

	b) $16 / 32$ c) $23 / 32$ d) $19 / 32$		
Q 13	The chances of catching cold by workers working in an ice factory during winter are 25%. What is the probability that out of 5 workers 4 or more will catch cold? a) $\mathbf{0 . 0 1 5 6 2 7}$ b) 0.146789 c) 0.176549 d) 0.0089643	1	CO1
Q 14	Let X be a random variable having Bernoulli distribution with mean $\mathrm{p}=0.4$. Find its variance. a) 0.24 b) 0.4 c) 0.17 d) 0.48	1	$\mathrm{CO1}$
Q 15	A policeman fires 6 bullets on a dacoit. The probability that the dacoit will be killed by a bullet is 0.6 . What is the probability that the dacoit is still alive? a) $\mathbf{0 . 0 0 4 1}$ b) 0.0098 c) 0.0037 d) 0.0056	1	$\mathrm{CO1}$
Q 16	Out of 800 families with 4 children each, how many families would you expect to have 3 boys and 1 girl, assuming equal probability of boys and girls? a) $\mathbf{3 2}$ b) 16 c) 28 d) 31	1	CO 2
Q 17	It is known that the number of heavy trucks arriving at a railway station follows the Poisson distribution. If the average number of truck arrivals during a specified period of an hour is 2 , find the probabilities that during a given hour no heavy truck arrive. a) 0.1353 b) 0.16753 c) 0.1176 d) 0.12576	1	CO 2
Q 18	If the probability that an individual suffers a bad reaction from an injection of a given serum is 0.001 , determine the probability that out of 500 individuals, 3 individuals suffer from bad reaction. a) 0.1255 b) 0.1567 c) 0.1587 d) 0.1599	1	CO 2

Q 19	If an unbiased die is thrown 120 times, find the expected frequency of appearing 5 on the die. a) 20 b) 15 c) 25 d) 50	1	CO2
Q 20	Below, there is given the p.d.f. of a normally distributed random variable. Obtain the parameters (mean and variance) of the variable. $f(x)=\frac{1}{4 \sqrt{2 \pi}} e^{-\frac{1}{32}(x-60)^{2}}, \quad-\infty<x<\infty$ a) Mean $=60$, Variance $=16$ b) Mean $=60$, Variance $=4$ c) Mean $=16$, Variance $=60$ d) Mean $=4$, Variance $=60$	1	CO 2
Q 21	Moment coefficient of skewness is zero and the curve is always platykurtic. a) True b) False	1	CO2
Q 22	If the r.v. X is normally distributed with mean 80 and standard deviation 5, then find $\mathrm{P}[64<\mathrm{X}<76$] a) 0.2112 b) 0.3541 c) 0.2222 d) 0.2562	1	CO2
Q 23	In a university the mean weight of 1000 male students is 60 kg and standard deviation is 16 kg . Find the number of male students having their weights more than 70. (Assuming that the weights are normally distributed) a) 264 b) 235 c) 247 d) 214	1	CO 2
Q 24	In a university the mean weight of 1000 male students is 60 kg and standard deviation is 16 kg . What is the lowest weight of the 100 heaviest male students? (Assuming that the weights are normally distributed) a) $\mathbf{8 0 . 4 8}$ b) 60.45 c) 74.76 d) 59.78	1	CO 2
Q 25	The mean and standard deviation of a Poisson distribution are 6 and 2 respectively. Test the validity of this statement. a) Valid b) Invalid	1	CO2
Q 26	In a particular branch of a bank, it is noted that the duration/waiting time of the customers for being served by the teller is normally distributed	1	CO2

	with mean 5.5 minutes and standard deviation 0.6 minutes. Find the probability that a customer has to wait between 4.2 and 4.5 minutes. a) $\mathbf{0 . 0 3 2 5}$ b) 0.0461 c) 0.2567 d) 0.3975		
Q 27	Suppose that temperature of a particular city in the month of March is normally distributed with mean 24 degree C and standard deviation 6 degree C. Find the probability that temperature of the city on a day of the month of March is more than 26 degree C. a) $\mathbf{0 . 3 7 0 7}$ b) 0.3156 c) 0.2875 d) 0.2931	1	CO2
Q 28	We want to estimate the average coffee intake of UPES students, measured in cups of coffee. A survey of 1,000 students yields an average of 0.55 cups per day, with a standard deviation of 1 cup per day. Which of the following is not necessarily true? a) Population mean $=0.55$, Population S.D. $=1$ b) Sample mean $=0.55$, Sample S.D. $=1$ c) The sample distribution is right skewed. d) 0.55 is the point estimate for the population mean.	1	CO 2
Q 29	Which of the following is false? a) In order to reduce the standard error by half, sample size should be doubled. b) Standard error measures the variability in means of samples of the same size taken from the same population. c) As the sample size increases, the variability of the sampling distribution decreases. d) No false statement.		
Q 30	Suppose you took a large number of random samples of size n from a large population and calculated the mean of each sample. Then suppose you plotted the distribution of your sample means in a histogram. Now consider the following possible attributes of your collected data and the population from which they were sampled. For which of the following sets of attributes would you not expect your histogram of your sample means to follow a nearly normal distribution? a) $\mathrm{N}=10$. The population distribution is unknown, but the distribution of data in each sample is heavily skewed. b) $\mathrm{N}=120$. The population distribution is unknown, but the distribution of data in each sample is slightly skewed. c) $\mathrm{N}=20$. The population distribution is nearly normal. d) $\mathrm{N}=120$. The population distribution is slightly skewed.		
Q 31	Researchers investigating characteristics of gifted children collected data from schools in a large city on a random sample of thirty-six children who were identified as gifted		

	Looking at the binomial distribution above, what would be reasonable values for the parameters of this distribution? a) Number of trails=2, probability of success $=0.29$ b) Number of trails=20, probability of success $=0.29$ c) Number of trails=2, probability of success $=0.1$ d) Number of trails=20, probability of success $=0.1$		
Q 58	A multiple choice exam consists of 12 questions, each having 5 possible answers. To pass you must answer at least 8 out of 12 correctly. What are your chances of passing if you go into the exam without knowing a thing and resort to pure guessing? a) 0.0005 b) 0.005 c) 0.00005 d) 0.0025		
Q 59	For a normally distributed variable with a mean of 10 and standard deviation of 5, what is the proportion of the data with negative values? a) 0.025 b) 0.5 c) 0.25 d) 0.075		
Q 60	You collect four shells from the beach. You know that there are only three types of shells on the beach, and these shells occur in equal amounts. How many different events are possible? a) 81 b) 16 c) 27 d) 105		

