Name: Enrolment No:	

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, July 2020

Course: Statistics, Numerical Methods \& Algorithms
Semester: II
Course Code: MATH 1025
Programme: BCA. (IOT+BFSI)

Time: 03 hrs.
Max. Marks: 100

Instructions: Attempt all questions from PART A (60 Marks) and PART B (40 Marks). All questions are compulsory.

PART A
Instructions: PART A contains 25 questions for a total of 60 marks. It contains 25 multiple-choice questions. You need to answer PART A within the slot from 10:00 AM to 1:00 PM on 6th July 2020. The due time for PART A is 1:00 PM on 6th July 2020. After the due time, the PART A will not be available.

S. No.		Marks	CO
Q1 (i)	If 625.483 is approximated to three significant digit, then the percentage error will be: A. 0.483% B. 0.000772% C. 0.00772% D. 0.0772%	2	CO1
Q1 (ii)	If $\sqrt{29}=5.385$ is correct to four significant digit, then the maximum error in this case will be: A. $\frac{1}{2} \times 10^{-3}$ B. $\frac{1}{2} \times 10^{3}$ C. $\frac{1}{2} \times 10^{-4}$ D. $\frac{1}{2} \times 10^{4}$	2	CO1
Q1 (iii)	The interval of the root of the algebraic equation $x^{3}-4 x-9=0$ is: A. $(0,1)$ B. $(1,2)$ C. $(2,3)$ D. $(3,4)$	2	CO1

Q1 (iv)	In fixed point iteration method, which of the following condition is true: A. $\left\|\phi^{\prime}(x)\right\|=1$ B. $\left\|\phi^{\prime}(x)\right\| \rightarrow \infty$ C. $\left\|\phi^{\prime}(x)\right\|>1$ D. $\left\|\phi^{\prime}(x)\right\|<1$	2	CO1
Q1 (v)	Which of the following two methods are similar at initial level for finding the roots of algebraic and transcendental equations: A. Bisection Method and Regula-Falsi Method B. Fixed Point Iteration Method and Secant Method C. Newton Raphson Method and Regula-Falsi Method D. Secant Method and Regula-Falsi Method	2	CO1
Q1 (vi)	Secant method for finding the root of the algebraic and transcendental equations is: A. $x_{k+1}=x_{k}+\frac{\left(x_{k}-x_{k-1}\right)}{f_{k}-f_{k-1}} f_{k}, \quad k=1,2,3, \ldots \ldots \ldots$ B. $x_{k+1}=x_{k}-\frac{\left(x_{k}-x_{k-1}\right)}{f_{k}-f_{k-1}} f_{k}, \quad k=1,2,3, \ldots \ldots \ldots$ C. $x_{k+1}=x_{k}-\frac{\left(x_{k}+x_{k-1}\right)}{f_{k}-f_{k-1}} f_{k}, \quad k=1,2,3, \ldots \ldots \ldots$ D. $x_{k+1}=x_{k}+\frac{\left(x_{k}-x_{k-1}\right)}{f_{k}+f_{k-1}} f_{k}, \quad k=1,2,3, \ldots \ldots \ldots$	2	CO1
Q1 (vii)	What is the approximate range of u in Gauss's forward formula? A. $-0.5<u<0$ B. $-0.25<u<0.25$ C. $0<u<0.5$ D. $0<u<1$	2	CO 2
Q1 (viii)	The relation between divided difference and ordinary difference is A. ${ }_{x_{1}}^{\Delta y_{0}}=\frac{y_{0}-y_{1}}{x_{0}-x_{1}}=\frac{\Delta y_{0}}{h}$ B. ${ }_{x_{1}}^{\Delta y_{0}}=\frac{y_{0}-y_{1}}{x_{0}-x_{1}}=\Delta y_{0}$ C. ${ }_{x_{1}}^{x_{0}}=\frac{y_{0}-y_{1}}{x_{0}-x_{1}}=h \Delta y_{0}$ D. None of these	2	CO 2

| Q1 (ix) | Shifting the origin in Gauss's backward formula one have
 A. Stirling Formula
 B. Bessel's formula
 C. Newton's formula
 D. None of these | 2 |
| :--- | :--- | :--- | :--- | CO2

Q1 (xiv)	Given $y_{0}, y_{1}, y_{2}, y_{3}$ corresponding to $x_{0}, x_{1}, x_{2}, x_{3}$ for function $y=f(x)$. Let $f(x)$ is a polynomial of degree three. Then by Simpson's three eight rule, the integral $J=\int_{a}^{b} f(x) d x$ is equivalent to A. $J=\frac{3}{8} h\left[y_{0}+3 y_{1}+3 y_{2}+y_{3}\right]$ B. $J=\frac{1}{3} h\left[y_{0}+4 y_{1}+y_{2}\right]$ C. $J=\frac{3}{8} h\left[y_{0}+4 y_{1}+3 y_{2}+2 y_{3}\right]$ D. None of these	2	CO 3
Q1 (xv)	Given initial value problem $\frac{d y}{d x}=f(x, y)$ where $y\left(x_{0}\right)=y_{0}$. In Runge-Kutta Method A. $y_{n+1}=y_{n}+\frac{1}{6}\left(k_{1}+k_{2}+k_{3}+k_{4}\right)$ B. $y_{n+1}=y_{n}+\frac{1}{6}\left(k_{1}+4 k_{2}+2 k_{3}+k_{4}\right)$ C. $y_{n+1}=y_{n}+\frac{3}{8}\left(k_{1}+k_{2}+k_{3}+k_{4}\right)$ D. $y_{n+1}=y_{n}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)$	2	CO 4
Q1 (xvi)	Using fixed point iteration method $x_{n+1}=\phi\left(x_{n}\right)$, the equation $x^{3}+x^{2}-1=0$ has been reduced into $x=\frac{1}{\sqrt{1+x}}$ then $\phi^{\prime}(x)$ will be: A. $-\frac{1}{2(1+x)^{3 / 2}}$ B. $\frac{1}{2(1+x)^{3 / 2}}$ C. $-\frac{1}{(1+x)^{3 / 2}}$ D. $\frac{1}{(1+x)^{3 / 2}}$	3	CO1
Q1 (xvii)	Which of the following expression is true for applying Newton-Raphson method to obtain the approximate value of $(17)^{\frac{1}{3} \text { : }}$ A. $x_{k+1}=\frac{2 x_{k}^{3}+17}{3 x_{k}^{2}}, k=0,1,2 \ldots \ldots \ldots$ B. $x_{k+1}=\frac{2 x_{k}^{3}-17}{3 x_{k}^{2}}, k=0,1,2 \ldots \ldots \ldots$ C. $x_{k+1}=\frac{x_{k}^{3}-17}{3 x_{k}^{2}}, k=0,1,2 \ldots \ldots \ldots$ D. $x_{k+1}=\frac{x_{k}^{3}+17}{3 x_{k}^{2}}, k=0,1,2 \ldots \ldots \ldots$	3	CO1

Q1 (xviii)	Let $f(x)=a^{2} x^{n}+b x^{n-1}+c x^{n-2}+\ldots \ldots \ldots+k x+l$ and $\Delta f(x)=f(x+h)-f(x)$, then $\Delta^{n} f(x)$ will be: A. $a n!h^{n}$ B. $a^{2} n!h^{n}$ C. $n!h^{n}$ D. $a n!$	3	CO 2
Q1 (xix)	The third order backward difference $\nabla^{3} y_{3}$ can be expressed as: A. $y_{3}-3 y_{2}+3 y_{1}-y_{0}$ B. $y_{3}+3 y_{2}+3 y_{1}+y_{0}$ C. $y_{3}+3 y_{2}-3 y_{1}-y_{0}$ D. $-y_{3}-3 y_{2}+3 y_{1}+y_{0}$	3	CO 2
Q1 (xx)	The polynomial $f(x)=2 x^{3}-3 x^{2}+3 x-10$ can be written in factorial notation as: A. $f(x)=2[x]^{3}-3[x]^{2}-2[x]-10$ B. $f(x)=2[x]^{3}+3[x]^{2}+2[x]-10$ C. $f(x)=2[x]^{3}+2[x]^{2}+3[x]+10$ D. $f(x)=2[x]^{3}+3[x]^{2}-2[x]-10$	3	CO 2
Q1 (xxi)	The following values are used to find a polynomial of degree four using Gauss's Forward formula: Then the value of u will be: A. $u=x-3$ B. $u=x+3$ C. $u=x-1$ D. $u=x+1$	3	CO 2
Q1 (xxii)	The third divided difference with arguments $2,4,9,10$ of the function $f(x)=x^{3}-2 x$ will be: A. 1 B. 2 C. 3 D. 4	3	CO 2

Q1 (xxiii)	In LU decomposition , the equations $3 x+2 y+7 z=4 ; 2 x+3 y+z=5 ; 3 x+4 y+z=7$ can be represented as: $\left[\begin{array}{ccc}1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1\end{array}\right]\left[\begin{array}{ccc}u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33}\end{array}\right]=\left[\begin{array}{lll}3 & 2 & 7 \\ 2 & 3 & 1 \\ 3 & 4 & 1\end{array}\right]$ Then the value of l_{32} is: A. $-\frac{11}{3}$ B. $-\frac{8}{5}$ C. $\frac{5}{3}$ D. $\frac{6}{5}$	3	$\mathrm{CO4}$
Q1 (xxiv)	Match the following: A. Newton-Raphson 1. Integration B. Runge-kutta 2. Root finding C. Gauss-seidel 3. Ordinary Differential Equations D. Simpson's Rule 4. Solution of system of Linear Equations A. A2-B3-C4-D1 B. $\mathrm{A} 3-\mathrm{B} 2-\mathrm{C} 1-\mathrm{D} 4$ C. A1-B4-C2-D3 D. A4-B1-C2-D3	3	CO 3
Q1 (xxv)	In Newton-Cotes formula, if $f(x)$ is interpolated at equally spaced nodes by a polynomial of degree two then it represents A. Trapezoidal rule B. Simpson's one third rule C. Simpson's three eight rule D. None of these	3	CO 3

PART B

The link for PART B will be available from 10:00 AM on 6th July 2020 to 10:00 AM on 7th July 2020. Solve the problems in PART B on a plain A4 sheets and write your name, roll number and SAP ID on each page and then scan them into a single PDF file. Name the file as SAP ID _BRANCH NAME_ROLL NUMBER (for example: 500077624_CCVT_ R103219023.pdf) and upload that PDF file through the link provided over there. PART B solutions sent through WhatsApp or email will not be entertained.

Q2	Let $f(x)$ be a non-zero function such that $n^{\text {th }}$ derivative of it is equal to the function itself. Find the smallest positive root of the equation $x-\frac{1}{f(x)}=0$ by using method of False position, correct to three decimal places. OR	$\mathbf{8}$	CO1

	You are designing a spherical tank to hold water (See Fig below). The volume of liquid it can hold, can be computed by $V=\frac{\pi h^{2}[3 R-h]}{3}$. If the radius $\mathrm{R}=3 \mathrm{~m}$, what depth (h) must the tank be filled to so that it holds a volume (V) of $30 \mathrm{~m}^{3}$?							
Q3	Using Newton B following table: $\begin{array}{\|l\|} \hline \text { Year }(x) \\ \hline \begin{array}{l} \text { Population }(y) \\ \text { (in thousands) } \\ \hline \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { d formı } \\ \hline \frac{1891}{46} \end{gathered}$	mate the 1901 66	ation for 1911 81	$\begin{gathered} \text { e year } \\ \hline 1921 \\ \hline 93 \end{gathered}$	from the 1931 101	8	$\mathrm{CO2}$
Q4	Use Simpson's rule dividing the range into ten equal parts to show that$\int_{0}^{1} \frac{\ln \left(1+x^{2}\right)}{1+x^{2}} d x=0.173$						8	CO3
Q5 (A)	Solve equations $27 x+6 y-z=85 ; \quad x+y+54 z=110 ; \quad 6 x+15 y+2 z=72$ using Gauss-Seidel method. Use only four iterations.						8	CO4
Q5 (B)	Using Runge-Kutta method of fourth order, solve for y at $x=0.2$ from $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ given $y(0)=1$ (take $h=0.2$).						8	CO4

