

1 y	The spatial coordinates of a digital image (x, y) are proportional to:		Brightness	c	Contrast	i n c c o r r r e c c d	Noise
2 H	Among the following image processing techniques which is fast, precise and flexible.		Electronic	n c o r r r e c	Photograp hic	i n c c o r r r e e c	Digital
3 M	An image is considered to be a function of $a(x, y)$, where a Height of represents: image		Width of image	i n c O r r e c	Amplitude of image	c o r r r e c t	Resolution of image
$4 \begin{aligned} & 1 \\ & y \end{aligned}$	Image What is the first and foremost restoratio step in Image Processing? n	i n c o o	Image enhancem ent	i n c o	Image acquisitio n	C	Segmentat ion

						c t		c t		c
	1 M			i		C		i		i
	0 C			n		0		n		n
				c		r		c		c
				0		r		0		0
				r		e		r		r
			Digitizing	r	Digitizing	C		r	None of	r
			the	e	the	t	All of the	e	the	e
		For a continuous image $f(x, y)$,	coordinat	C	amplitude		mentione	c	mentione	c
		Quantization is defined as	e values	t	values			t	d	t
1	M			C		i		i		i
				0		n		n		n
		Assume that an image $f(x, y)$ is		r		C		c		c
		sampled so that the result has		r		0		0		0
		M rows and N columns. If the		e		r		r	Second	r
		values of the coordinates at	Second	c		r	First	r	sample	r
		the origin are (x, y) $=(0,0)$,	sample	t	image	e	sample	e	along	e
		then the notation $(0,1)$ is	along first		enhancem	c	along first	c	second	C
		used to signify :	row		ent	t	row	t	row	t
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	M		(x, y) are	i	(x, y) are	C	(x, y) are	i	(x, y) are	i
			integers	n	integers	0	integers	n	integers	n
			from Z2	c	from Z2	r	from R2	C	from R2	c
		Let Z be the set of real	and f is a	0	and f is a	r	and f is a	0	and f is a	0
		integers and R the set of real	function	r	function	e	function	r	function	r
		numbers. The sampling	that	r	that	C	that	r	that	r
		process may be viewed as	assigns a	e	assigns a	t	assigns a	e	assigns a	e
		partitioning the x-y plane into	gray-level	c	gray-level		gray-level	c	gray-level	C
		a grid, with the central	value	t	value		value	t	value	t
		coordinates of each grid being	(from Z) to		(from R)		(from R)		(from Z) to	
		from the Cartesian product	each		to each		to each		each	
		Z 2 , that is a set of all ordered	distinct		distinct		distinct		distinct	
		pairs (zi, zj), with zi and zj	pair of		pair of		pair of		pair of	
		being integers from Z. Then,	coordinat		coordinat		coordinat		coordinat	
		$f(x, y)$ is said a digital image if:	es (x, y)		es (x, y)		es (x, y)		es (x, y)	
1	M	Let Z be the set of real		i		C		i	None of	i
		integers and R the set of real	The Digital	n	The Digital	0		n	the	n
		numbers. The sampling	image	c	image	r		c	mentione	c
		process may be viewed as	then	0	then	r		0		0
		partitioning the $x-y$ plane into	becomes a	r	becomes a	e		r		r
		a grid, with the central	1-D	r	2-D	c		r		r
		coordinates of each grid being	function	e	function	t		e		e
		from the Cartesian product	whose	C	whose			c		C
		Z2, that is a set of all ordered	coordinat	t	coordinat			t		t
		pairs (zi, zj), with zi and zj	es and		es and		The gray			
		being integers from Z. Then,	amplitude		amplitude		level can			
		$f(x, y)$ is a digital image if (x, y)	values are		values are		never be			
		are integers from $Z 2$ and f is a	integers		integers		integer			

－	のー	$\cdots \vdash$	ロャ	
$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	
	oे			
－ロ－－－Ј－				
	$\stackrel{\stackrel{\rightharpoonup}{\sim}}{\substack{\infty \\+}}$			
$\begin{aligned} & \text { 끛 } \\ & \stackrel{\rightharpoonup}{心} \end{aligned}$	$\stackrel{\sim}{\stackrel{\infty}{\sim}}$			
		＋ロ フ ᄀ○のコー・		
\rightarrow－\rightarrow－ 0 J	○○フマ○○コ			

			Operation s			o r r e e c t	Transform ation	o r r e c t t		r
$\begin{array}{\|l\|} \hline 2 \\ 4 \\ \hline \end{array}$		Of the following, \qquad has the maximum frequency.	UV Rays	c o r r e e c t	Gamma Rays	0	Microwav es	i n c o r r e e c t r	Radio Waves	n
		Which of the following is impractical to measure?	Brightness		Frequency		Radiance	i n c c o r r e c c t	Luminanc e	i i n c o r r r e c
	M	Which of the following is used for chest and dental scans?	Gama rays	r n c o r r e e c t	Soft X- Rays	o r r e e	Radio Waves	i n c c o r r e c c t	Infrared Rays	i
	M	A commercial use of Image Subtraction is \qquad	Mask mode radiograp hy	c o r r e c	MRI scan	n c o r r e c	CT scan	i n c c o r r e c c t	None of the mentione d	i
8	C	Region of Interest (ROI) operations is commonly called as \qquad		c o r r e 	Shading correction	n c o	Dilation	i n c c o r r	None of the mentione d	i

		done on the pixels in sharpening the image?		o r r e c c t		o r r e c t		o r r e c t		r e c t
		The derivative of digital function is defined in terms of difference. Then, which of the following defines the second order derivative $\partial^{2} f / \partial x^{2}=$ \qquad of a onedimensional function $f(x)$?	$f(x+1)-f(x)$	l n c o o r r r e c c t	$\begin{aligned} & f(x+1)+ \\ & f(x-1)-2 f(x) \end{aligned}$	C	All of the mentione d depending upon the time when partial derivative will be dealt along two spatial axes	e	None of the mentione d	i n c o r r r e c c t
	M	What is the difference between Convolution and Correlation?	Image is prerotated by 180 degree for Correlatio n	i n c o O r r r e c t	Image is prerotated by 180 degree for Convoluti on	C	Image is prerotated by 90 degree for Correlatio n	i n c o r r r e c c t	Image is pre- rotated by 90 degree for Convoluti on	i n c o r r e c c t
4	M	The function that contains a single 1 with the rest being 0 s is called \qquad	Identity function		Inverse function		Discrete unit impulse	c o r r r e c t	None of the mentione d	i n c o r r e c c
	M	Which of the following conditions does the threshold $\mathrm{T}(\mathrm{r})$ must satisfy?	$T(r)$ is doublevalued and monotoni cally decreasing in the interval $0 \leq r \leq 1$; and	$\begin{array}{\|l\|} \hline \mathrm{i} \\ \mathrm{n} \\ \mathrm{c} \\ \mathrm{o} \\ \mathrm{r} \\ \mathrm{r} \\ \mathrm{e} \\ \mathrm{c} \\ \mathrm{t} \end{array}$	$T(r)$ is doublevalued and monotoni cally increasing in the interval $0 \leq r \leq 1$; and	n c o r r r e c t	$T(r)$ is single- valued and monotoni cally decreasing in the interval $0 \leq r \leq 1$; and	n n c o r r r e c c	$T(r)$ is singlevalued and monotoni cally increasing in the interval $0 \leq r \leq 1$; and	C o r r e c t

			$\begin{aligned} & 0 \leq T(r) \leq 1 \\ & \text { for } 0 \leq r \leq 1 \end{aligned}$		$\begin{aligned} & 0 \leq T(r) \leq 1 \\ & \text { for } 0 \leq r \leq 1 \end{aligned}$		$0 \leq T(r) \leq 1$ for $0 \leq r \leq 1$		$\begin{aligned} & 0 \leq T(r) \leq 1 \\ & \text { for } 0 \leq r \leq 1 \end{aligned}$	
4	$\begin{aligned} & \mathrm{M} \\ & \mathrm{C} \end{aligned}$	Histogram equalization or Histogram linearization is represented by of the following equation:	$\begin{aligned} & s_{\mathrm{k}}=\sum^{\mathrm{k}}{ }_{\mathrm{j}}=1 \\ & \mathrm{n}_{\mathrm{j}} / \mathrm{n} \\ & \mathrm{k}=0,1,2, \ldots \\ & \ldots, \mathrm{~L}-1 \end{aligned}$		$\begin{aligned} & s_{k}=\sum^{k}{ }_{j}=0 \\ & n_{j} / n \\ & k=0,1,2, \ldots \\ & \ldots, L-1 \end{aligned}$	$\begin{aligned} & c \\ & o \\ & r \\ & r \\ & e \\ & c \\ & t \end{aligned}$	$\begin{aligned} & s_{k}=\sum^{k}{ }_{j}=0 \\ & n / n_{j} \\ & k=0,1,2, \ldots \\ & \ldots, L-1 \end{aligned}$		$\begin{aligned} & \mathrm{s}_{\mathrm{k}}=\sum^{\mathrm{k}}{ }_{\mathrm{j}}=\mathrm{n} \\ & \mathrm{n}_{\mathrm{j}} / \mathrm{n} \\ & \mathrm{k}=0,1,2, \ldots \\ & \ldots, \mathrm{~L}-1 \end{aligned}$	i n c o r r e c c t
	M	While performing the median filtering, suppose a 3*3 neighborhood has value (10, $20,20,20,15,20,20,25$, 100), then what is the median value to be given to the pixel under filter?	20	C	15	$\begin{aligned} & \hline \mathrm{i} \\ & \mathrm{n} \\ & \mathrm{c} \\ & \mathrm{o} \\ & \mathrm{r} \\ & \mathrm{r} \\ & \mathrm{e} \\ & \mathrm{c} \\ & \mathrm{t} \end{aligned}$	100		25	
4	$\begin{aligned} & \mathrm{M} \\ & \mathrm{C} \end{aligned}$	In linear spatial filtering, what is the pixel of the image under mask corresponding to the mask coefficient w (1, -1), assuming a $3 * 3$ mask?	$f(x,-y)$	i n c c o r r r e e c c t	$f(x+1, y)$		$f(x, y-1)$	i n c c o r r r e d c	$f(x+1, y-$ 1)	c o r r e c t
	$\begin{aligned} & M \\ & C \end{aligned}$	Which of the following is/are considered as type(s) of lowpass filters?	Ideal	n c o r r r e c c t	Butterwor th		Gaussian		All of the mentione d	c o r r e c t
4	M	If, $F_{\text {hp }}(u, v)=F(u, v)-F_{1 p}(u, v)$ and $F_{l p}(u, v)=H_{i p}(u, v) F(u, v)$, where $F(u, v)$ is the image in frequency domain with $F_{h p}(u$, v) its highpass filtered version, $F_{\text {Ip }}(u, v)$ its lowpass filtered component and $\mathrm{H}_{\mathrm{Ip}}(\mathrm{u}, \mathrm{v})$ the transfer function of a lowpass filter. Then, unsharp masking can be implemented directly	$\begin{aligned} & H_{\mathrm{hp}}(u, v)= \\ & \mathrm{H}_{\mathrm{lp}}(\mathrm{u}, \mathrm{v}) \end{aligned}$	n c o r r r e c c t	$\begin{aligned} & H_{h p}(u, v)= \\ & 1+H_{1 p}(u, \\ & v) \end{aligned}$	i n c o r r r e c t	$\begin{aligned} & H_{h p}(u, v)= \\ & -H_{l p}(u, v) \end{aligned}$		$\begin{aligned} & H_{h p}(u, v)= \\ & 1-H_{l p}(u, \\ & v) \end{aligned}$	c o r r e c t

		in frequency domain by using a filter. Which of the following is the required filter?								
4	$\begin{aligned} & M \\ & C \end{aligned}$	Which of the following is the useful descriptor of a boundary, whose value is given by the ratio of length of the major axis to the minor axis?	Radius	$\begin{aligned} & \hline \mathrm{i} \\ & \mathrm{n} \\ & \mathrm{c} \\ & \mathrm{o} \\ & \mathrm{r} \\ & \mathrm{r} \\ & \mathrm{e} \\ & \mathrm{c} \\ & \mathrm{t} \end{aligned}$	Eccentricit y	C o r r e c t	Perimeter		Area	i n c o r r r e c t
5	$\begin{aligned} & M \\ & C \end{aligned}$	Based on the 4-directional code, the first difference of smallest magnitude is called as:	Shape Number	$\begin{gathered} c \\ o \\ r \\ r \\ e \\ c \\ t \end{gathered}$	Chain Number	i n c o r r r e c L	Difference		Difference Number	i n c o r r r e c c t
5	$\begin{aligned} & M \\ & C \end{aligned}$	What is the set of pixels of 8neighbors of pixel p at coordinates (x, y) ?	$\begin{aligned} & (x+1, y), \\ & (x-1, y),(x, \\ & y+1),(x, y- \\ & 1),(x+2, \\ & y),(x-2, y), \\ & (x, y+2), \\ & (x, y-2) \end{aligned}$	$\begin{aligned} & \mathrm{i} \\ & \mathrm{n} \\ & \mathrm{c} \\ & \mathrm{o} \\ & \mathrm{r} \\ & \mathrm{r} \\ & \mathrm{e} \\ & \mathrm{c} \\ & \mathrm{t} \end{aligned}$	$\begin{aligned} & (x+1, y+1), \\ & (x+1, y-1), \\ & (x-1, y+1), \\ & (x-1, y-1), \\ & (x+2, y+2), \\ & (x+2, y-2), \\ & (x-2, y+2), \\ & (x-2, y-2) \end{aligned}$	i	$\begin{aligned} & (x+2, y) \\ & (x-2, y),(x, \\ & y+2),(x, y- \\ & 2),(x+2, \\ & y+2),(x+2, \\ & y-2),(x-2, \\ & y+2),(x-2, \\ & y-2) \end{aligned}$		None of the mentione d	c o r r e c t
5	M	Opening morphological operators with rolling structuring element (SE)	Sharps	$\begin{array}{l\|} \hline \mathrm{i} \\ \mathrm{n} \\ \mathrm{c} \\ \mathrm{o} \\ \mathrm{r} \\ \mathrm{r} \\ \mathrm{e} \\ \mathrm{c} \\ \mathrm{t} \end{array}$	Shrinks	i n c c o r r r e c d	Smooths	C	Deletes	i n c o r r e c c t
5 3	$\begin{aligned} & M \\ & C \end{aligned}$	Hit-or-miss transformation is used for shape	removal	$\begin{aligned} & \hline \mathrm{i} \\ & \mathrm{n} \\ & \mathrm{c} \\ & \mathrm{o} \\ & \mathrm{r} \\ & \mathrm{r} \\ & \mathrm{e} \\ & \mathrm{c} \\ & \mathrm{t} \end{aligned}$	detection	C o r r e c t	compressi on		padding	i n c o r r e e c t

5		(AoB)oB is equal to	A.B	i n c o r r r e c c t	$A+B$	$\begin{aligned} & \mathrm{i} \\ & \mathrm{n} \\ & \mathrm{c} \\ & \mathrm{o} \\ & \mathrm{r} \\ & \mathrm{r} \\ & \mathrm{e} \\ & \mathrm{c} \\ & \mathrm{t} \end{aligned}$	$A \circ B$	c	$A \times B$	
5	$\begin{aligned} & \mathrm{M} \\ & \mathrm{C} \end{aligned}$	Best removal of lines from image will be produced by the structuring element (SE) of size	5×5	c o r r e c c t	1×1	$\begin{aligned} & \mathrm{i} \\ & \mathrm{n} \\ & \mathrm{c} \\ & \mathrm{o} \\ & \mathrm{r} \\ & \mathrm{r} \\ & \mathrm{e} \\ & \mathrm{c} \\ & \mathrm{t} \end{aligned}$	2×2		3×3	i n c o r r e e c t
	$\begin{aligned} & \mathrm{M} \\ & \mathrm{C} \end{aligned}$	The reflection of set B is the	$\{w \mid w=-(-$ b) $\}$	i n c o r r r e c c t	$\{\mathrm{w}=-\mathrm{b}\}$	$\begin{aligned} & \hline \mathrm{i} \\ & \mathrm{n} \\ & \mathrm{c} \\ & \mathrm{o} \\ & \mathrm{r} \\ & \mathrm{r} \\ & \mathrm{e} \\ & \mathrm{c} \\ & \mathrm{t} \\ & \hline \end{aligned}$	$\{\mathrm{w} \mid \mathrm{w}=\mathrm{b}\}$		$\begin{aligned} & \{w \mid w=- \\ & b\} \end{aligned}$	c
	$\begin{aligned} & \mathrm{M} \\ & \mathrm{C} \end{aligned}$	What is meant by probability density function?	Probabilit y distributio ns		Continuou s variable	$\begin{aligned} & \hline \mathrm{i} \\ & \mathrm{n} \\ & \mathrm{c} \\ & \mathrm{o} \\ & \mathrm{r} \\ & \mathrm{r} \\ & \mathrm{e} \\ & \mathrm{c} \\ & \mathrm{t} \end{aligned}$	Discrete variable		Probability distributio ns for Continuou s variables	C
	$\begin{aligned} & \mathrm{M} \\ & \mathrm{C} \end{aligned}$	Automated vehicle is an example of \qquad	Supervise d learning	c o r r e c c t	Unsupervi sed learning	$\begin{aligned} & \hline \mathrm{i} \\ & \mathrm{n} \\ & \mathrm{c} \\ & \mathrm{o} \\ & \mathrm{r} \\ & \mathrm{r} \\ & \mathrm{e} \\ & \mathrm{c} \\ & \mathrm{t} \end{aligned}$	Active learnin		Reinforce ment learning	i n c o o r r r e e c
	M	Based on the 4-directional code, the first difference of	Shape number	C o r	Chain number	$\begin{aligned} & \hline \mathrm{i} \\ & \mathrm{n} \\ & \mathrm{c} \\ & \hline \end{aligned}$	Difference	i n c	Difference Number	i n c

