UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, July 2020

Course Code \& Name: CSEG1004 - Advanced Data Structures
Semester: II
Programme: B.Tech. CSE (BIG DATA)

This Test has 23 attempts. For information on editing questions, click More Help below.

Test Canvas: END_TERM_EXAM_ADS

The Test Canvas lets you add, edit and reorder questions, as well as review a test. More Help

		Question Settings

You can edit, delete or change the point values of test questions on this page. If necessary, test attempts will be regraded after you submit your changes.

Description | All questions are compulsory |
| :--- |
| No Negative Marking |
| No. of Questions : 60 |
| Maximum Time 2 hours |
| i. |
| ii. Do not access any other website except learn.upes.ac.in |
| iii. \quad During exam students will not be allowed to leave the room. |
| iv. \quad Don't click on submit button during exam if not finished. |

Instructions
Total Questions 60
Total Points 100
Number of Attempts 23

Select: All None Select by Type: - Question Type -

Delete and Regrade Points Update and Regrade \quad Hide Question Details

Question	CO1:What is the output of the following code char symbol[3]=\{' a ','b','c'\}; for (int index $=0$; index <3; index++) cout \ll symbol [index];
Answer	ab c
"abc"	
abc	
'abc'	

2. Multiple Choice: CO1:If the variable count exceeds 100...

Points: 2

Question CO1:If the variable count exceeds 100, a single statement that prints "Too many" is

Answer
if (count<100) cout << "Too many";
if (count>100) cout >> "Too many";
if (count>100) cout << "Too many";

None
3. Multiple Choice: CO1:If an array is declared as int a[...

Question CO1:If an array is declared as int $a[4]=\{3,0,1,2\}$, then values assigned to $a[0]$ \& a[4] will be \qquad

Answer
3,2

0,2

4. Multiple Choice: CO1:A function call mechanism that pa...

```
Question CO1:A function call mechanism that passes arguments to a function by passing a copy of the valuesof the arguments is
``` \(\qquad\)
```

Answer
call by copy
call by value
call by reference
call by value result

```

\section*{5. Multiple Choice: CO1:The keyword friend does not} appea...

Question CO1:The keyword friend does not appear in
Answer the class allowing access to another class.
the class desiring access to another class
the private section of a class
the private section of a class

\section*{6. Multiple Choice: CO1:How many constructors can a class...}
\begin{tabular}{|cc|}
\hline Question & CO1:How many constructors can a class have? \\
Answer & 0 \\
2 \\
un-limited \\
\hline
\end{tabular}

\section*{7. Multiple Choice: CO1:What would be the output of the f...}
```

Question CO1:What would be the output of the following?
\#include<iostream.h>
void main()
{
char *ptr="abcd";
char ch;
ch = ++*ptr++;
cout<<ch;
}
Answer
a
b
both
error

```
8. Multiple Choice: CO1:Member functions, when defined wi...
\(\square\)

\section*{9. Multiple Choice: CO1:What is wrong with the following ...}
\begin{tabular}{|c|c|}
\hline Question & \begin{tabular}{l}
CO1:What is wrong with the following program int main() \{ const double PI; \\
int n ;
\[
\text { PI = } 3.14159265358979 ;
\]
n = 22; \\
\}
\end{tabular} \\
\hline \multirow[t]{4}{*}{Answer} & double can not be followed const \\
\hline & const is un identified \\
\hline & - PI must be initialized at the time of declaration \\
\hline & error \\
\hline
\end{tabular}

\section*{10. Multiple Choice: CO1:How many times is the copy constr...}
```

Question CO1:How many times is the copy constructor called in the following code?
class copy_const{ };
copy_const f(copy_const u)
{
copy_const v(u);
copy_const w = v;
return w;
}
int main ()
{
copy_const x;
copy_const y = f(f (x));
}
Answer 2
1
copy constructor is not called
3

```

12. Multiple Choice: CO2:If a class \(C\) is derived from clas...
Question \begin{tabular}{l}
CO2:If a class \(C\) is derived from class \(B\), which is derived from class \(A\), all through \\
publicinheritance, then a class \(C\) member function can access
\end{tabular}
protected and public data only in \(C\) and \(B\)
protected and public data only in \(C\)
private data in A and B
protected data in A and B
\begin{tabular}{|l|}
\hline Answer \\
has complete function body \\
will never be called. \\
will be called only to delete an object. \\
is defined only in derived class \\
\hline
\end{tabular}

\section*{14. Multiple Choice: "CO2:If we create a file by ifstream...}
Question "CO2:If we create a file by ifstream , then the default mode of the file is__

Answer ios :: out
ios :: in
ios :: app
ios :: binary

\section*{15. Multiple Choice: CO2:The operator \(\ll\) when overloaded} i...
\begin{tabular}{ll}
\hline Question & CO2:The operator \(\ll\) when overloaded in a class \\
Answer & must be a member function \\
must be a non member function \\
Both \\
& None
\end{tabular}

\section*{16. Multiple Choice: CO2:In which case is it mandatory to ...}

Points: 2
Question \(\quad\) CO2:In which case is it mandatory to provide a destructor in a class?
Answer \(\quad\) Almost in every class
Class for which two or more than two objects will be created

Class for which copy constructor is defined

\section*{17. Multiple Choice: CO2:Which of the statements is true i...}
\begin{tabular}{ll}
Question & \begin{tabular}{l}
CO2:Which of the statements is true in a protected derivation of a derived class \\
from a base class?
\end{tabular} \\
Answer & \begin{tabular}{l}
Public members of the base class become protected members of the derived \\
class
\end{tabular}
\end{tabular}

Protected derivation does not affect private and protected members of the derivedclass.

Protected members of the base class become public members of the derived class

Private members of the base class become protected members of the derived class
18. Multiple Choice: CO2:A pointer to the base class can h...
\begin{tabular}{|l}
\begin{tabular}{l}
Question \\
Answer \\
only base class object \\
base class object as well as derived class object
\end{tabular} \\
\begin{tabular}{l}
only derived class object
\end{tabular} \\
None
\end{tabular}

\section*{19. Multiple Choice: CO2:Which of the following is the val...}

\footnotetext{
Question
CO2:Which of the following is the valid class declaration header for the derived class d with baseclasses b1 and b2?
}
```

Answer class d : public b1, public b2
class d : class b1, class b2
class d : public b1, b2

```
ALL
20. Multiple Choice: CO2:If there is a pointer \(p\) to object...

Points: 1
\begin{tabular}{|c|c|}
\hline Question & CO2:If there is a pointer \(p\) to object of a base class and it contains the address of an object of aderived class and both classes contain a virtual member function \(a b c()\), then the statementp->abc(); will cause the version of \(a b c()\) in the
\(\qquad\) class to be executed. \\
\hline \multirow[t]{4}{*}{Answer} & Base Class \\
\hline & - Derived class \\
\hline & both \\
\hline & None \\
\hline
\end{tabular}
21. Multiple Choice: CO2:The statement f1.write((char*)\&a...
\begin{tabular}{ll}
Question & CO2:The statement \\
& f1.write((char*)\&obj1,sizeof(obj1));
\end{tabular}

Answer Writes the address of obj1 to f1.

Writes the data in obj1 to f1
writes the member function of obj1 to f1.

Writes the member function and the data of obj1 to f1

\section*{22. Multiple Choice: CO2:Consider the following class defi...}
Question \begin{tabular}{l}
CO2:Consider the following class definitions: \\
class a \\
\(\{\) \\
\}; \\
class b: protected a \\
\(\{\) \\
\};
\end{tabular}
What happens when we try to compile this class?
Will not compile because class body of \(a\) is not defined
Will not compile because class body of \(b\) is not defined
Will not compile because class a is not public inherited
Will compile successfully.

Points: 1

\section*{23. Multiple Choice: CO2:To access the public function fba...}
Question \begin{tabular}{l}
CO2:To access the public function fbase() in the base class, a statement in a \\
derived class functionfder() uses the statement.fbase(); \\
Answer \\
base.base(); \\
base::fbase(); \\
fbase(); \\
fder()
\end{tabular}
24. Multiple Choice: CO2:Which of the following statement ...
Question CO2:Which of the following statement is valid?
Answer We can create new C++ operators
We can change the precedence of the C++ operators
We can change the associativity of the C++ operators
We can not change operator templates.
25. Multiple Choice: "CO3:the postorder traversal of a bin...
\begin{tabular}{l}
Question \begin{tabular}{l}
"CO3:the postorder traversal of a binary tree is \(8,9,6,7,4,5,2,3,1\). the inorder \\
traversal of the same tree is \(8,6,9,4,7,2,5,1,3\). the height of the is length of the \\
lomgest path from the root to ant leaf .the height of the binary tree is"
\end{tabular} \\
\hline Answer \\
1
\end{tabular}

\section*{26. Multiple Choice: CO3:Let T be a tree with 10 vertices....}

Points: 2
Question CO3:Let T be a tree with 10 vertices.the sum of the degrees of all the vertices in T
Answer
\[\)\begin{tabular}{l}
18 \\
20 \\
21
\end{tabular}
\]

\section*{27. Multiple Choice: "CO3:the nummber of ways in which} the...
Question "CO3:the nummber of ways in which the numbers \(1,2,3,4,5,6,7\) can be inserted in
an empty BST,such that the resulting tree has height 6 is"

Answer 64

65
28. Multiple Choice: CO3:the height of the tree is the len...

Question CO3:the height of the tree is the length of the longest root to leaf path in it.the maximum and minimum number of nodes in a binary tree of height 5 are

Answer
32 and 6

64 and 5

63 and 6

31 and 5
29. Multiple Choice: CO3:A binary tree T has 20 leaves.the...
Question CO3:A binary tree \(T\) has 20 leaves.the number of nodes in \(T\) having two childrens is

Answer
30. Multiple Choice: CO3:which one of the following hash f...

Question CO3:which one of the following hash functions on integers willdistribute keys most uniformly over 10 buckets numbered 0 to 9 for k ranging from 0 to 2020?
Answer \(\quad h(k)=i^{\wedge} 2 \bmod 10\)
\(h(k)=i^{\wedge} 3 \bmod 10\)
\(h(k)=\left(11^{*} i^{\wedge} 2\right) \bmod 10\)
\(h(k)=\left(12^{*} i\right) \bmod 10\)

\section*{31. Multiple Choice: "CO3:Given a hash table T with 25 slo...}
Question "CO3:Given a hash table T with 25 slots that stores 2000 elements,the load factor a
Answer 50

80

60

70
32. Multiple Choice: CO3:consider a binary tree T that has...

Question CO :consider a binary tree \(T\) that has 200 leaf nodes .then the number of nodes in T that have exactly two childrens are

Answer
196

197

199

198
Question \begin{tabular}{l}
CO3:consider a rooted \(n\) node binary tree represented using pointers.the best \\
upper bound on the time required to dertine the number of subtrees having exactly \\
4 nodes is \(O\left(n^{\wedge}\right.\) alog \(\left.{ }^{\wedge} b n\right)\).then the value of \(a+10 b\) is
\end{tabular} Answer
2
34. Multiple Choice: "CO3:consider a hash table with 9 slo...
\begin{tabular}{ll}
Question & \begin{tabular}{l}
"CO3:consider a hash table with 9 slots.the hash function is \(h(k)=k\) mod 9. the \\
collisions are resolved by chaining .the following 9 keys are inserted in the \\
order:5,28,19,15,20,33,12,17,10.the maximum, minimum, and average chain lenghts \\
in hash table are"
\end{tabular} \\
Answer & "3,0 and 1" \\
"3,3 and 3" \\
"4,0 and 1" \\
"3,0 and 2"
\end{tabular}

\section*{35. Multiple Choice: CO3:in a binary tree with n nodes eve...}
Question \(\quad\)\begin{tabular}{l}
CO3:in a binary tree with \(n\) nodes every node has an odd number of \\
descendants.every node is considered to be its own descendant.what is the number \\
of nodes in the tree that have exactly one child
\end{tabular}
Answer 0

1
\((n-1) / 2\)
(\(n-1\))

\section*{Question CO3:the height of a binary tree is the maximum number of edges in any root to leaf} path.the maximum number of nodes in a binary tree of height \(h\) is

\section*{Answer \(\quad 2^{\wedge} \mathrm{h}-1\)}
\[
2^{\wedge}(h-1)-1
\]
\(2^{\wedge}(h+1)+1\)
\(2^{\wedge}(h+1)-1\)

Points: 2
37. Multiple Choice: CO4:consider the following statements...

Question CO4:consider the following statements I. the smallest element in a max-heap is always at a leaf node II. The second largest element in a max-heap is always a child of the root node III. A max-heap can be constructed from a BST inO(n) time IV. A BST can be constructed from a max-heap inO(n) time

Answer
"I,II and III"
"II,III and IV"
"I,III and IV"
"I,II and IV"

\section*{38. Multiple Choice: CO4:Let T be a full binary tree with ...}
Question \begin{tabular}{l}
CO4:Let T be a full binary tree with 8 leaves. Suppose two leaves \(a\) and \(b\) of \(T\) are \\
chosen uniformly and independently at random. The expected value of the distance \\
between \(a\) and \(b\) in \(T\) (i.e. the number of edges in the unique path between \(a\) and \(b\)) \\
is
\end{tabular}

Answer 5.54
1.34
(C) 4.25
3.82
39. Multiple Choice: "CO4:the number of possible minheaps...
\begin{tabular}{ll}
Question & "CO4:the number of possible min-heaps containing each value from \(\{1,2,3,4,5,6,7\}\) \\
exactly once is"
\end{tabular}

Answer

80

81

82

83
40. Multiple Choice: "CO4:A complete binary min-heap is ma...

Question \(\quad\) "CO4:A complete binary min-heap is made by including each integer in \([1,1023]\) exactly once. The depth of a node in the heap is the length of the path from the root of the heap to that node.thus the root is at depth 0 .the maximum dpth at which integer 9 can appear is"
Answer
8

9

10

11
41. Multiple Choice: "CO4:consider the following array of ...

Points: 2
Question \(\quad\)\begin{tabular}{l}
"CO4:consider the following array of elements \\
\((89,19,50,17,12,15,2,5,7,11,6,9,100)\).the minimum number of interchanges needed \\
to convert it into max-heap is"
\end{tabular}
Answer 4
42. Multiple Choice: "CO4:while inserting the elements \(71, \ldots\)
Question \(\quad\) "CO4:while inserting the elements \(71,65,84,69,67,83\) in an empty BST in the
sequence shown ,the element in the lowest level is"

Answer
83

65

67

69
43. Multiple Choice: CO4:the worst case running time to se...
Question \begin{tabular}{l}
CO4:the worst case running time to search for an element in a balanced search tree \\
with \(\mathrm{n} 2^{\wedge}\) n elements is \\
\(\mathrm{O}(\mathrm{nlogn})\) \\
Answer \\
\begin{tabular}{l}
\(\mathrm{O}\left(\mathrm{n} 2^{\wedge} \mathrm{n}\right)\) \\
\(\mathrm{O}(\mathrm{n})\)
\end{tabular} \\
\(\mathrm{O}(\operatorname{logn})\)
\end{tabular}
44. Multiple Choice: CO4:what is the maximum height of any...
\begin{tabular}{|cc||}
\hline Answer & 2 \\
3 \\
5
\end{tabular}
45. Multiple Choice: "CO4:consider a binary max-heap imple...
\begin{tabular}{lc}
Question & \begin{tabular}{l}
"CO4:consider a binary max-heap implemented using an array, which one of the \\
following array represents a binary max-heap"
\end{tabular} \\
Answer & "\{25,12,16,13,10,8,14\}"
\end{tabular}
"\{25,14,13,16,10,8,12\}"
"\{25,14,16,13,10,8,12\}"
"\{25,14,12,13,10,8,16\}"
46. Multiple Choice: "CO4:in a binary max heap containing
\begin{tabular}{|l|l|}
\hline Question & \begin{tabular}{l}
"CO4:in a binary max heap containing \(n\) numbers, the smallest element can be \\
found in time"
\end{tabular} \\
Answer & \(\mathrm{O}(\) nlogn \()\) \\
\(\mathrm{O}(\operatorname{logn})\) \\
\(\mathrm{O}(\mathrm{n})\) \\
\(\mathrm{O}(1)\)
\end{tabular}
Question CO4:An Abstract Data Type is

Answer
same as an abstract class
a data type that cannot be instatiated
"a data type type for which only the operations defined on it can be used ,but none else"

All
48. Multiple Choice: "CO4:in a complete k-ary tree,every i...
Question \(\quad\) "CO4:in a complete k-ary tree,every internal node has exactly \(k\) children.the number
of leavesin such a tree with \(n\) internal nodes is"

Answer nk
(\(\mathrm{n}-1\)) \(\mathrm{k}+1\)
\(n(k-1)+1\)
\(n(k-1)\)

\section*{49. Multiple Choice: "CO5:Let G be a weighted connected un...}
\begin{tabular}{ll}
Question & "CO5:Let G be a weighted connected undirected graph with distinct positive edges \\
weights.if every edge weight is increased by the same value,then which of the \\
following statement is /are TRUE P. mininum spanning tree of G does not change \\
Q. Shortest path between any pair of vertices does not change"
\end{tabular}

Answer \(\quad\) P only

Q

None

Both
Answer
\begin{tabular}{|ll}
\hline Question & \begin{tabular}{l}
CO5:Let \(G\) be a graph with \(n\) vertices and \(m\) edges.what is the tightest upper bound \\
o the running time of Depth First Search on G.when \(G\) is represented as an \\
adjacency
\end{tabular} \\
Answer & \(\mathrm{O}(\mathrm{n})\) \\
\(\mathrm{O}(\mathrm{n}+\mathrm{m})\) \\
\(\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)\) \\
\(\mathrm{O}\left(\mathrm{m}^{\wedge} 2\right)\)
\end{tabular}

\section*{52. Multiple Choice: "CO5:consider the tree arcs of a BFS ...}
\begin{tabular}{|c|c|}
\hline Question & "CO5:consider the tree arcs of a BFS traversal from a sourece node W in an unweighted,connected, undirected grapg.the tree T formed by the arcs is a datastructure for computing" \\
\hline Answer & the shortest path between every pair of vertices \\
\hline & (the shortest path from W to every vertex in the graph \\
\hline & the shortest paths from W to only those nodes that are leaves of T \\
\hline & the longest path in graph \\
\hline
\end{tabular}
53. Multiple Choice: CO5:the most efficient algorithm for ...

Question CO5:the most efficient algorithm for finding the number of connected components in an undirected graph on \(n\) vertices and \(m\) edges has time complexity
\begin{tabular}{ll}
Answer & \(\mathrm{O}(\mathrm{n})\) \\
\(\mathrm{O}(\mathrm{n}+\mathrm{m})\) \\
& \(\mathrm{O}(\mathrm{m})\) \\
& \(O(m n)\)
\end{tabular}
54. Multiple Choice: CO5:An undirected graph C has n nodes...
\begin{tabular}{ll}
Question & \begin{tabular}{l}
CO5:An undirected graph \(C\) has \(n\) nodes.Its adjacency matrix is given by an \(n^{*} n\) \\
square matrix whose (i) diagonal elements are O's and (ii) non diagonal elements \\
are 1's which of the following is true
\end{tabular} \\
Answer & Graph G has no mimimum spanning tree \\
Graph G has a unique MST of cost \(n-1\) \\
Graph G has multiple distinct MST's each of cost \(n\)-1 \\
graph G has multiple spanning tres of diferrent costs
\end{tabular}
55. Multiple Choice: CO5:For an undirected graph with n
ve...
\begin{tabular}{ll}
Question & \begin{tabular}{l}
CO5:For an undirected graph with \(n\) vertices and e edges, the sum of the degree of \\
each vertex isequal to
\end{tabular} \\
Answer & \(2 n\) \\
\hline
\end{tabular}
\((2 n-2) / 2\)
\(2 e\)
(2e-1)/2
vert...
\begin{tabular}{ll}
Question & \begin{tabular}{l}
CO5:An undirected graph \(G\) with \(n\) vertices and e edges is represented by \\
adjacency list. What is the time required to generate all the connected \\
components?
\end{tabular} \\
Answer & \(\mathrm{O}(\mathrm{n})\) \\
\(\mathrm{O}(\mathrm{e}+1)\) \\
\(\mathrm{O}(\mathrm{n}+\mathrm{e})\)
\end{tabular}

Points: 1
57. Multiple Choice: CO5:A graph with n vertices will defi...
Question \begin{tabular}{l}
CO5:A graph with \(n\) vertices will definitely have a parallel edge or self loop of \\
the total number ofedges are
\end{tabular}
Answer
more than \(n\)
more than \(n+1\)
more than \((n+1) / 2\)
more than \(n(n-1) / 2\)

\section*{58. Multiple Choice: CO5:The maximum degree of any vertex ..}
```

Question CO5:The maximum degree of any vertex in a simple graph with n vertices is
Answer
n-1
n+1
2n-1
2n+1

```

\section*{59. Multiple Choice: CO5:A graph with \(n\) vertices will defi...}
Question \begin{tabular}{l}
CO5:A graph with \(n\) vertices will definitely have a parallel edge or self loop if \\
the total number of edges are \\
greater than \(n 1\) \\
less than \(n(n\) 1) \\
greater than \(n(n 1) / 2\) \\
less than \(n^{\wedge} 2 / 2\)
\end{tabular}

Points: 2

\section*{60. Multiple Choice: CO5:An adjacency matrix representatio...}

Question CO5:An adjacency matrix representation of a graph cannot contain information of :

Answer
nodes
edges
direction of edges
parallel edges
\begin{tabular}{|c|c|c|}
\hline All None & - Question Type - & \\
\hline Selectate and Regradselect by Type: & Update and Regrade & Hide Question Details \\
\hline
\end{tabular}```

