Name:

Enrolment No:

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, July 2020

Course:Computer GraphicsProgram:B.Tech(CSE+IOT&SC)Course Code:CSEG3003

Semester: VI Time Max. Marks:

	(_				-
MC	(CO2) If the	Flood fill	Incor	Boundary	Corre	Scan line	Incor	None of	Incorr
	pixel is already	algorithm	rect	fill	ct	polygon	rect	these	ect
	filled with			algorithm		filling			
	desired color					algorithm			
	then leaves it								
	otherwise fills								
	it. This is called								
MC	(CO2) The	Find	corre	Find	Incor	Both a & b	Incor	None of	Incorr
	function of scan	intersection	ct	intersection	rect		rect	these	ect
	line polygon fill	point of the		point of the					
	algorithm is to	boundary		boundary					
		of polygon		of polygon					
		and scan		and point					
		line		-					
MC	(CO2) Some	Curve	Incor	Point	Incor	Polygon	Incor	All of these	Corre
	common form	clipping	rect	clipping	rect	clipping	rect		ct
	of clipping								
	include								
MC	(CO3)	x = -y	Incor	y = - x	Incor	x = y	Corre	x + y = 1	Incorr
	Reflection of a		rect		rect		ct		ect
	point about x-								
	axis, followed								
	by a counter-								
	clockwise								
	rotation of 90								
	degree , is								
	equivalent to								
	reflection								
	about which								
	line?								
MC	(CO2) There are	convex and	Corre	square and	Incor	hexagon	Incor	Octagon	Incorr
	2 types of	concave	ct	rectangle	rect	and	rect	and convex	ect
	polygons. They					square			
	are?								

FIB	(CO1) Full form	Graphics							
	of GPU is	Processing							
	?	Unit							
	Note: 1st letter								
	of each word								
	should be in								
	capital and								
	remaining will								
	be in small.								
MC	(CO1) Suppose	(3,3)(4,4)(2,	Incor	(2,3)(4,3)(2,	Incor	Both A	Corre	None of	Incorr
	a pixel (3,4) is	4)(3,5)	rect	5)(4,5)	rect	and B	ct	these	ect
	given in raster								
	surface, then								
	the neighbours								
	of this point								
	are								
TF	(CO1) The m-	TRUE	Corre	FALSE	Incor				
	adjacency		ct		rect				
	removes the								
	ambiguity								
	present in 8								
MC	adjacency?	width=9.4*			lucar	width 0 7	linear		la co va
MC	(CO1) Consider a display area	10^-3 inch	corre	width=9.4* 10^-3 inch	Incor	width=9.7 *10^-3	Incor	width=9.4* 10^3 inch	Incorr ect
	of a video	height=9.7*	ct	height=9.4*	rect	inch	rect	height=9.7	eci
	monitor to be	10^-3 inch		10^-3 inch		height=9.		*10^3 inch	
	12"*10". If the	10 -5 men		10 -5 1101		4*10^-3		10 5 11 61	
	resolution of					inch			
	the monitor is					men			
	1280*1024,								
	What is the								
	dimension of								
	each pixel?								
MC	(CO1) Consider	1.63 GB	Incor	1.63 MB	Corre	1.63 KB	Incor	None of	Incorr
_	a raster system		rect		ct		rect	these	ect
	with the								
	resolution of								
	1280 x 1024								
	pixels and the								
	color palette								
	calls for 1024								
	colors. What is								
	the minimum								
	amount of								
	video RAM that								
	the computer								

	above- mentioned resolution and number of colors?								
MC	(CO1) How much time is spent scanning across each row of pixels during screen refresh on a raster system with resolution of 1280x1024 and a refresh rate of 60 frames per second?	16.3 ns	Incor rect	16.3 micro second	Corre ct	16.3 sec	Incor rect	16.3 ms	Incorr ect
MC	(CO1) Full color frame buffer can produce colors.	2^8	Incor rect	2^16	Incor rect	2^32	Incor rect	2^24	Corre ct
МС	(CO1) If N-bit plane gray level/color frame buffer with W-bit wide Look Up table is given then	N <w<=24< td=""><td>Corre ct</td><td>N<w<24< td=""><td>Incor rect</td><td>N=W=24</td><td>Incor rect</td><td>None of these</td><td>Incorr ect</td></w<24<></td></w<=24<>	Corre ct	N <w<24< td=""><td>Incor rect</td><td>N=W=24</td><td>Incor rect</td><td>None of these</td><td>Incorr ect</td></w<24<>	Incor rect	N=W=24	Incor rect	None of these	Incorr ect
MC	(CO2) Summation of all blending functions in bezier curve is equal to	0	Incor rect	1	Corre ct	2	Incor rect	3	Incorr ect
MC	(CO3) What is the centroid of the unit cube?	(0.5,0.5,0)	Incor rect	(0.5,0.5,0.5)	Corre ct	(0,0.5,0.5)	Incor rect	(0.5,0,0.5)	Incorr ect

MC	(CO3) Apply 2-D reflection over a triangle ABC with vertices A(5, 1), B(8, 3), and C(10, 1) about a straight line PQ. Line PQ can be formed by applying rotation over a straight line y=- x through an angle of 75 degrees in anticlockwise direction. Find out the resultant coordinate of A after transformation	((5+v3)/2,(5v3-1)/2)	corre ct	((5+v3),(5v 3-1))	Incor rect	((5+v3),(5- v3))	Incor rect	None of these	Incorr ect
MC	s. (CO3) Apply 2-D reflection over a triangle ABC with vertices A(5, 1), B(8, 3), and C(10, 1) about a straight line PQ. Line PQ can be formed by applying rotation over a straight line y=- x through an angle of 75 degrees in anticlockwise direction. Find out the resultant coordinate of B and C after transformation s.	((8+3v3),(8 v3-3)) and ((10+v3),(1 0v3-1))	Incor rect	((8+3v3)/2, (8v3-3)/2) and ((10+v3)/2, (10v3-1)/2)	Corre ct	((10+V3),(10V3-1)) and ((8+3V3),(8V3-3))	Incor rect	((10+V3)/2, (10V3-1)/2) and ((8+3V3)/2, (8V3-3)/2)	Incorr ect

MC	(CO2) An	2.952	Incor	29.52	Corre	295.2	Incor	0.2952	Incorr
	Animation	2.332	rect	23.32	ct	233.2	rect	0.2332	ect
	shows a car						Teet		
	driving along a								
	road which is								
	specified by a								
	Bezier curve								
	with the								
	following								
	control points:								
	X: 0 5								
	40 50								
	Y: 0 40 5								
	15								
	The animation								
	lasts 10								
	seconds and								
	the key frames								
	are to be								
	computed at 1								
	second								
	intervals.								
	Calculate the								
	position of car								
	on the road at								
	the start of the								
	6th second of								
	animation.								
	What is the x								
	coordinate of								
	the position?								
MC		16.92	corre	1.692	Incor	169.2	Incor	0.1692	Incorr
	Animation	10.52	ct	1.052	rect	100.2	rect	0.1002	ect
	shows a car								
	driving along a								
	road which is								
	specified by a								
	Bezier curve								
	with the								
	following								
	control points:								
	X: 0 5								
	40 50								
	Y: 0 40 5								
1	15								
	15								

					-			ı
lasts 10								
seconds an								
the key fra	nes							
are to be								
computed	at 1							
second								
intervals.								
Calculate t	ne							
position of	car							
on the road								
the start of								
6th second								
animation.	01							
What is the	V							
coordinate	-							
the positio					(0,0)	1	Neres	
MC (CO3) Mag		Incor	(0,0), (2,2),	Corre	(0,0), (1,1) (5,2)	Incor	None of	Incorr
the triangle		rect	(5,2)	ct	(1,1), (5,2)	rect	these	ect
with vertic								
A(0,0), B(1								
and C(5,2)								
twice its size								
while keep	ng							
C(5,2) fixed	•							
MC (CO4) A so	id (-4j)	corre	(+4j)	Incor	(2j-2k)	Incor	(2j+2k)	Incorr
tetrahedro	n is	ct		rect		rect		ect
given by								
position ve								
A(1,1,1),B(ctors							
),C(2,1,3) a								
	3,1,1							
D(2,2,2) an	8,1,1 nd							
D(2,2,2) an point light	8,1,1 nd							
point light	8,1,1 nd d a							
point light source is k	8,1,1 nd d a ppt							
point light source is k at P(2,3,4).	8,1,1 nd d a pt Find							
point light source is k at P(2,3,4). out the no	8,1,1 nd d a ept Find mal							
point light source is k at P(2,3,4). out the no of the surfa	8,1,1 nd d a ept Find mal							
point light source is k at P(2,3,4). out the no of the surf ABC.	8,1,1 nd d a = pt = ind mal .ce		EALSE	Incor				
point light source is k at P(2,3,4). out the no of the surf ABC. TF (CO4) A so	8,1,1 nd d a ept Find mal ice d TRUE	corre	FALSE	Incor				
point light source is ke at P(2,3,4). out the no of the surfa ABC. TF (CO4) A so tetrahedro	8,1,1 nd d a ept Find mal ice d TRUE	corre ct	FALSE	Incor rect				
point light source is ke at P(2,3,4). out the no of the surfa ABC. TF (CO4) A so tetrahedro given by	8,1,1 hd d a ept Find mal ice id TRUE h is		FALSE					
point lightsource is kerat P(2,3,4).out the noof the surfaABC.TF(CO4) A sotetrahedrogiven byposition ver	8,1,1 hd d a ept Find mal ce id TRUE h is ctors		FALSE					
point light source is ke at P(2,3,4). out the no of the surfa ABC. TF (CO4) A so tetrahedro given by position ve A(1,1,1),B(8,1,1 nd d a ept Find mal ce id TRUE n is stors 8,1,1		FALSE					
point light source is ke at P(2,3,4). out the no of the surfa ABC. TF (CO4) A so tetrahedro given by position ve A(1,1,1),B(),C(2,1,3) a	B,1,1 hd d a ept Find mal ice id h is Ctors B,1,1 hd		FALSE					
point light source is ke at P(2,3,4). out the no of the surf ABC. TF (CO4) A so tetrahedro given by position ve A(1,1,1),B(),C(2,1,3) a D(2,2,2) an	B,1,1 hd d a ept Find mal ice id h is Ctors B,1,1 hd		FALSE					
point light source is ke at P(2,3,4). out the no of the surfa ABC. TF (CO4) A so tetrahedro given by position ve A(1,1,1),B(),C(2,1,3) a D(2,2,2) an point light	8,1,1 hd d a ept Find mal ce id true tors 8,1,1 hd d a		FALSE					
point light source is ke at P(2,3,4). out the no of the surfa ABC. TF (CO4) A so tetrahedro given by position ve A(1,1,1),B(),C(2,1,3) a D(2,2,2) an point light source is ke	8,1,1 hd d a ept Find mal ce id true tors 8,1,1 hd d a		FALSE					
point light source is ke at P(2,3,4). out the no of the surfa ABC. TF (CO4) A so tetrahedro given by position ve A(1,1,1),B(),C(2,1,3) a D(2,2,2) an point light	8,1,1 hd d a ept Find mal ice id TRUE h is ctors 8,1,1 hd d a ept ept		FALSE					

detection algorithm the surface ABC is backface (True/False). algorithm the	
MC(COS) Assume that at point P on the surface, the normal, light and sight (viewing) vectors are: n=j, L=-i+2j- k, V=i+1.5j+0.5k Assuming that there is one object in the scene, d=0 and k=1. The light source is assumed 10 times more intense than the ambient light. The surface is to have a shiny metallic appearance; hence, most of the light is specularly reficeted. Thus assume ks=0.8, kd=ka=0.15 and m=5. Note that ks+kd=0.95, which implies that 5% of the energy from the light source is assured.7.65 rectCorre ct9.95 ctIncor rectNone of the source is absorbed.MC(COS) Assume the light source is absorbed.7.65Incor rect8.65Corre ct9.95Incor rectNone of the sourceMCisource is absorbed.isource is is absorbed.isource is is absorbed.isource is absorbed.<	of Incorr ect

	illumination model.	0.25		4.25		5.05			
MC	(CO5) Assume that at point P on the surface, the normal, light and sight (viewing) vectors are: n=j, L=-i+2j- k, V=i+1.5j+0.5k Assuming that there is one object in the scene, d=0 and k=1. The light source is assumed 10 times more intense than the ambient light. The surface is to have a shiny metallic appearance; hence, most of the light is specularly reflected. Thus assume ks=0.8, kd=ka=0.15 and m=5. Note that	3.35	Corre Ct	4.35	Incor rect	5.35	Incor rect	None of these	Incorr ect

	ks+kd=0.95, which implies that 5% of the energy from the light source is absorbed. Determine the intensity also when halfway vector is used.								
MC	(CO2) The eccentricity of parabola is	e>1	Incor rect	e<1	Incor rect	e=1	Corre ct	None of these	Incorr ect
MC	(CO2) B-Spline curve is made up of (n+1) control points and the order of the curve is K, where range of K is?	2 <k<n+1< td=""><td>Incor rect</td><td>2<=K<=n+1</td><td>Corre ct</td><td>2>K>n+1</td><td>Incor rect</td><td>2>=K>=n+1</td><td>Incorr ect</td></k<n+1<>	Incor rect	2<=K<=n+1	Corre ct	2>K>n+1	Incor rect	2>=K>=n+1	Incorr ect
FIB	(CO2) B-Spline curve has n=6 and k=3, how many segments will be there in given B-Spline curve? Note: Answer should be written as a number not in words.	5							
MC		6	Incor rect	5	Incor rect	7	Corre ct	8	Incorr ect

	draw the circle in one octant?								
MC	(CO2) In DDA algorithm, the value of x and y will be incremented by if slope<1.	x=x+1, y=y+1	Incor rect	x=x+1/m, y=y+1	Incor rect	x=x+1, y=y+m	Corre ct	x=x+1/m, y=y+m	Incorr ect
MC	(CO2) The region codes of the two points are given as 1001 and 0101, then the line is	Partially inside and partially outside	Incor rect	Completely outside	Corre ct	Completel y inside	Incor rect	None of these	Incorr ect
MC	(CO2) The starting point of the line is (5,8) and the ending point is (9,11). How many intermediate points will be calculated using bresenham line drawing algorithm?	5	Incor rect	4	Incor rect	2	Incor rect	3	Corre ct
MC	(CO3) Two successive scaling are in nature.	Additive	Incor rect	Multiplicati ve	Corre ct	Subtractiv e	Incor rect	None of these	Incorr ect
MC	(CO4) Execute the Z buffer algorithm to illuminate the pixels on an 8*8 display. The surfaces to be probed for visibility are: A: (1,4,3) (3,4,3) (3,6,3) (1,,6,3)	1	Incor rect	2	Corre ct	3	Incor rect	None of these	Incorr ect

	B: (2,3,2) (4,3,2)								
	(4,5,2) (2,5,2)								
	C: (4,1,1) (7,1,1)								
	(4,4,1)								
	Assume the								
	intensities of								
	the surfaces A,								
	B, C as 10, 20,								
	30 respectively.								
	What is the								
	value of depth								
	buffer on								
	location (4,3).								
	Viewing point is								
	at +infinity.								
	(Note: Pixel								
	indexing should								
NAC	start from 0)	10	lucau	20	1	20	Com	Newsof	Lu e e un
MC	(CO4) Execute	10	Incor	20	Incor	30	Corre	None of	Incorr
	the Z buffer		rect		rect		ct	these	ect
	algorithm to								
	illuminate the								
	pixels on an								
	8*8 display.								
	The surfaces to								
	be probed for								
	visibility are:								
	A: (1,4,3)								
	(3,4,3) (3,6,3)								
	(1,,6,3)								
	B: (2,3,2) (4,3,2)								
	(4,5,2) (2,5,2)								
	C: (4,1,1) (7,1,1)								
	(4,4,1)								
	Assume the								
	intensities of								
	the surfaces A,								
	B, C as 10, 20,								
	30 respectively.								
	What is the								
	value of refresh								
	buffer on								
	location (6,1).								
	Viewing point is								
	at +infinity.								
	(Note: Pixel								
	indexing should								
	_								
	start from 0)								

MC	(CO3) A circle, if scaled only in one direction becomes a/an?	Hyperbola	Incor rect	Ellipse	Corre ct	Parabola	Incor rect	Remains a circle	Incorr ect
MC	(CO4) Back face detection algorithm works on approach?	Object space	Corre ct	Image space	Incor rect	Both A and B	Incor rect	None of these	Incorr ect
MC	(CO3) In 3D, rotation through an arbitrary line that does not passes through an origin requires number of rotations.	7	Incor rect	5	Corre ct	3	Incor rect	None of these	Incorr ect
MC	(CO4) The method which is based on the principle of checking the visibility point at each pixel position on the projection plane are called	Object space methods	Incor rect	Image space methods	Corre ct	Both A and B	Incor rect	None of these	Incorr ect
MC	(CO5) How many types of shading techniques are present?	2	Incor rect	3	Corre ct	4	Incor rect	5	Incorr ect
MC	(CO5) Flat shading suffers from an effect called	Mocha effect	Incor rect	Mach band effect	Corre ct	Both A and B	Incor rect	None of these	Incorr ect
MC	(CO3) If we want to rotate an arbitrary axis to coincide with any principal axis in	3	Incor rect	1	Incor rect	2	Corre ct	4	Incorr ect

	3D, how many rotations will be performed?			2.1					
MC	(CO4) Area sub- division algorithm is also known as	Quad tree method	corre ct	Octree method	Incor rect	Bothe A and B	Incor rect	None of these	Incorr ect
MC	(CO5) Illumination models are categorized into:	Local and global	corre ct	Static and dynamic	Incor rect	Phong and half way	Incor rect	None of these	Incorr ect
MC	(CO5) In diffuse reflection, the intensity is calculated as I=L*(Kd)*cos(th eta) where, L is intensity of light source, Kd is diffuse reflection coefficient and theta is the angle between light direction and surface normal. What is the range of theta here?	0<=theta<= 180	Incor rect	0 <theta<18 0</theta<18 	Incor rect	0 <theta<9 0</theta<9 	Incor rect	0<=theta<= 90	Corre ct
MC	(CO5) In diffuse reflection, the intensity is calculated as I=L*(Kd)*cos(th eta) where, L is intensity of light source, Kd is diffuse reflection coefficient and theta is the angle between light direction	Behind	Corre ct	Infront of	Incor rect	Adjacent	Incor rect	None of these	Incorr ect

	and armf								
	and surface normal. For								
	theta>90, light								
	source is								
	30010213								
	the object.								
		Turuslation	1	Casling	1	Datation	1		Carrie
MC	(CO3) The most basic	Translation	Incor rect	Scaling	Incor	Rotation	Incor	All of these	Corre ct
	transformation		Tect		rect		rect		ι.
	that are applied in three-								
	dimensional								
	planes are:								
MC	(CO3) Rotation	Roll	corre	Pitch	Incor	Yaw	Incor	None of	Incorr
	around front to		ct		rect		rect	these	ect
	back is called?								
MC	(CO3)	Coordinate	Incor	Geometric	Corre	Both A	Incor	None of	Incorr
	Transformation	transforma	rect	transforma	ct	and B	rect	these	ect
	of object to the	tion		tion					
	origin is called?								
MC	(CO3) How	5	Incor	7	Incor	3	Corre	None of	Incorr
	many		rect		rect		ct	these	ect
	transformation								
	s are required								
	in 3D if the								
	object has to rotate about an								
	axis that is								
	parallel to any								
	principle axis?								
MC	(CO3)	[1.768,	Incor	[1.768,	Corre	[0.768,	Incor	[0.768,	Incorr
	Transform the	0.866,-	rect	0.866,-	ct	0.866,-	rect	0.866,-	ect
	given position	1.061,0]		1.061,1]		1.061,1]		1.061,0]	
	vector [3 2 1 1]					,_,		,	
	by the								
	following								
	sequence of								
	operations:								
	i) Translate by								
	(-1,-1,-1) in x, y,								
	z respectively.								
	li) Rotate by 30								
	degree about x-								
	axis and 45								
	degree about y-								
	axis. Find out								

th tra co	e ansformed ordinates.				