Name: **Enrolment No:** UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, July 2020 **Course: Statistics, Numerical Methods & Algorithms** Semester: II Course Code: MATH 1025 Time: 03 hrs. Programme: BCA. (IOT+BFSI) Max. Marks: 100 Instructions: Attempt all questions from PART A (60 Marks) and PART B (40 Marks). All questions are compulsory. PART A Instructions: PART A contains 25 questions for a total of 60 marks. It contains 25 multiple-choice questions. You need to answer PART A within the slot from 10:00 AM to 1:00 PM on 6th July 2020. The due time for PART A is 1:00 PM on 6th July 2020. After the due time, the PART A will not be available. S. No. Marks CO If 625.483 is approximated to three significant digit, then the percentage error will be: A. 0.483% **CO1** Q1 (i) 2 B. 0.000772% C. 0.00772% D. 0.0772% If $\sqrt{29} = 5.385$ is correct to four significant digit, then the maximum error in this case will be: A. $\frac{1}{2} \times 10^{-3}$ B. $\frac{1}{2} \times 10^3$ 2 **CO1** Q1 (ii) C. $\frac{1}{2} \times 10^{-4}$ D. $\frac{1}{2} \times 10^4$ The interval of the root of the algebraic equation $x^3 - 4x - 9 = 0$ is: A. (0,1) Q1 (iii) 2 **CO1** B. (1,2) C. (2,3) D. (3,4)

Q1 (iv)	In fixed point iteration method, which of the following condition is true: A. $ \phi'(x) = 1$ B. $ \phi'(x) \to \infty$ C. $ \phi'(x) > 1$ D. $ \phi'(x) < 1$	2	CO1		
Q1 (v)	 Which of the following two methods are similar at initial level for finding the roots of algebraic and transcendental equations: A. Bisection Method and Regula-Falsi Method B. Fixed Point Iteration Method and Secant Method C. Newton Raphson Method and Regula-Falsi Method D. Secant Method and Regula-Falsi Method 				
Q1 (vi)	Secant method for finding the root of the algebraic and transcendental equations is: A. $x_{k+1} = x_k + \frac{(x_k - x_{k-1})}{f_k - f_{k-1}} f_k$, $k = 1, 2, 3,,$ B. $x_{k+1} = x_k - \frac{(x_k - x_{k-1})}{f_k - f_{k-1}} f_k$, $k = 1, 2, 3,,$ C. $x_{k+1} = x_k - \frac{(x_k + x_{k-1})}{f_k - f_{k-1}} f_k$, $k = 1, 2, 3,,$ D. $x_{k+1} = x_k + \frac{(x_k - x_{k-1})}{f_k + f_{k-1}} f_k$, $k = 1, 2, 3,,$	2	CO1		
Q1 (vii)	What is the approximate range of u in Gauss's forward formula? A. $-0.5 < u < 0$ B. $-0.25 < u < 0.25$ C. $0 < u < 0.5$ D. $0 < u < 1$		CO2		
Q1 (viii)	The relation between divided difference and ordinary difference is A. $\frac{\Delta y_0}{x_1} = \frac{y_0 - y_1}{x_0 - x_1} = \frac{\Delta y_0}{h}$ B. $\frac{\Delta y_0}{x_1} = \frac{y_0 - y_1}{x_0 - x_1} = \Delta y_0$ C. $\frac{\Delta y_0}{x_1} = \frac{y_0 - y_1}{x_0 - x_1} = h\Delta y_0$ D. None of these	2	CO2		

Q1 (ix)	 Shifting the origin in Gauss's backward formula one have A. Stirling Formula B. Bessel's formula C. Newton's formula D. None of these 	2	CO2
Q1 (x)	By Taylor's theorem, the series about a point $x = x_0$ is given by A. $y = y_0 + x_0(y')_0 + \frac{x_0^2}{2!}(y'')_0 + \frac{x_0^3}{3!}(y''')_0 + \dots \dots$ B. $y = y_0 + (x - x_0)(y')_0 + \frac{(x - x_0)^2}{2!}(y'')_0 + \frac{(x - x_0)^3}{3!}(y''')_0 + \dots \dots$ C. $y = y_0 + (x + x_0)(y')_0 + \frac{(x + x_0)^2}{2!}(y'')_0 + \frac{(x + x_0)^3}{3!}(y''')_0 + \dots \dots$ D. None of these	2	CO4
Q1 (xi)	In the Gauss elimination method for solving a system of linear algebraic equations, triangularzation leads to A. Diagonal matrix B. Lower triangular matrix C. Upper triangular matrix D. Singular matrix	2	CO4
Q1 (xii)	 The divided difference are : . A. Asymmetrical in all their arguments B. Symmetrical in all their arguments C. Inverse in all their arguments D. None of these 	2	CO2
Q1 (xiii)	In Euler's method: Given initial value problem $\frac{dy}{dx} = f(x, y)$, with $y(x_0) = y_0$, then the approximation is given by A. $y_{n+1} = y_n + hf(x_{n-1}, y_{n-1})$ where $h = \frac{x_n - x_0}{n}$ B. $y_{n+1} = y_n + hf(x_n, y_n)$ where $h = \frac{x_n - x_0}{n}$ C. $y_{n+1} = y_n$ D. None of these	2	CO4

Q1 (xiv)	Given y_0, y_1, y_2, y_3 corresponding to x_0, x_1, x_2, x_3 for function $y = f(x)$. Let $f(x)$ is a polynomial of degree three. Then by Simpson's three eight rule, the integral $J = \int_a^b f(x)dx$ is equivalent to A. $J = \frac{3}{8}h[y_0 + 3y_1 + 3y_2 + y_3]$ B. $J = \frac{1}{3}h[y_0 + 4y_1 + y_2]$ C. $J = \frac{3}{8}h[y_0 + 4y_1 + 3y_2 + 2y_3]$ D. None of these	2	CO3
Q1 (xv)	Given initial value problem $\frac{dy}{dx} = f(x, y)$ where $y(x_0) = y_0$. In Runge-Kutta Method A. $y_{n+1} = y_n + \frac{1}{6}(k_1 + k_2 + k_3 + k_4)$ B. $y_{n+1} = y_n + \frac{1}{6}(k_1 + 4k_2 + 2k_3 + k_4)$ C. $y_{n+1} = y_n + \frac{3}{8}(k_1 + k_2 + k_3 + k_4)$ D. $y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$	2	CO4
Q1 (xvi)	Using fixed point iteration method $x_{n+1} = \phi(x_n)$, the equation $x^3 + x^2 - 1 = 0$ has been reduced into $x = \frac{1}{\sqrt{1+x}}$, then $\phi'(x)$ will be: A. $-\frac{1}{2(1+x)^{3/2}}$ B. $\frac{1}{2(1+x)^{3/2}}$ C. $-\frac{1}{(1+x)^{3/2}}$ D. $\frac{1}{(1+x)^{3/2}}$	3	CO1
Q1 (xvii)	Which of the following expression is true for applying Newton-Raphson method to obtain the approximate value of $(17)^{\frac{1}{3}}$: A. $x_{k+1} = \frac{2x_k^2 + 17}{3x_k^2}$, $k = 0, 1, 2 \dots \dots$ B. $x_{k+1} = \frac{2x_k^3 - 17}{3x_k^2}$, $k = 0, 1, 2 \dots \dots$ C. $x_{k+1} = \frac{x_k^3 - 17}{3x_k^2}$, $k = 0, 1, 2 \dots \dots$ D. $x_{k+1} = \frac{x_k^3 + 17}{3x_k^2}$, $k = 0, 1, 2 \dots \dots$	3	CO1

Q1 (xviii)	Let $f(x) = a^2 x^n + bx^{n-1} + cx^{n-2} + \dots + kx + l$ and $\Delta f(x) = f(x+h) - f(x)$, then $\Delta^n f(x)$ will be: A. $a \ n! \ h^n$ B. $a^2 \ n! \ h^n$ C. $n! \ h^n$ D. $a \ n!$	3	CO2
Q1 (xix)	The third order backward difference $\nabla^3 y_3$ can be expressed as: A. $y_3 - 3y_2 + 3y_1 - y_0$ B. $y_3 + 3y_2 + 3y_1 + y_0$ C. $y_3 + 3y_2 - 3y_1 - y_0$ D. $-y_3 - 3y_2 + 3y_1 + y_0$	3	CO2
Q1 (xx)	The polynomial $f(x) = 2x^3 - 3x^2 + 3x - 10$ can be written in factorial notation as: A. $f(x) = 2[x]^3 - 3[x]^2 - 2[x] - 10$ B. $f(x) = 2[x]^3 + 3[x]^2 + 2[x] - 10$ C. $f(x) = 2[x]^3 + 2[x]^2 + 3[x] + 10$ D. $f(x) = 2[x]^3 + 3[x]^2 - 2[x] - 10$	3	CO2
Q1 (xxi)	The following values are used to find a polynomial of degree four using Gauss's Forward formula: x: 1 2 3 4 5 $f(x)$: 1 -1 1 -1 1 Then the value of u will be: A. $u = x - 3$ B. $u = x + 3$ C. $u = x - 1$ D. $u = x + 1$	3	CO2
Q1 (xxii)	The third divided difference with arguments 2, 4, 9, 10 of the function $f(x) = x^3 - 2x$ will be: A. 1 B. 2 C. 3 D. 4	3	CO2

Q1 (xxiii)	In LU decomposition, the equations $3x + 2y + 7z = 4$; $2x + 3y + z = 5$; $3x + 4y + z = 7$ can be represented as: $\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} = \begin{bmatrix} 3 & 2 & 7 \\ 2 & 3 & 1 \\ 3 & 4 & 1 \end{bmatrix}$ Then the value of l_{32} is: A. $-\frac{11}{3}$ B. $-\frac{8}{5}$ C. $\frac{5}{3}$ D. $\frac{6}{5}$	3	CO4			
Q1 (xxiv)	Match the following:A. Newton-Raphson1. IntegrationB. Runge-kutta2. Root findingC. Gauss-seidel3. Ordinary Differential EquationsD. Simpson's Rule4. Solution of system of Linear EquationsA. A2-B3-C4-D1B. A3-B2-C1-D4C. A1-B4-C2-D3D. A4-B1-C2-D3	3	CO3			
Q1 (xxv)	 In Newton-Cotes formula, if f (x) is interpolated at equally spaced nodes by a polynomial of degree two then it represents A. Trapezoidal rule B. Simpson's one third rule C. Simpson's three eight rule D. None of these 	3	CO3			
PART B The link for PART B will be available from 10:00 AM on 6th July 2020 to 10:00 AM on 7th July 2020. Solve the problems in PART B on a plain A4 sheets and write your name, roll number and SAP ID on each page and then scan them into a single PDF file. Name the file as SAP ID _BRANCH NAME_ROLL NUMBER (for example: 500077624_CCVT_ R103219023.pdf) and upload that PDF file through the link provided over there. PART B solutions sent through WhatsApp or email will not be entertained.						
Q2	Let $f(x)$ be a non-zero function such that n^{th} derivative of it is equal to the function itself. Find the smallest positive root of the equation $x - \frac{1}{f(x)} = 0$ by using method of	8	CO1			

02	itself. Find the smallest positive root of the equation $x - \frac{1}{f(x)} = 0$ by using method of	8	
C	False position, correct to three decimal places.		
	OR		l

	You are designing a spherical tank to hold water (See Fig below). The volume of liquid it can hold, can be computed by $V = \frac{\pi h^2 [3R-h]}{3}$. If the radius R=3 m, what depth (h) must the tank be filled to so that it holds a volume (V) of 30 m ³ ?							
Q3	Using Newton Backwardfollowing table:Year (x) Population (y) (in thousands)	formula, es 891 46	stimate the pop 1901 66	1911 81	the year 19 1921 93	925 from the 1931 101	8	CO2
Q4	Use Simpson's rule dividing the range into ten equal parts to show that $\int_{0}^{1} \frac{\ln(1+x^{2})}{1+x^{2}} dx = 0.173$						8	CO3
Q5 (A)	Solve equations $27x + 6y - z = 85$; $x + y + 54z = 110$; $6x + 15y + 2z = 72$ using Gauss-Seidel method. Use only four iterations.						8	CO4
Q5 (B)		Using Runge-Kutta method of fourth order, solve for y at $x = 0.2$ from $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ given $y(0) = 1$ (take $h = 0.2$).						CO4