Name: Enrolment No:	1 UPES UNIVERSITY WITH A PURPOSE
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, July 2020	
Course: Computer Graphics	Semester: VI
Program: B.Tech(CSE+IOT\&SC)	Time
Course Code: CSEG3003	Max. Marks:

MC	(CO2) If the pixel is already filled with desired color then leaves it otherwise fills it. This is called	Flood fill algorithm	Incor rect	Boundary fill algorithm	Corre ct	Scan line polygon filling algorithm	Incor rect	None of these	Incorr ect
MC	(CO2) The function of scan line polygon fill algorithm is to lind intersection point of the boundary of polygon and scan line	ct	Find intersection point of the boundary of polygon and point	rect recor	Both a \& b	Incor rect	None of these	ect	

FIB	(CO1) Full form of GPU is \qquad ? Note: 1st letter of each word should be in capital and remaining will be in small.	Graphics Processing Unit							
MC	(CO1) Suppose a pixel $(3,4)$ is given in raster surface, then the neighbours of this point are \qquad	$\begin{aligned} & (3,3)(4,4)(2, \\ & 4)(3,5) \end{aligned}$	Incor rect	$\begin{aligned} & (2,3)(4,3)(2, \\ & 5)(4,5) \end{aligned}$	Incor rect	Both A and B	Corre ct	None of these	Incorr ect
TF	(CO1) The madjacency removes the ambiguity present in 8 adjacency?	TRUE	Corre ct	FALSE	Incor rect				
MC	(CO1) Consider a display area of a video monitor to be 12'*10'. If the resolution of the monitor is 1280*1024, What is the dimension of each pixel?	$\begin{aligned} & \text { width=9.4* } \\ & 10^{\wedge}-3 \text { inch } \\ & \text { height=9.7* } \\ & 10^{\wedge}-3 \text { inch } \end{aligned}$	corre ct	width=9.4* 10^-3 inch height=9.4* $10^{\wedge}-3$ inch	Incor rect	```width=9.7 *10^-3 inch height=9. 4*10^-3 inch```	Incor rect	$\begin{aligned} & \text { width=9.4* } \\ & 10^{\wedge} 3 \text { inch } \\ & \text { height=9.7 } \\ & \text { *10^3 inch } \end{aligned}$	Incorr ect
MC	(CO1) Consider a raster system with the resolution of 1280×1024 pixels and the color palette calls for 1024 colors. What is the minimum amount of video RAM that the computer must have to support the	1.63 GB	Incor rect	1.63 MB	Corre ct	1.63 KB	Incor rect	None of these	Incorr ect

	above mentioned resolution and number of colors?						
MC	(CO1) How much time is spent scanning across each row of pixels during screen refresh on a raster system with resolution of 1280x1024 and a refresh rate of 60 frames per second?	16.3 ns		Incor rect	16.3 micro second	Corre ct	16.3 sec

MC	(CO3) Apply 2-D reflection over a triangle $A B C$ with vertices $A(5,1), B(8,3)$, and $C(10,1)$ about a straight line PQ. Line PQ can be formed by applying rotation over a straight line $y=-$ x through an angle of 75 degrees in anticlockwise direction. Find out the resultant coordinate of A after transformation s.	$\begin{aligned} & ((5+\sqrt{ } 3) / 2,(\\ & 5 \sqrt{ } 3-1) / 2) \end{aligned}$	corre ct	$\begin{aligned} & ((5+\sqrt{ } 3),(5 V \\ & 3-1)) \end{aligned}$	Incor rect	$\begin{aligned} & ((5+\sqrt{ } 3),(5- \\ & \sqrt{ } 3)) \end{aligned}$	Incor rect	None of these	Incorr ect
MC	(CO3) Apply 2-D reflection over a triangle $A B C$ with vertices $\mathrm{A}(5,1), \mathrm{B}(8,3)$, and $C(10,1)$ about a straight line PQ. Line PQ can be formed by applying rotation over a straight line $y=-$ x through an angle of 75 degrees in anticlockwise direction. Find out the resultant coordinate of B and C after transformation s.	$\begin{aligned} & ((8+3 \sqrt{ } 3),(8 \\ & \sqrt{3}-3)) \text { and } \\ & ((10+\sqrt{ } 3),(1 \\ & 0 \sqrt{ }-1)) \end{aligned}$	Incor rect	$\begin{aligned} & ((8+3 \sqrt{ } 3) / 2 \text {, } \\ & (8 \sqrt{ } 3-3) / 2) \\ & \text { and } \\ & ((10+\sqrt{ } 3) / 2 \text {, } \\ & (10 \sqrt{ }-1) / 2) \end{aligned}$	Corre ct	$\begin{aligned} & ((10+\sqrt{ } 3),(\\ & 10 \sqrt{ }-1)) \\ & \text { and } \\ & ((8+3 \sqrt{ } 3),(\\ & 8 \sqrt{ } 3-3)) \end{aligned}$	Incor rect	$\begin{aligned} & ((10+\sqrt{ } 3) / 2, \\ & (10 \sqrt{ } 3-1) / 2) \\ & \text { and } \\ & ((8+3 \sqrt{ } 3) / 2 \text {, } \\ & (8 \sqrt{ } 3-3) / 2) \end{aligned}$	Incorr ect

MC	(CO2) An Animation shows a car driving along a road which is specified by a Bezier curve with the following control points: x: 05 Y: $0 \quad 40 \quad 5$ 15 The animation lasts 10 seconds and the key frames are to be computed at 1 second intervals. Calculate the position of car on the road at the start of the 6th second of animation. What is the x coordinate of the position?	2.952	Incor rect	29.52	Corre ct	295.2	Incor rect	0.2952	Incorr ect
MC	(CO2) An Animation shows a car driving along a road which is specified by a Bezier curve with the following control points: X: $0 \quad 5$ 40 Y: $0 \quad 40$ 15	16.92	corre ct	1.692	Incor rect	169.2	Incor rect	0.1692	Incorr ect

	lasts 10 seconds and the key frames are to be computed at 1 second intervals. Calculate the position of car on the road at the start of the 6th second of animation. What is the y coordinate of the position?					

	detection algorithm the surface ABC is backface (True/False).						
MC							
(CO5) Assume that at point P on the surface, the normal, light and sight (viewing) vectors are: n=j,							

| illumination
 model. | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

	ks+kd=0.95, which implies that 5\% of the energy from the light source is absorbed. Determine the intensity also when halfway vector is used.						

	draw the circle in one octant?								
MC	(CO2) In DDA algorithm, the value of x and y will be incremented by \qquad if slope<1.	$\begin{aligned} & x=x+1 \\ & y=y+1 \end{aligned}$	Incor rect	$\begin{aligned} & x=x+1 / m \\ & y=y+1 \end{aligned}$	Incor rect	$\begin{aligned} & x=x+1 \\ & y=y+m \end{aligned}$	Corre ct	$\begin{aligned} & x=x+1 / m, \\ & y=y+m \end{aligned}$	Incorr ect
MC	(CO2) The region codes of the two points are given as 1001 and 0101, then the line is	Partially inside and partially outside	Incor rect	Completely outside	Corre ct	Completel y inside	Incor rect	None of these	Incorr ect
MC	(CO2) The starting point of the line is $(5,8)$ and the ending point is $(9,11)$. How many intermediate points will be calculated using bresenham line drawing algorithm?	5	Incor rect	4	Incor rect	2	Incor rect	3	Corre ct
MC	(CO3) Two successive scaling are \qquad in nature.	Additive	Incor rect	Multiplicati ve	Corre ct	Subtractiv e	Incor rect	None of these	Incorr ect
MC	(CO4) Execute the Z buffer algorithm to illuminate the pixels on an 8*8 display. The surfaces to be probed for visibility are: A: $(1,4,3)$ $(3,4,3)(3,6,3)$ $(1,6,3)$	1	Incor rect	2	Corre ct	3	Incor rect	None of these	Incorr ect

	$\begin{aligned} & \hline \text { B: }(2,3,2)(4,3,2) \\ & (4,5,2)(2,5,2) \\ & C:(4,1,1)(7,1,1) \\ & (4,4,1) \\ & \text { Assume the } \\ & \text { intensities of } \\ & \text { the surfaces A, } \\ & \text { B, C as } 10,20 \text {, } \\ & 30 \text { respectively. } \\ & \text { What is the } \\ & \text { value of depth } \\ & \text { buffer on } \\ & \text { location (4,3). } \\ & \text { Viewing point is } \\ & \text { at +infinity. } \\ & \text { (Note: Pixel } \\ & \text { indexing should } \\ & \text { start from 0) } \\ & \hline \end{aligned}$								
MC	(CO4) Execute the Z buffer algorithm to illuminate the pixels on an 8*8 display. The surfaces to be probed for visibility are: A: $(1,4,3)$ $(3,4,3)(3,6,3)$ $(1,6,3)$ B: $(2,3,2)(4,3,2)$ $(4,5,2)(2,5,2)$ C: $(4,1,1)(7,1,1)$ $(4,4,1)$ Assume the intensities of the surfaces A , B, C as 10,20 , 30 respectively. What is the value of refresh buffer on location (6,1). Viewing point is at +infinity. (Note: Pixel indexing should start from 0)	10	Incor rect	20	Incor rect	30	Corre ct	None of these	Incorr ect

MC	(CO3) A circle, if scaled only in one direction becomes a/an?	Hyperbola	Incor rect	Ellipse	Corre ct	Parabola	Incor rect	Remains a circle	Incorr ect
MC	(CO4) Back face detection algorithm works on approach?	Object space	Corre ct	Image space	Incor rect	Both A and B	Incor rect	None of these	Incorr ect
MC	(CO3) In 3D, rotation through an arbitrary line that does not passes through an origin requires number of rotations.	7	Incor rect	5	Corre ct	3	Incor rect	None of these	Incorr ect
MC	(CO4) The method which is based on the principle of checking the visibility point at each pixel position on the projection plane are called	Object space methods	Incor rect	Image space methods	Corre ct	Both A and B	Incor rect	None of these	Incorr ect
MC	(CO5) How many types of shading techniques are present?	2	Incor rect	3	Corre ct	4	Incor rect	5	Incorr ect
MC	(CO5) Flat shading suffers from an effect called \qquad	Mocha effect	Incor rect	Mach band effect	Corre ct	Both A and B	Incor rect	None of these	Incorr ect
MC	(CO3) If we want to rotate an arbitrary axis to coincide with any principal axis in	3	Incor rect	1	Incor rect	2	Corre ct	4	Incorr ect

	3D, how many rotations will be performed?								
MC	(CO4) Area subdivision algorithm is also known as	Quad tree method	corre ct	Octree method	Incor rect	Bothe A and B	Incor rect	None of these	Incorr ect
MC	(CO5) Illumination models are categorized into:	Local and global	corre ct	Static and dynamic	$\begin{aligned} & \text { Incor } \\ & \text { rect } \end{aligned}$	Phong and half way	$\begin{aligned} & \hline \text { Incor } \\ & \text { rect } \end{aligned}$	None of these	Incorr ect
MC	(CO5) In diffuse reflection, the intensity is calculated as $\mathrm{I}=\mathrm{L}^{*}(\mathrm{Kd}) * \cos (\mathrm{th}$ eta) where, L is intensity of light source, Kd is diffuse reflection coefficient and theta is the angle between light direction and surface normal. What is the range of theta here?	$\begin{aligned} & \text { 0<=theta<= } \\ & 180 \end{aligned}$	Incor rect	$\begin{aligned} & 0<\text { theta<18 } \\ & 0 \end{aligned}$	Incor rect	$\begin{aligned} & 0<\text { theta<9 } \\ & 0 \end{aligned}$	Incor rect	$\begin{aligned} & \hline 0<=\text { theta<= } \\ & 90 \end{aligned}$	Corre ct
MC	(CO5) In diffuse reflection, the intensity is calculated as $\mathrm{I}=\mathrm{L}^{*}(\mathrm{Kd}) * \cos (\mathrm{th}$ eta) where, L is intensity of light source, Kd is diffuse reflection coefficient and theta is the angle between light direction	Behind	Corre ct	Infront of	Incor rect	Adjacent	Incor rect	None of these	Incorr ect

	and surface normal. For theta>90, light source is \qquad the object.								
MC	(CO3) The most basic transformation that are applied in threedimensional planes are:	Translation	Incor rect	Scaling	Incor rect	Rotation	$\begin{aligned} & \text { Incor } \\ & \text { rect } \end{aligned}$	All of these	Corre ct
MC	(CO3) Rotation around front to back is called?	Roll	corre ct	Pitch	Incor rect	Yaw	Incor rect	None of these	Incorr ect
MC	(CO3) Transformation of object to the origin is called?	Coordinate transforma tion	Incor rect	Geometric transforma tion	Corre ct	Both A and B	Incor rect	None of these	Incorr ect
MC	$\begin{array}{\|l} \hline \text { (CO3) How } \\ \text { many } \\ \text { transformation } \\ \text { s are required } \\ \text { in 3D if the } \\ \text { object has to } \\ \text { rotate about an } \\ \text { axis that is } \\ \text { parallel to any } \\ \text { principle axis? } \\ \hline \end{array}$	5	Incor rect	7	$\begin{aligned} & \text { Incor } \\ & \text { rect } \end{aligned}$	3	Corre ct	None of these	Incorr ect
MC	(CO3) Transform the given position vector [3 211 1] by the following sequence of operations: i) Translate by $(-1,-1,-1)$ in x, y, z respectively. li) Rotate by 30 degree about x axis and 45 degree about y axis. Find out	$\begin{aligned} & \hline[1.768, \\ & 0.866,- \\ & 1.061,0] \end{aligned}$	Incor rect	$\begin{aligned} & \hline[1.768, \\ & 0.866,- \\ & 1.061,1] \end{aligned}$	Corre ct	[0.768, 0.866, 1.061,1]	Incor rect	[0.768, 0.866, 1.061,0]	Incorr ect

the transformed coordinates.									

