Name:	UPES
Enrolment No:	UNIVERSITY WITH A PURPOSE
UNIVERSITY OF PETI	 ROLEUM AND ENERGY STUDIES
	er Examination, July2020
Course: Advanced Data Structures	Semester: II
Program: B.Tech. CS DevOps Course Code: CSEG 1004	Time 02 hrs. Max. Marks: 100
Mode of exam: Online through blackboard	
Question 1	
1. Write down post order traversal (U	se comma separation) of binary tree, given
Preorder traversal sequence: G,B,Q),A,C,K,F,P,D,E,R,H
In order traversal sequence: Q,B,I	K,C,F,A,G,P,E,D,H,R
4 points	
Question 2	
1. Balanced m-way search tree is calle	ed as B-tree.
° True	
° False	
1 points	
Question 3	
1. Select all correct answers.	
A non empty B -tree of order m, is	an m-way search tree in which

all leaf nodes are in the same level

The root has at least two child nodes and at most m child nodes.

	the number of keys in each internal node is one less than the number of child nodes and these keys partition the keys in the subtrees of the node in a manner similar to that of m-way search trees
	the internal nodes except the root have at least ceil(m/2) child nodes and at most m child nodes
4 points	
Question	4
1. W	hat is simple uniform hashing?
C	Every element has equal probability of hashing into any of the slots
C	A weighted probabilistic method is used to hash elements into the slots
C	Elements has Random probability of hashing into array slots
C	Elements are hashed based on priority
1 points	
Question	5
	the case in which a key other than the desired one is kept at the identified location is lled?
C	Chaining
C	Open addressing
C	Collision
C	Hashing
1 points	
Question	6

1. What maximum difference in heights between the leafs of a AVL tree is possible?

	0	atmost 1
	0	log(n) where n is the number of nodes
	0	0 or 1
	0	n where n is the number of nodes
1 points	3	
Questio	n 7	
1.	Whic	h of the following is the hashing function for separate chaining
	0	$H(x)=x \mod (table size * 2)$
	0	H(x)=hash(x)+i2 mod table size
	0	$H(x)=x \mod table size$
	0	H(x)=(hash(x)+f(i)) mod table size
3 points	3	
Questio	n 8	
1.	Whic	h of the following is a disadvantage of using separate chaining using linked lists
	0	It uses array
	0	It does not resolve collision
	0	It requires many pointers
	0	It requires linked lists
1 points	5	
Questio	n 9	

1. Which of the following technique stores data in a separate entity in case of a collision

	0	Double hashing
	0	Linear probing
	0	Open addressing
	0	Chaining using doubly linked list
1 point	S	
Questi	on 10	
1.	What	is the advantage of using a doubly linked list for chaining over singly linked list?
	0	it takes less memory
	0	it is easy to implement
	0	it makes the process of insertion and deletion faster
	0	it causes less collisions
1 point	s	
Questi	on 11	
1.	What	is the time complexity of insert function in a hash table using a binary tree
	0	O(1)
	0	O(n)
	0	O(log n)
	0	O(n log n)
1 point	s	
Questi	on 12	

1. What is the advantage of a hash table over BST?

	0	"hash table has a better average time complexity for performing insert, delete and search operations"
	0	hash table requires less space
	0	range query is easy with hash table
	0	easier to implement
1 point	s	
Questio	on 13	
1.	What	is the time complexity of delete function in the hash table using list head
	0	O(1)
	0	O(n)
	0	$O(\log n)$
	0	O(n log n)
1 point	S	
Questic	on 14	
1.	How	many probes are required on average for insertion and successful search?
	0	4 and 10
	0	2 and 6
	0	2.5 and 1.5
	0	3.5 and 1.5
1 points		

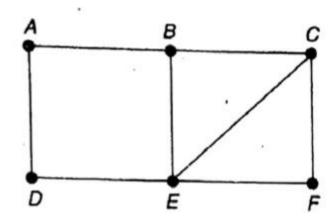
1. Which of the following is the correct function definition for linear probing?

	0	F(i)=i
	0	F(i)=i+1
	0	F(i)=i2
	0	F(i)=1
1 point	ts	
Questi	on 16	
1.	Wha	t is the hash function used in linear probing?
	0	H(x)= key mod table size
	0	H(x)= (key + F(i2)) mod table size
	0	$H(x)=X \bmod 17$
	0	H(x)= (key+ F(i)) mod table size
1 point	ts	
Questi	on 17	
1.	"In q table	quadratic probing, if the table size is prime, a new element cannot be inserted if the is half full."
	0 -	Гruе
	0 1	False
1 point	ts	
Questi	on 18	
1.	Whic	ch of the following techniques offer better cache performance?
	0	Quadratic probing

	\circ	Linear probing
	0	Double hashing
	0	Rehashing
1 point	:S	
Questi	on 19	
1.	Whic	ch scheme uses a randomization approach?
	0	hashing by multiplication
	0	hashing by division
	0	universal hashing
	0	open addressing
1 point	S	
Questi	on 20	
1.		uming value of every weight to be greater than 10, in which of the following cases hortest path of a directed weighted graph from 2 vertices u and v will never change?
	0	multiply all values by 10
	0	add all values by 10
	0	in both the cases of multiplying and adding by 10
	0	subtract 10 from all the values
1 point	S	
Questi	on 21	

1. What is the maximum possible number of edges in a directed graph with no self loops having 8 vertices?

- 28
- O 64
- O 56
- O 256

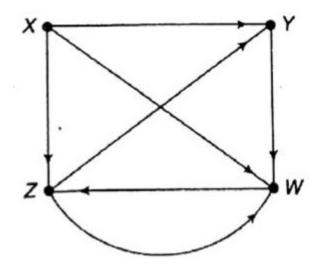

Question 22

- 1. "With V(greater than 1) vertices, how many edges at most can a Directed Acyclic Graph possess?"
 - (V-1)C2
 - (V+1)C2
 - (V*(V-1))/2
 - (V*(V+1))/2

1 points

Question 23

1. Consider the connected graph:



Calculate the distance between A and F

- 0
- 3
- 0 4
- No path from A to F

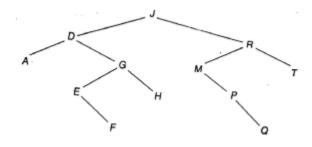
Question 24

1. Consider the given directed graph

calculate in -degree and out degree for node Y.

- 0 1, 2
- © 2,1
- 0,2
- 0 1,0

2 points


Question 25

- 1. The min number of edges required to create a cyclid graph of n vertices is
 - \bigcirc n
 - 2n
 - O n-1
 - n+1

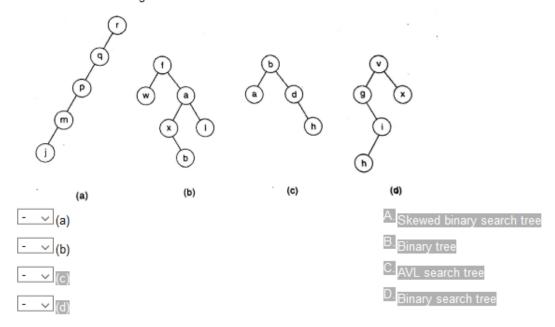
1 points

Question 26

1. Consider the binary search tree T:

- 1. Perform following operations in it
 - 1. delete node M
 - 2. then delete node D

what will be the in order traversal of updated binary search tree

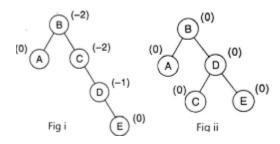

- A,E,F,G,H,J,P,Q,R,T
- J,E,R,A,G,P,T,F,H,Q
- A,E,F,H,G,P,Q,R,T,J
- A,E,F,G,H,P,Q,R,T,J

3 points

Question 27

1. Do the correct matching

Do the correct matching



Question 28

1. Insert following letter into AVL search tree

A,B,C,D,E

The output will be:

1.

fig i fig ii

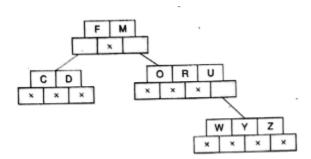
both fig i and ii are incorrect

2 points

Question 29

1. Consider for binary tree:

preorder: A,B,C,D,E,F,G,H,J,K,L,M,P,Q,N


Inorder: C,D,E,B,G,H,F,K,L,P,Q,M,N,J,A

Write post order sequence

5 points

Question 30

1. In the following 4-way search tree, trace the tree after deletion of i. U and then ii. M . What will be the last leaf node.

1.

C

D

 \circ YZ

 \circ Z

WYZ

5 points

Question 31

1. . can be invoked like a normal function without the help of any object.

	0	constant member function
	0	private member function
	0	static member function
	0	friend function
1 points	3	
Questio	n 32	
1.	allo	ows memory dumping on a bit by bit basis from one object to another
	0	Shallow Copy
	0	Deep Copy
	0	Inheritance
	0	Copy constructor
1 points	5	
Questio	n 33	
	" allo name	ws us to group a set of global classes, objects and/or functions under a specific."
	0	Storage Classes
	0	Global variable
	0	Namespace
	0	None of these
1 points	S	

Question 34

1. "In nested try blocks, there is no need to specify catch handler for innecatch handler is sufficient for the program."	. "In nested try blocks, there is no need to specify catch handler for inner try block. Outer catch handler is sufficient for the program."	
^O True		
[©] False		
1 points		
Question 35		
1. "Insert the following data in an AVL tree and mention which rotation to balance the tree: 13,16,10,6,52,3 12"	will be performed	
C Left Rotation		
 Right Rotation 		
C Left Right Rotation		
 Right Left Rotation 		
1 points		
Question 36		
1. "To delete a dynamically allocated array named a, the correct statement	ent is"	
o delete a;		
o delete []a;		
o delete a[0];		
o delete [0]a;		
1 points		

1.	"Wh	ile declaring a static member in class, which statement is true?"
	0	a static member can be a public member
	0	a static member can be a private member
	0	a static member can be a protected member
	0	All of these
1 poin	ts	
Questi	on 38	
1.		ile using an object as a function argument, a copy of the entire object is passed to the ion in method."
	0	pass-by-value
	0	pass-by-reference
	0	pass-by-variable
	0	pass-by-function
1 poin	ts	
Questi	on 39	
1.	A file	e in C++ can be opened using:
	0	constructor of the appropriate class
	0	open() function
	0	Both of these
	0	None of these

Question 40

1.

State whether the following statements are True or False about the characteristics of static data members.

- i) Only one copy of a static member is created for the entire class and is shared by all the objects of that class, no matter how many objects are created.
- ii) The static member variable is visible only within the class, but its lifetime is the entire program.

 \circ

i-True, ii-True

 \bigcirc

i-False, ii-True

 \bigcirc

i-True, ii-False

i-True, ii-True

2 points

```
1.
   What Will be the output of the following program?
   #include <iostream>
   using namespace std;
   class Test
   { public:
     int x;
      mutable int y;
      Test()
        \{ x = 4; y = 10; \}
   };
   int main()
   { const Test t1;
     t1.x = 8;
     cout << t1.x;
```

```
t1.y = 20;
         cout << t1.y;
       return 0; }
        \circ
            x=4, y=10
        \circ
            x=8, y=20
            x=4, y=20
        Ö
            compilation error
2 points
Question 42
       what is the output of following code?
       #include <iostream>
       using namespace std;
```

1.

static int sum=50;

```
int main()
        for (int i = 0; i < 5; ++i)
          \{ sum = sum + i; \}
        cout << sum << endl;</pre>
       return 0; }
        O 50
            10
            60
            Undefined value
2 points
Question 43
   1.
       What is the output of the following code?
       #include <iostream>
       using namespace std;
       class Demo
       { public:
         int *ptr;
         int getLength( void );
```

```
Demo(int len);
 Demo(const Demo &obj);
 ~Demo(); };
 Demo::Demo(int len)
  { cout << "Normal constructor allocating ptr" << endl;
   ptr = new int;
   *ptr = len;
Demo::Demo(const Demo &obj)
 { cout << "Copy constructor allocating ptr." << endl;
  ptr = new int;
 *ptr = *obj.ptr;
 }
Demo::~Demo(void)
 {cout << "Freeing memory!" << endl;
 delete ptr;
int Demo::getLength( void )
{ return *ptr; }
void show(Demo obj)
 { cout << "Length of Demo : " << obj.getLength() <<endl; }
int main()
{ Demo demo1(10);
```

```
Demo demo2 = demo1;
show(demo1);
show(demo2);
return 0; }
```

 \circ

Normal constructor allocating ptr

Copy constructor allocating ptr.

Length of line: 10

Freeing memory!

Freeing memory!

 \circ

Normal constructor allocating ptr

Copy constructor allocating ptr.

Length of line: 10

Freeing memory!

 \circ

 \circ

Normal constructor allocating ptr

Copy constructor allocating ptr.

Length of line: 10

```
Normal constructor
            allocating ptr
            Copy constructor
            allocating ptr.
            Copy constructor
            allocating ptr.
            Length of line: 10
            Freeing memory!
            Copy constructor
            allocating ptr.
            Length of line: 10
            Freeing memory!
            Freeing memory!
            Freeing memory!
Question 44
       What is the output of the following code?
       #include<iostream>
       using namespace std;
       \{ \text{ int } a = 6; 
         int &n = a;
         n=a++;
         a=n++;
        cout<<endl;
```

1.

```
}
        \circ
             6,8
        \circ
             7,6
        \circ
             6,7
             None of these
2 points
Question 45
       What is the output of the following code?
       #include<iostream>
       using namespace std;
       int main()
       { int a=9,x;
        x = ++a * --a;
```

cout<<++a<< " " << a++ << " " << x <<endl;

1.

```
}
            10, 8, 100
       \circ
            11, 10, 90
       Ö
            11, 9, 81
            11, 11, 100
2 points
Question 46
   1. #include<iostream>
       using namespace std;
       int main()
       {
       char s1[]="HELLO STUDENTS" , s2[]="HELLO STUDETNS" ;
       int Z=(s1==s2);
```

if(Z)

cout<<Z;

```
else
       cout<<Z;
       }
            0
       \circ
            1
            Error
            None
2 points
Question 47
   1.
       what is the output of following code?
       #include<iostream>
       using namespace std;
       int hello(int a, int b=2)
       {int r;
       r = a*b;
       return r;
       }
       int main()
       { Cout<<hello(6)<<","<<hello(2,3);
       }
```

```
6,1212,
```

6 © 2,3

6,3

2 points

Question 48

1.

```
What will be the output of the following program?
#include<iostream>
using namespace std;
class student
{ public :
  int marks;
  void disp()
    { cout<<"its base class";}
};
class topper:public student
{public:
 void disp()
  { cout<<"Its derived class"; }
};
int main()
```

```
{ student s;
          topper t;
          s.disp();
          t.disp();
        }
              Its base classIts base
              class
         \circ
              Its base classIts derived
              class
         \circ
              Its derived classIts
              base class
         \circ
              Its derived classIts
              derived class
3 points
```

1.

```
What will be the output of the following program?
#include<iostream>
using namespace std;
int main()
{
 try
  {throw 5;}
catch (...)
{cout << "Default Exception";}
catch (int arg)
{cout << "Int Exception";}
return 0;}
\circ
     Default Exception
\circ
     Int Exception
\circ
     Compiler Error
\circ
```

None of the above

2 points

```
1.
   What will be the output of the following program?
   #include <iostream>
   using namespace std;
   class base
   {
    public:
     virtual void show()=0;
     void display()
       {cout<<"Base class"<<endl;}
   };
   class derived:public base
   {public:
     void display()
       {cout << "Derived class" << endl;}
   };
   int main()
    { derived obj;
```

```
obj.display();
           return 0;
        }
        \circ
              Derived class
        \circ
              Base class
         \circ
              Compile time error
        \circ
              None of these
3 points
Question 51
```

1. "Which of the following statement(s) is/are true about operator overloading?

	(A) I	n Unary Operator Overloading, one argument is passed to the operator function.
	(B) I	Binary operator overloading two arguments are passed to the operator function."
	0	Only (A)
	0	Only (B)
	0	Both (A) and (B)
	0	None of these
1 point	ts	
Questi	on 52	
1.	Whic	h among the following is the correct syntax for multiple inheritance?
	0	"class student
		{public:
		int marks;
		}s;
		class stream
		<pre>{int total;};</pre>
	0	<pre>class topper:public student, public stream{ };" class student</pre>

{int marks;};

class student

{int marks;};

 \circ

class stream{ };

class topper: public student{ };

class stream:public student{ };

0	<pre>class student{ };</pre>
	<pre>class stream{ };</pre>
	<pre>class topper{ };</pre>

Question 53

- 1. Which of the following statement(s) is/are true about templates?
 - (A) Template is a feature of C++ that allows us to write one code for different data types.
 - (B) We can write one function that can be used for all data types including user defined types.
 - (C) We can create one class or structure that can be used for all data types including user defined types.
 - (D) Template is an example of compile time polymorphism.
 - (A) and (D)
 - O "(A), (B) and (D)"
 - (a), (B), and (C)"
 - All of these

1 points

- 1. Encapsulation is ..
 - The process of binding together the data and functions in a class.
 - The process of hiding the internal implementations and displaying only the required details.
 - The process of creating and initializing the default constructor automatically
 - The process of using the private and protected members outside the class.

Qu

Questi	on 55			
1. Which among the following best defines static variables members?				
	0	Data which is allocated for each object separately		
	0	Data which is common to all the objects of a class		
	0	Data which is common to all the classes		
	0	Data which is common to a specific method		
1 point	ts			
Question 56				
1. Which among the following best describes the Inheritance?				
	0	Copying the code already written		
	0	Using the code already written once		
	0	Using already defined functions in programming language		
	0	Using the data and functions into derived segment		
1 point	ts			
Questi	on 57			
1.	Whic	ch among the following is wrong syntax related to static data members?		
	0	className : dataType -> memberName;		
	0	className :: staticDataMember;		
	0	dataType className :: memberName =value;		
	0	static dataType memberName;		

1. Which of the following is not a file mode in C++?				
	\circ	ios::ate		
	\circ	ios::octal		
	0	ios::binary		
	0	ios::nocreate		
1 points				
Question 59				
1.	which	n statement is true in case of constructor?		
	0	constructor must be declared in public part otherwise result will be error.		
	0	Constructor cannot be virtual.		
	0	"They do not have return types, not even void"		
	0	All of these		
1 points				
Question 60				
1.				

What is the output of the following program?

```
#include<iostream>
using namespace std;
int main()

{
  char s[] = "Fine";
  *s = 'N';
  cout<<s><endl;
}
  Fine
  Nine
  Runtime Error
  Compile time</pre>
```

Error

3 points