0 Ame rican Natio	rr ec t	Q=1, Q'=1 Ameri can Netw	or re ct	no chan ge Amer ican Netw	rr ec t
ANSI stands for	nal Stand ards Instit ute	or re ct	nal Stan dard Interf ace	co rr ec t	ork Stand ard Interf acing	co rr ec t	ork Secur ity Interr upt	co rr ec t
The logic operations are implemented using circuits.	Bridg e	co rr ec t In co	Logi cal	co rr ec t In co	Comb inator ial	or re ct C	Gate	co rr ec t In co
In full adders the sum circuit is implemented using	And & or gates	rr ec t C or re	NAN D gate	rr ec t In co rr	XOR	re ct In co rr	XNO R	rr ec t In co rr
The product of 1101 & 1011 is To increase the speed of memory access in pipelining, we make use of	1000 1111 Speci al mem	ct In co rr	1010 1010 Speci al purp	ec t In co rr	11110 000 Cache	ec t C or	1100 1100 Buffe rs	ec t In co rr

	ory locati ons The same as if the carry- in is	ec t	ose regist ers	ec t		re ct		ec t
The result for a 4-bit parallel adder if "carry-in" is connected to HIGH is	tied LOW since the least significant carryin is ignored	In co rr ec t	That carry -out will alwa ys be HIG	In co rr ec t	A one will be added to the final result	C or re ct	The carry -out is ignor ed	In co rr ec t
What type of memory must be constantly refreshed?	DRA M	or re ct In co	SRA M	In co rr ec t	VRA M	In co rr ec t In co	L1- Cach e	In co rr ec t In co
What is the minimum number of gates required to impement the boolean function (AB+C) if we have to use only 2-input NOR gates?	2	rr ec t	3	or re ct In co	4	rr ec t In	5	rr ec t In
How many full adders are required to construct an m-bit paraller adder?	m Logic	or re ct	m-1	rr ec t	m/2	rr ec t	m+1	rr ec t
Acombinational circuit consists of	gates and a mem ory eleme nt	In co rr ec t	Mem ory elem ents only	C or re ct	Logic gates only	In co rr ec t	None of these	In co rr ec t
The number of NOR gates required to implement EX-NOR gate	4	C or re ct	3	In co rr ec t	5	In co rr ec t	6	In co rr ec t
To convert a full adder into a full subtractor	one input to carry	C or re ct	carry is to be comp	In co rr	sum is to be compl	In co rr	cann ot be conv erted	In co rr

	is to be comp lemen ted		leme nted	ec t	ement ed	ec t		ec t
The fetching, decoding and executing of an instruction is broken down into several time intervals. Each of these intervals, involving one or more clock period is called a	Instru ction cycle	In co rr ec t	Proc ess cycle	In co rr ec t In co	Machi ne cycle	C or re ct In co	None of these	In co rr ec t In co
The operation of gate is commutative but not associative is	NOR only on	or re ct	EX- OR on past	rr ec t	OR	rr ec t	AND	rr ec t
In a sequential circuit, the outputs at any instant	the inputs prese nt at that instan t of	In co rr ec t	outp uts as well as prese nt input	C or re ct	only on the past	In co rr ec t	only on the prese nt outpu	In co rr ec t
of time depends	time	In co rr	S	In co rr	inputs	C or	ts	In co rr
How many flip flops are required to build a binary counter circuit to count from 0 to 2048?	10 a T	ec t In co	9 SR and a	ec t In co	11 SR	re ct C	8	ec t In co
The master slave JK flip flop is effectively a combination of	and D flip flop	rr ec t	D flip flop sync	rr ec t	and T flip flop	or re ct	two T flip flop	rr ec t
	comb inatio nal circui	In co rr ec t	hron ous sequ ential circu	In co rr ec t	one bit memo ry eleme	C or re ct	one clock delay elem	In co rr ec t
An SR Latch is a	t will	In co	it will	C	nt canno	In co	ent will	In co
Q_n The present output of an edge triggered JK flipflop is logic 0. If J=1, then	be logic 0 Serial	rr ec t	be logic 1 Seria	or re ct	Qpe ₁ deter mined Parall	rr ec t	race aroun d	rr ec t C
The registers in which data can be shifted serially or parallelly are known as	in- Serial Out	co rr	l in- Paral lel	co rr	el in- Parall el Out	co rr	Regis ters	or re ct

	Regis ters	ec t	Out Regi sters	ec t	Regist ers	ec t		
Basic 4-bit shift register can be constructed using	four D flip flops Q ₀ =	C or re ct	four T flip flops Q ₀ =	In co rr ec t	two D flip flops	In co rr ec t	three D flip flops $Q_0 =$	In co rr ec t
On the third clock pulse, a 4-bit Johnson sequence is $Q_0 = 1$, $Q_1 = 1$, $Q_2 = 1$, and $Q_3 = 0$. On the fourth clock pulse, the sequence is	$1,$ $Q_1 =$ $1,$ $Q_2 =$ $1,$ $Q_3 =$ 1	C or re ct	$ \begin{array}{l} 1, \\ Q_1 = \\ 1, \\ Q_2 = \\ 0, \\ Q_3 = \\ 0 \end{array} $	In co rr ec t	$\begin{aligned} Q_0 &= \\ 1, \\ Q_1 &= \\ 0, \\ Q_2 &= \\ 0, \\ Q_3 &= 0 \end{aligned}$	In co rr ec t	$0,$ $Q_1 = 0,$ $Q_2 = 0,$ $Q_3 = 0$	In co rr ec t
Computers operate on data internally in a format.	tristat e	In co rr ec t	unive rsal	In co rr ec t	serial	C or re ct	parall el	In co rr ec t
In a 4-bit Johnson counter sequence there are a total of how many states, or bit patterns?	1	In co rr ec t In	2	In co rr ec t	4	In co rr ec t In	8	C or re ct
Hexadecimal value of binary 111111110010 is	EE2 ₁₆	co rr ec t	FF2 ₁₆	or re ct In co	2FE ₁₆	co rr ec t	FD2 ₁	co rr ec t
In digital electronics voltages are continously variable	FALS E	or re ct In	TRU E	rr ec t In		In		C
Most computers store data in strings ofbits called a	8, word	co rr ec t In co	16, word	co rr ec t In co	16 byte	co rr ec t In co	8 byte	or re ct
In which addressing mode the operand is giving explicitly in the instruction	Absol ute	rr ec t	Direc t	rr ec t	Indire ct	rr ec t In	Imm ediat e	or re ct In
addressing mode is most suitable to change the normal sequence of execution of instructions.	Relati ve	or re ct	Indir ect	or re ct	Index with offset	co rr ec t	Imm ediat e	co rr ec t

stores the decoded instruction.	IR	C or re ct	PC	In co rr ec t	Regist	In co rr ec t	MDR	In co rr ec t
Data in SRAM does need not to be refreshed dynamically.	TRU E	C or re ct In co	FAL SE	In co rr ec t In co		In co	All of	C
Characteristics of Auxilliary memory are	Relia ble	rr ec t In co	Reus able	rr ec t C or	Cost	rr ec t In co	the abov e	or re ct In co
Which of the following are not magnetic storage?	Flopp y disk	ec t In co rr	RO M	re ct C or re	etic tape	ec t In co rr	Hard disk	ec t In co rr
Interrupts are initiated by instruction.	Intern al Interr upt	ec t C or re	Exter nal Interr	ct In co rr	Hard ware Interr upt	ec t In co rr	Soft ware	ec t In co rr
When interrupt signaled, processor executes a routine called as	handl er I/O	ct In co rr	upt cycle INT	ec t C or re	devic e Both	ec t In co rr	of these None	ec t In co rr
It is the part of operating system and determines the action to be taken.	handl er	ec t In co rr ec	handl er	ct C or re	of these Infor matio	ec t In co rr ec	of these Store d Valu	ec t In co rr ec
are used as operands.	Input	t C or re ct	Data FAL	In co	n	t	es	t
Polling leads to the CPU wastage.	E Contr ol Addr ess Regis	C or re ct	SE Centr al Addr ess Regi	In co	Circui t Adres s Regist	In co rr ec	None of	In co rr ec
CAR stands for	ter		ster	t	er	t	these	t

SDRAM stands for	Sync hrono us Dyna mic Acces s Mem ory	C or re ct	Sequ ential Dyna mic Aces s Mem ory By	In co rr ec t	Serial Dyna mic Acces s Mem ory	In co rr ec t	None of these	In co rr ec t
How can the processor ignore other interrupts when it is servicing one	By turni ng off the interr upt requ est line	In co rr ec t	disa bling the devi ces from send ing the inter rupts	In co rr ec t	By using edge- trigge red reque st lines	In co rr ec t	All of the abov e	C or re ct
The interrupt servicing mechanism in which the reqesting device identifies itself to the processor to be serviced is	Pollin g	In co rr ec t	Vect ored inter rupts	C or re ct	Interr upt nesti ng	In co rr ec t	Simu Itane ous requ estin g	In co rr ec t In
Arrange the following from fastest to lowest speed: A) Main Memory B) Cache Memory C) CPU registers D) Auxilliary Memory	D-C- A-B	co rr ec t In	C-A- D-B	co rr ec t In	D-A- B-C	or re ct In	B-C- D-A	co rr ec t
Which of the following are types of Associative Memory?	Heter o Assoc iative Com	co rr ec t	Auto assoc iative Com	co rr ec t	None of these Circui	co rr ec t	Both of these	or re ct
CISC is an acronymn for	mon Instru ction Set Comp uter	In co rr ec t In co rr	plex Instr uctio n Set Com puter	C or re ct In co	Instruction Set Computer	In co rr ec t In co rr	None of these 1011. 0100	In co rr ec t
Convert (14.34) base 10 into binary	1011.	ec t	1001	ec t	0101	ec t	1	ct

Let A=1111 1010 and B=0000 1010 be two 8-bit 2's complement numbers. Their product in 2's complement is:	1100 0100	C or re ct In co	1001 1100	In co rr ec t In co	10100 101	In co rr ec t C or	1101 0101	In co rr ec t In co
The 2's complement representation of -17 is	1011 10	ec t In co	1111 10	ec t In co	10111 1	re ct In co	1100 01	rr ec t C or
A Boolean function $x'y' + xy + x'y$ is equivalent to:	x' + y' BC'D'	ec t C	x + y ABC'	rr ec t In co	x + y' ACD'	ec t In	x' + y A'B	re ct In co
The switching expression corresponding to $f(A,B,C,D) = \Sigma(1,4,5,9,11,12)$	+A'C' D+A B'D	or re ct	+AC D+B' C'D	rr ec t In	+A'B C'+A' C'D'	rr ec t	D+A CD'+ BCD'	rr ec t
Flip flops will be used for clock circuits and latches are used for asynchronous.	TRU E	or re ct	FAL SE	co rr ec t		In		In
Transparent latches can also be called as	Full flip flops	co rr ec t In	Half flip flops	or re ct	Level flip flops	co rr ec t	Half latch es	co rr ec t In
Which of the following is the characteristic of RAM?	Slow	co rr ec t In	Unre liable	co rr ec t	Volati le	or re ct In	Bulk y	co rr ec t In
is used to store one bit of data.	Regis ters	co rr ec t	Flipfl ops	or re ct In	Encod er	co rr ec t In	Deco der	co rr ec t In
Von Neumann architecture is	SISD	or re ct	SIM D Multi	co rr ec t	MIM D	co rr ec t	MIS D Mem	co rr ec t
MIMD Stands for	Multi ple Instru ction Multi	or re ct	ple Instr uctio n Mem	In co rr ec t	Mem ory Instru ction Multi	In co rr ec t	ory Instr uctio n Mem	In co rr ec t

	ple Data	•	ory Data	T	ple Data	T	ory Data	
		In co		In co		In co		C
Combinational Logic circuit that sends data	_	rr	_	rr		rr	Dem	or re
coming from single source to two or more destinations is	Deco der	ec t	Enco der	ec t	Multi plexer	ec t	ultipl exer	ct
destinations is	uci	In	Mac	In	picker		CACI	In
	Asse	co	hine	co	High-	C or	Natur	co
	mbly langu	rr ec	level langu	rr ec	level langu	re	al langu	rr ec
A source program is usually in	age	t	age	t	age	ct	age	t
	_	C		In		In		In
	Instru ction	or	Mem ory	co rr	Data	co rr	File	co rr
	point	re	Point	ec	count	ec	point	ec
PC is also called as	er	ct	er	t	er	t	er	t
	C (In	D	C		In	D:	In
	Contr ol	co rr	Progr am	or	Status	co rr	Direc t	co rr
The register that keeps track of the instructions in	Regis	ec	Coun	re	Regist	ec	Regis	ec
the program stored in memory is:	ter	t	ter	ct	er	t	ter	t
		In co		C		In co		In co
		rr		or		rr	None	rr
During the execution of a program which gets		ec		re ct		ec	of	ec
initialized first ?	IR	t	PC		MAR	t	these	t
		C		In co		In co		In co
		or	conv	rr		rr		rr
	invert	re ct	ertin	ec	revers	ec	rever	ec
NOT gate operation can also be called as	ing		g	t In	ing	t In	ting	t In
	15,	C		СО		СО	16,	co
	addre	or re	16,	rr	15,	rr	addre	rr
In basic computer bit of the instruction	ssing	ct	opco	ec	opcod	ec	ssing	ec
specifies the	mode	In	de	t In	e	t	mode	t In
	Perm	со	Regu	со	Temp	C or		со
	anent	rr	lar	rr	orary	re	None	rr
Scratch register to store intermediate results is known as	Regis ter	ec t	Regi ster	ec t	Regist er	ct	of these	ec t
Kilowii as	Multi	ι	StCI	ι	Mem		tilese	ι
	ple		Milli		ory			_
	Instru	In	On Instr	C	Instru	In		In
	ctions execu	co rr	Instr uctio	or	ctions execu	co rr		co rr
	ted	ec	ns	re ct	ted	ec		ec
	per	t	exec	Ct	Per	t	None	t
MIPS stands for	secon d		uted Per		secon d		of these	
********** = ** =	-							

If more than one adder is available in a CPU, all adders can work simultaneously for consecutive instructions. The technique is known as The Input Register (INPR) holds an bit	Multi Scala r Archi tectur e	In co rr ec t In co rr ec	Seco nd Supe rScal ar Arch itectu re	C or re ct In co rr ec	Both of these	In co rr ec t	None of these	In co rr ec t In co rr ec
character gotten from an input device.	4	t In co rr	6 NAN	t C or	8	In co	10	t In co rr
is a Universal gate.	NOR gate	ec t In co rr	D gate	re ct C or	NOT gate	ec t In co rr	AND gate	ec t In co rr
To store data in a computer the 8 bit encoding format used is	ASCI I	ec t In	EBC DIC	re ct In co	ANCI	ec t In	USCI I	ec t
A logical function of three variables is given as $f(A,B,C)=(A+BC)(B+C'A)$. The canonical SOP form is:	$\sum (2,4,8,10)$	rr ec t	$\sum (2, 4, 6, 7)$	rr ec t	$\sum (3,5,8,9)$	rr ec t	$\sum (3, 4,6,7)$	or re ct