

		re		ec		ec		
		ct		t		t		
		In		C		In		
		co		C		co		O
		rr		or		rr		
The minimum number of 2 to 1 multiplexers		ec				ec		c
required to realize a 4 to 1 multiplexer is	4	t	3	ct	2	t	1	
	Proce							
	ssor intra-	In		C		In		
		co		C		co		O
	ctivit	rr		re		rr		
		ec		re		ec		c
The internal components of the processor are	circui	t	essor	ct	ory	t	Ram	
connected by __	try		bus		bus		bus	
				In		In		n
	twiste	C		co	Rippl	co		o
	d ring	$\begin{aligned} & \text { or } \\ & \text { re } \end{aligned}$	ring	rr	e	rr	None	
	count		count	ec	count	ec	of	c
The Johnson counter is also known as	er	ct	er	t	er	t	these	
		In		In		C		n
		co		co				o
In an SR Latch made by cross coupling two		rr		rr			no	r
NAND gates, if both S and R inputs are set to 0 ,	$Q=0$,	ec	$Q=1$,	ec	$Q=1$,		chan	c
then it will result in	$Q^{\prime}=1$	t	$Q^{\prime}=0$	t	$Q^{\prime}=1$		ge	
	Amer		Ame		Ameri		Amer	
	Natio		Natio	In		In		
	nal	or	Na	co	N	co	$\begin{aligned} & \text { Net } \\ & \text { ork } \end{aligned}$	o
	Stand	re	Stan	rr	Stand	rr	Secur	
	ards	ct	dard	ec	ard	ec		c
ANSI stands for	Instit ute		Interf ace	t	Interf acing		Interr upt	
		In		In				n
		co		co		C		O
		rr		rr	Comb	or		
The logic operations are implemented using	Bridg	ec	Logi	ec	inator	re		c
\ldots circuits.	e	t	cal	t	ial	ct	Gate	
		In		In		C		n
		co		co		c		co
	And	rr	NAN	rr		or		r
In full adders the sum circuit is implemented	\& or	ec	D	ec			XNO	c
using	gates	t	gate	t	XOR	ct	R	
		C		In		In		n
		r		co		co		co
		or		rr		rr		
	1000	re	1010	ec	11110	ec	1100	c
The product of 1101 \& 1011 is	1111	ct	1010	t	000	t	1100	
	Speci	In	Speci	In				n
To increase the speed of memory access in	al	co	al	co		or	Buffe	co
pipelining, we make use of	mem	rr	purp	rr	Cache	or	rs	

	Regis ters	$\begin{aligned} & \mathrm{ec} \\ & \mathrm{t} \end{aligned}$	Out Regi sters		Regist ers			
Basic 4-bit shift register can be constructed using		C		In co		In	three	In co
	four	or	four	rr	two D	rr	D	rr
	D flip	ct	T flip	ec	flip	ec	flip	ec
	flops	ct	flops	t	flops	t	flops	t
	$\mathrm{Q}_{0}=$		$\mathrm{Q}_{0}=$				$\mathrm{Q}_{0}=$	
	1 ,		$1,$	In	$\mathrm{Q}_{0}=$			In
	$\mathrm{Q}_{1}=$	C	$\mathrm{Q}_{1}=$	co		co	$\mathrm{Q}_{1}=$	co
On the third clock pulse, a 4-bit Johnson sequence is $\mathrm{Q}_{0}=1, \mathrm{Q}_{1}=1, \mathrm{Q}_{2}=1$, and $\mathrm{Q}_{3}=0$. On the fourth clock pulse, the sequence is		or re	1, $\mathrm{O}_{2}=$		$\mathrm{Q}_{1}=$			rr
	$\begin{aligned} & \mathrm{Q}_{2}= \\ & 1, \end{aligned}$	re ct	$\begin{aligned} & \mathrm{Q}_{2}= \\ & 0, \end{aligned}$	ec	$\begin{aligned} & 0, \\ & \mathrm{Q}_{2}= \end{aligned}$	ec	$\mathrm{Q}_{2}=$ 0,	ec
	$\mathrm{Q}_{3}=$		$\mathrm{Q}_{3}=$		0 ,		$\mathrm{Q}_{3}=$	
	1		0		$\mathrm{Q}_{3}=0$			
Computers operate on data internally in a\qquad format.	tristat e	In		In		C		In
		co		co				co
		rr		rr				rr
		ec	unive	ec		re	parall	ec
		t	rsal	t	serial			t
In a 4-bit Johnson counter sequence there are a total of how many states, or bit patterns?	1	In		In		In		C
		co		co		co		-
		rr		rr		rr		
		ec		ec		ec		re
		t	2	t	4	t	8	ct
		In		C		In		In
		co				co		co
Hexadecimal value of binary 111111110010 is	EE2 ${ }_{16}$	rr				rr		rr
		ec		re		ec	FD2 ${ }_{1}$	ec
		t	FF2 1_{6}	ct	$2 \mathrm{FE}_{16}$	t		t
	$\begin{aligned} & \text { FALS } \\ & \text { E } \end{aligned}$	C		In				
In digital electronics voltages are continously variable		or		co				
		re		ec				
		ct	E	ec				
		In		In		In		C
		co		co		co		
Most computers store data in strings of bits called a \qquad	8, word	rr		rr		rr		
		ec		ec	16	ec		ct
		t	word	t	byte	t	byte	ct
		In		In		In		C
		co		co		co		
In which addressing mode the operand is giving explicitly in the instruction	Absol ute	rr		rr		rr	Imm	re
		ec	Direc	ec	Indire	ec	ediat	ct
		t		t		t	e	ct
		C		C		In		In
\qquad addressing mode is most suitable to change the normal sequence of execution of instructions.	Relati ve	or		or		co		co
		re		re	Index	rr	Imm	${ }^{\text {rf }}$
		ct	ect	ct		${ }_{\mathrm{t}}$	e	${ }_{\text {ec }}$

				In		In		In
				co		co		co
Let $\mathrm{A}=11111010$ and $\mathrm{B}=00001010$ be two 8-bit		or		rr		rr		rr
2 's complement numbers. Their product in 2's	1100	re	1001	ec	10100	ec	1101	ec
complement is:	0100	ct	1100	t	101	t	0101	t
		In		In		C		In
		co		co				co
		rr		rr		or		rr
	1011	ec	1111	ec	10111		1100	ec
The 2 's complement representation of -17 is	10	t	10	t	1		01	t
		In		In		In		C
		co		co		co		
		rr		rr		rr		or
A Boolean function $x^{\prime} y^{\prime}+x y+x ' y$ is equivalent		ec		ec		ec		
	$\mathrm{x}^{\prime}+\mathrm{y}^{\prime}$	t	$\mathrm{x}+\mathrm{y}$	t	$\mathrm{x}+\mathrm{y}^{\prime}$	t	$\mathrm{x}^{\prime}+\mathrm{y}$	
		C		In		In		In
	BC'D'		ABC'	co	ACD'	co	A'B	co
	+ ${ }^{\prime} \mathrm{C}^{\prime}$		+AC	rr	+A'B	rr	D+A	rr
The switching expression corresponding to	D+A	re	D+B'	ec	$\mathrm{C}^{\prime}+\mathrm{A}^{\prime}$	ec	CD'+	ec
$\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,4,5,9,11,12)$	B'D		C'D	t	$\mathrm{C}^{\prime} \mathrm{D}^{\prime}$	t	BCD'	t
		C		In				
		or		co				
				rr				
Flip flops will be used for clock circuits and	TRU	ct	FAL	ec				
latches are used for asynchronous.	E		SE	t				
		In				In		In
		co				co		co
	Full	rr	Half		Level	rr	Half	rr
	flip	ec	flip		flip	ec	latch	ec
Transparent latches can also be called as	flops	t	flops		flops	t	es	t
		In		In		C		In
		co		co				co
		rr		rr				rr
Which of the following is the characteristic of		ec	Unre	ec	Volati		Bulk	c
RAM?	Slow	t	liable	t	le		y	t
		In		C		In		In
		co				co		co
		rr				rr		rr
	Regis	ec	Flipfl		Encod	ec	Deco	ec
is used to store one bit of data.	ters	t	ops		er	t	der	t
				In		In		In
		or		co		co		co
		or		rr		rr		Ir
		re	SIM	ec	MIM	ec	MIS	ec
Von Neumann architecture is	SISD	ct	D	t	D	t		t
			Multi				Mem	In
	Multi	C	ple		Mem		ory	In
	ple	or	Instr		ory		Instr	co
	Instru	re	uctio	$\begin{aligned} & \mathrm{rr} \\ & \mathrm{ec} \end{aligned}$	Instru		uctio	ec
	ction	ct		t	ction			ec
MIMD Stands for	Multi		Mem		Multi		Mem	

