
| Name:<br>Enrolı             | ment No:                                                                                                                                                                                                                                                                                                                                                                                         |                         |  |  |  |  |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|--|
|                             | UNIVERSITY OF PETROLEUM AND ENERGY STUDIES<br>End Semester Examination, July 2020                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |
| Course<br>Course<br>Nos. of |                                                                                                                                                                                                                                                                                                                                                                                                  | VI<br>02 hrs<br>5 : 100 |  |  |  |  |  |  |
| Q1.                         | The       domain that refers to image plane itself and the domain that refers to       Fourier transform         1.       Spatial domain in both       2.         2.       Frequency domain in both         3.       Spatial domain and Frequency domain respectively         4.       Frequency domain and Spatial domain respectively                                                          | [1.5]<br>[CO1]          |  |  |  |  |  |  |
| Q2.                         | <ul> <li>If r for be the gray-level of image before processing the gray-level in the range [0, L-1]? and s after processing then which expression defines the negative transformation,</li> <li>1. s = L - 1 - r</li> <li>2. s = cr<sup>y</sup>, c and <sup>y</sup> are positive constants</li> <li>3. s = c log (1 + r), c is a constant and r ≥ 0</li> <li>4. none of the mentioned</li> </ul> | [2]<br>[CO1]            |  |  |  |  |  |  |
| Q3.                         | 4.       Indire of the mentioned         The process of extracting information       from the image is called as         1. Image enhancement       2. Image restoration         3. Image Analysis       4. Image compression                                                                                                                                                                    | [1.5]<br>[CO1]          |  |  |  |  |  |  |
| Q4.                         | Consider a 4 bit gray scale image of 1024x1024. If this image is transmitted across a channel of 2<br>Mbps, what transmission time?<br>1. 1 SEC<br>2. 2 SEC<br>3. 3 SEC<br>4. 4 SEC                                                                                                                                                                                                              | [2]<br>[CO1]            |  |  |  |  |  |  |
| Q5.                         | 4. 4 SEC         What is the storage requirement of 1024 X 1024, 8 level gray level image?         1. 1024X1024X1 bits         2. 1024X1024X2 bits         3. 1024X1024X3 bits         4. 1024X1024X4 bits                                                                                                                                                                                       |                         |  |  |  |  |  |  |
| Q6.                         | Intensity range of 8-bit pixel image is:<br>1. 0 to 15<br>2. 0 to 127<br>3. 0 to 255<br>4. 0 to 256                                                                                                                                                                                                                                                                                              | [1.5]<br>[CO1]          |  |  |  |  |  |  |
| Q7.                         | <ul> <li>4. 0 to 256</li> <li>What is the method that is used to generate a processed image that have a specified histogram?</li> <li>1. Histogram linearization</li> <li>2. Histogram equalization</li> <li>3. Histogram matching</li> <li>4. Histogram processing</li> </ul>                                                                                                                   | [1.5]<br>[CO1]          |  |  |  |  |  |  |

| Q8.         | What is the output of a smoothing, linear spatial filter?                                     |                |  |  |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|--|
| <b>Q</b> 0. | 1. Median of pixels                                                                           |                |  |  |  |  |  |  |
|             | 2. Maximum of pixels                                                                          | [CO2]          |  |  |  |  |  |  |
|             | 3. Minimum of pixels                                                                          |                |  |  |  |  |  |  |
|             | 4. Average of pixels                                                                          |                |  |  |  |  |  |  |
| Q9.         | Given an image with only 2 pixels and 3 possible values for each pixel, what is the number of | [2]            |  |  |  |  |  |  |
|             | possible image histograms that can be formed?                                                 | [CO2]          |  |  |  |  |  |  |
|             | 1.3                                                                                           |                |  |  |  |  |  |  |
|             | 2.6                                                                                           |                |  |  |  |  |  |  |
|             | 3.9                                                                                           |                |  |  |  |  |  |  |
|             | 4. 12                                                                                         |                |  |  |  |  |  |  |
| Q10.        | To convert a continuous image $f(x, y)$ to digital form, we have to sample the function in    | [1.5]          |  |  |  |  |  |  |
|             | 1. Coordinates                                                                                | [CO2]          |  |  |  |  |  |  |
|             | 2. Amplitude                                                                                  |                |  |  |  |  |  |  |
|             | 3. All of the mentioned                                                                       |                |  |  |  |  |  |  |
| <b>.</b>    | 4. None of the mentioned                                                                      |                |  |  |  |  |  |  |
| Q11.        | Image processing approaches operating directly on pixels of input image work directly in      | [1.5]          |  |  |  |  |  |  |
|             | 1. Transform domain                                                                           | [CO1]          |  |  |  |  |  |  |
|             | 2. Spatial domain<br>3. Inverse transformation                                                |                |  |  |  |  |  |  |
|             | 4. None of the Mentioned                                                                      |                |  |  |  |  |  |  |
| Q12.        |                                                                                               | [1.5]          |  |  |  |  |  |  |
| Q12.        |                                                                                               | [T.5]<br>[CO1] |  |  |  |  |  |  |
|             | (x, y+1), (x, y-1)<br>This set of pixels is called                                            |                |  |  |  |  |  |  |
|             | 1. 4-neighbors of p                                                                           |                |  |  |  |  |  |  |
|             | 2. Diagonal neighbors                                                                         |                |  |  |  |  |  |  |
|             | 3. 8-neighbors                                                                                |                |  |  |  |  |  |  |
|             | 4. None of the mentioned                                                                      |                |  |  |  |  |  |  |
| Q13.        | 1 0 1 0 1 1                                                                                   | [2]            |  |  |  |  |  |  |
|             | 1 1 1 0 2 2                                                                                   | [CO4]          |  |  |  |  |  |  |
|             | 2 6 5 5 6 1                                                                                   |                |  |  |  |  |  |  |
|             | 2 5 7 5 6 2                                                                                   |                |  |  |  |  |  |  |
|             | 1 6 5 6 5 1                                                                                   |                |  |  |  |  |  |  |
|             | 1 5 7 7 5 1                                                                                   |                |  |  |  |  |  |  |
|             |                                                                                               |                |  |  |  |  |  |  |
|             |                                                                                               |                |  |  |  |  |  |  |
|             | 0 0 0 0 0 1                                                                                   |                |  |  |  |  |  |  |
|             | For segmenting the above gray scale image, the possible threshold values is/are               |                |  |  |  |  |  |  |
|             | 1. 1                                                                                          |                |  |  |  |  |  |  |
|             | 2.3                                                                                           |                |  |  |  |  |  |  |
|             | 3.4                                                                                           |                |  |  |  |  |  |  |
|             | 4. Both 3 and 4                                                                               |                |  |  |  |  |  |  |
| Q14.        | Thinning is an image-processing operation in which binary valued image regions are reduced to | [1.5]          |  |  |  |  |  |  |
|             | lines.                                                                                        | [CO3]          |  |  |  |  |  |  |
|             | True                                                                                          |                |  |  |  |  |  |  |
|             | False                                                                                         |                |  |  |  |  |  |  |
| Q15.        | (f O M O s) O s) = f O s                                                                      | [1.5]          |  |  |  |  |  |  |
|             | Above property is called as                                                                   |                |  |  |  |  |  |  |
|             | where f is image, s is structuring element and is O opening operation.                        |                |  |  |  |  |  |  |
|             | 1. idempotent operation                                                                       |                |  |  |  |  |  |  |
|             | 2. associative operation                                                                      |                |  |  |  |  |  |  |
|             | 3. Commutative operation                                                                      |                |  |  |  |  |  |  |
|             |                                                                                               |                |  |  |  |  |  |  |
|             | 4. Filter operation                                                                           |                |  |  |  |  |  |  |
|             |                                                                                               |                |  |  |  |  |  |  |



| Q18. | <ul> <li>MR CT</li> <li>Image: Second secon</li></ul> |                |  |  |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|--|--|
| Q19. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [2]            |  |  |  |  |  |  |  |
|      | $H_{1} = \frac{1}{12} \begin{bmatrix} -1 & -2 & -1 \\ -2 & 12 & -2 \\ -1 & -2 & -1 \end{bmatrix},  H_{2} = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [CO2]          |  |  |  |  |  |  |  |
|      | separable filter is/are 1. H1 2. H2 3. Both 4. None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |  |  |  |  |  |  |  |
| Q20. | The difference between the original image and the eroded is creates<br>1. higher level gray levels<br>2. low lever gray level<br><b>3. boundary</b><br>4. unfilled regions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [1.5]<br>[CO4] |  |  |  |  |  |  |  |
| Q21. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [1.5]<br>[CO4] |  |  |  |  |  |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |  |  |  |  |  |  |  |
|      | 2 -1 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |  |  |  |  |  |  |  |
|      | the this mask is convolved around an image it would respond more strongly to line<br>1. oriented horizontally<br>2. oriented vertically<br><b>3. lines oriented at 45</b> <sup>0</sup><br>4. lines oriented at -45 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |  |  |  |  |  |  |  |
| Q22. | <ul> <li>A binary image consists of disks of sizes 3,7,9,15,17 pixels. We want to remove all the disks of size less than 13 pixels. Which morphological opeartion perform the task?</li> <li>1. Erosion with structuring element(disk) of size 15</li> <li>2. Dilation with structuring element(disk) of size 15</li> <li>3. Erosion with structuring element(disk) of size 13</li> <li>4. Dilation with structuring element(disk) of size 13</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [2]<br>[CO3]   |  |  |  |  |  |  |  |
| Q23. | Morphology has been used in a wide range of applications. some of these are<br>1. Image enhancement, Image restoration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [1.5]<br>[CO3] |  |  |  |  |  |  |  |

|              | 2. Edge detection, Texture analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |  |  |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|--|
|              | 3. Only I<br>4. Both I and II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |  |  |  |  |  |  |
| Q24.         | What is the equivalent for a WHITE, 8-bit pixel to be processed under logic operation on gray scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [2]            |  |  |  |  |  |  |
| Q27.         | image?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |  |  |  |  |  |  |
|              | 1. 1111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |  |  |  |  |  |  |
|              | 2.0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |  |  |  |  |  |  |
|              | 3.00001111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |  |  |  |  |  |  |
|              | 4. 11110000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |  |  |  |  |  |  |
| Q25.         | (AoB)oB is equal to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [1.5]          |  |  |  |  |  |  |
|              | 1. A.B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [CO3]          |  |  |  |  |  |  |
|              | 2. A+B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |  |  |  |  |  |  |
|              | 3. A - B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |  |  |  |  |  |  |
|              | 4. A o B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |  |  |  |  |  |  |
| Q26.         | $a^{2} = a^{2} (1 + a^{2}) (1$ | [2]            |  |  |  |  |  |  |
|              | $\nabla^2 f = \frac{\delta^2 f}{\delta x^2} + \frac{\delta^2 f}{\delta y^2} \text{ Then, } \frac{\delta^2 f}{\delta x^2} \text{ and } \frac{\delta^2 f}{\delta y^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [CO4]          |  |  |  |  |  |  |
|              | A Laplacian for an image f(x, y) is defined as: Is given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |  |  |  |  |  |  |
|              | 1. $[f(x + 1, y) + f(x - 1, y) - 2f(x, y)]$ and $[f(x, y + 1) + f(x, y - 1) - 2f(x, y)]$ respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |  |  |  |  |  |  |
|              | 2. $[f(x + 1, y + 1) + f(x, y - 1) - 2f(x, y)]$ and $[f(x, y + 1) + f(x - 1, y) - 2f(x, y)]$ respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |  |  |  |  |  |  |
|              | 3. $[f(x, y + 1) + f(x, y - 1) - 2f(x, y)]$ and $[f(x + 1, y) + f(x - 1, y) - 2f(x, y)]$ respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |  |  |  |  |  |  |
| 0.07         | 4. $[f(x, y + 1) + f(x, y - 1) + f(x, y)]$ and $[f(x + 1, y) + f(x - 1, y) + f(x, y)]$ respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101            |  |  |  |  |  |  |
| Q27.         | A mask of size 3*3 is formed using Laplacian including diagonal neighbors that has central coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [2]            |  |  |  |  |  |  |
|              | as 9. Then, what would be the central coefficient of same mask if it is made without diagonal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [CO2]          |  |  |  |  |  |  |
|              | neighbors?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |  |  |  |  |  |  |
|              | <b>1.5</b><br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |  |  |  |  |  |  |
|              | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |  |  |  |  |  |  |
|              | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |  |  |  |  |  |  |
| Q28.         | Aim of image restoration is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [1.5]          |  |  |  |  |  |  |
| Q20.         | 1. Enhancement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [CO5]          |  |  |  |  |  |  |
|              | 2. Matching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [000]          |  |  |  |  |  |  |
|              | 3. Estimate original image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |  |  |  |  |  |  |
|              | 4. All of the above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |  |  |  |  |  |  |
| Q29.         | Anis a transformation that preserves collinearity and the ratio of distances (for example – the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [1.5]          |  |  |  |  |  |  |
|              | midpoint of a line segment is still the midpoint even after the transformation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [CO5]          |  |  |  |  |  |  |
|              | 1. affine transformation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |  |  |  |  |  |  |
|              | 2. rigid transformation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |  |  |  |  |  |  |
|              | 3. projective transformation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |  |  |  |  |  |  |
|              | 4. elastic transformation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |  |  |  |  |  |  |
| Q30.         | Assume a square structuring element of size d/4 is used to dilate a square image of size d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [2]            |  |  |  |  |  |  |
|              | Calculate the side of dilated image?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [CO3]          |  |  |  |  |  |  |
|              | 1. d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |  |  |  |  |  |  |
|              | 2. d/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |  |  |  |  |  |  |
|              | 3. 3d/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |  |  |  |  |  |  |
|              | 4. 5d/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |  |  |  |  |  |  |
| Q31.         | Assume a square structuring element of size d/4 is used to erode a square image of size d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [2]            |  |  |  |  |  |  |
|              | Calculate the side of eroded image?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [CO3]          |  |  |  |  |  |  |
|              | 1. d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |  |  |  |  |  |  |
|              | 2. d/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |  |  |  |  |  |  |
|              | 3. 3d/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |  |  |  |  |  |  |
|              | 4. 5d/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [4 = ]         |  |  |  |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17 61          |  |  |  |  |  |  |
| Q32.         | Convolution in spatial domain is equivalent to multiplication in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [1.5]          |  |  |  |  |  |  |
| Q32.         | 1. frequency domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [1.5]<br>[CO2] |  |  |  |  |  |  |
| Q32.         | 1. frequency domain       2. time domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |  |  |  |  |  |  |
| Q32.         | <b>1. frequency domain</b> 2. time domain         3. spatial domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |  |  |  |  |  |  |
|              | <ol> <li>frequency domain</li> <li>time domain</li> <li>spatial domain</li> <li>all of the above</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [CO2]          |  |  |  |  |  |  |
| Q32.<br>Q33. | <ol> <li>frequency domain</li> <li>time domain</li> <li>spatial domain</li> <li>all of the above</li> <li>Filter that replaces pixel value with medians of intensity levels is</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [CO2]<br>[1.5] |  |  |  |  |  |  |
|              | <ol> <li>frequency domain</li> <li>time domain</li> <li>spatial domain</li> <li>all of the above</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [CO2]          |  |  |  |  |  |  |

|      | <ul><li>3. median filter</li><li>4. sequence mean filter</li></ul>                                                                                                                                |                |  |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|--|
| Q34. | Example of similarity approach in image segmentation is                                                                                                                                           | [1.5]          |  |  |  |  |  |  |
|      | 1. Edge based segmentation                                                                                                                                                                        |                |  |  |  |  |  |  |
|      | 2. Boundary based segmentation                                                                                                                                                                    |                |  |  |  |  |  |  |
|      | 3. Region based segmentation<br>4. None of these                                                                                                                                                  |                |  |  |  |  |  |  |
| Q35. | Find the effect of mean filter over center pixel in 3 X 3 neighborhoods.                                                                                                                          | [2]            |  |  |  |  |  |  |
|      | 2 2 2 2 2                                                                                                                                                                                         | [CO2]          |  |  |  |  |  |  |
|      | 2 2 2 2 2                                                                                                                                                                                         |                |  |  |  |  |  |  |
|      | 2 2 5 2 2                                                                                                                                                                                         |                |  |  |  |  |  |  |
|      | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                           |                |  |  |  |  |  |  |
|      |                                                                                                                                                                                                   |                |  |  |  |  |  |  |
|      | 1. 21/9                                                                                                                                                                                           |                |  |  |  |  |  |  |
|      | 2. 21                                                                                                                                                                                             |                |  |  |  |  |  |  |
|      | 3. 23/9                                                                                                                                                                                           |                |  |  |  |  |  |  |
| 026  | 4. 23                                                                                                                                                                                             | [0]            |  |  |  |  |  |  |
| Q36. | First derivative approximation says that values of gradient for constant intensities must be<br><b>1.0</b>                                                                                        | [2]<br>[CO4]   |  |  |  |  |  |  |
|      | 2.1                                                                                                                                                                                               |                |  |  |  |  |  |  |
|      | 3. non zero                                                                                                                                                                                       |                |  |  |  |  |  |  |
|      | 41                                                                                                                                                                                                |                |  |  |  |  |  |  |
| Q37. | Following is/are types of Geometric Transformation                                                                                                                                                | [1.5]          |  |  |  |  |  |  |
|      | 1. Rigid transformation<br>2. Affine transformation                                                                                                                                               | [CO5]          |  |  |  |  |  |  |
|      | 3. Projection transformation                                                                                                                                                                      |                |  |  |  |  |  |  |
|      | 4. Elastic transformation                                                                                                                                                                         |                |  |  |  |  |  |  |
|      | 5. All of these                                                                                                                                                                                   |                |  |  |  |  |  |  |
| Q38. | Following is an example of affine transformation:                                                                                                                                                 | [1.5]          |  |  |  |  |  |  |
|      | 1. Rotation                                                                                                                                                                                       | [CO5]          |  |  |  |  |  |  |
|      | 2. Translation<br>3. Scaling                                                                                                                                                                      |                |  |  |  |  |  |  |
|      | 4. All of these                                                                                                                                                                                   |                |  |  |  |  |  |  |
| Q39. | For boundary extraction of an object, we can use                                                                                                                                                  | [1.5]<br>[CO4] |  |  |  |  |  |  |
|      | 1. Sharpening                                                                                                                                                                                     |                |  |  |  |  |  |  |
|      | 2. High pass filtering                                                                                                                                                                            |                |  |  |  |  |  |  |
|      | 3. Morphological Algorithm 4. All of the above                                                                                                                                                    |                |  |  |  |  |  |  |
| Q40. | Horizontal gradient of pixels is denoted by Gy                                                                                                                                                    |                |  |  |  |  |  |  |
| _    | True                                                                                                                                                                                              |                |  |  |  |  |  |  |
|      | False                                                                                                                                                                                             | [1.5]          |  |  |  |  |  |  |
| Q41. | Gray level image segmentation is generally based on two properties                                                                                                                                |                |  |  |  |  |  |  |
|      | <ol> <li>Discontinuity and similarity</li> <li>Continuity and similarity</li> </ol>                                                                                                               |                |  |  |  |  |  |  |
|      | 3. Only similarity                                                                                                                                                                                |                |  |  |  |  |  |  |
|      | 4. None of the above                                                                                                                                                                              |                |  |  |  |  |  |  |
| Q42. | Image registration is often used as a preliminary step for                                                                                                                                        |                |  |  |  |  |  |  |
|      | 1. Image Fusion                                                                                                                                                                                   |                |  |  |  |  |  |  |
|      | 2. Image Enhancement<br>3. Edge Detection                                                                                                                                                         |                |  |  |  |  |  |  |
|      | 4. Image Segmentaion                                                                                                                                                                              |                |  |  |  |  |  |  |
| Q43. | In Region Split and Merge algorithm splitting of the image is                                                                                                                                     | [1.5]          |  |  |  |  |  |  |
|      | recorded using a tree structure known as Heaptree.                                                                                                                                                | [CO4]          |  |  |  |  |  |  |
|      |                                                                                                                                                                                                   |                |  |  |  |  |  |  |
|      | True                                                                                                                                                                                              |                |  |  |  |  |  |  |
|      | False                                                                                                                                                                                             | [4 5]          |  |  |  |  |  |  |
| 044  |                                                                                                                                                                                                   |                |  |  |  |  |  |  |
| Q44. | In diagnosis, image obtained from a single modality like MRI, CT etc, may not needed to combine information obtained from other modalities also to improve information from MRI and CT modalities | [1.5]<br>[CO5] |  |  |  |  |  |  |

|              | such a way that information without any loss of the input information and without any redundant                   |                |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|
|              | obtained from different modalities the images might be in different coordinate fusion. The aligning of            |                |  |  |  |  |  |
|              | the input images before proceeding with the fusion is be able to provide all the required information.            |                |  |  |  |  |  |
|              | It is the information acquired. For example combination of dual modalities separately. The aim is to              |                |  |  |  |  |  |
|              | provide a the fusion results is an image that gives more cy or artifacts. In the fusion of medical images         |                |  |  |  |  |  |
|              | systems and have to be aligned properly for efficient called                                                      |                |  |  |  |  |  |
|              | 1. Image registration         2. Image morphing                                                                   |                |  |  |  |  |  |
|              | 3. Image Restoration                                                                                              |                |  |  |  |  |  |
|              | 4. Image Compression                                                                                              |                |  |  |  |  |  |
| Q45.         | Inverse filtering is sensitive to noise                                                                           | [1.5]          |  |  |  |  |  |
|              | 1. True                                                                                                           | [CO2]          |  |  |  |  |  |
|              | 2. False                                                                                                          |                |  |  |  |  |  |
|              | <ul><li>3. Not</li><li>4. Only Gaussian noise</li></ul>                                                           |                |  |  |  |  |  |
| Q46.         | Logic operations between image. Which one is that? two or more images are                                         | [1.5]          |  |  |  |  |  |
| <b>Q</b> 101 | performed on pixel-by-pixel basis, except for one that is performed on a                                          | [CO1]          |  |  |  |  |  |
|              | single. Which one is that?                                                                                        |                |  |  |  |  |  |
|              | 1. AND                                                                                                            |                |  |  |  |  |  |
|              | 2. OR                                                                                                             |                |  |  |  |  |  |
|              | 3. XOR<br>4. NOT                                                                                                  |                |  |  |  |  |  |
| Q47.         | A NOT<br>Methods for Estimation of degradation functions is/are                                                   | [1.5]          |  |  |  |  |  |
| <b>_</b>     | 1. Observation                                                                                                    | [CO2]          |  |  |  |  |  |
|              | 2. Experimentation                                                                                                |                |  |  |  |  |  |
|              | 3. Mathematical Modelling                                                                                         |                |  |  |  |  |  |
|              | 4. All of the above                                                                                               |                |  |  |  |  |  |
| Q48.         | Region growing is aimage segmentation approach                                                                    | [1.5]          |  |  |  |  |  |
|              | 1. bottom-up       2. Top down                                                                                    | [CO4]          |  |  |  |  |  |
|              | 3. All of the above                                                                                               |                |  |  |  |  |  |
|              | 4. None of the above                                                                                              |                |  |  |  |  |  |
| Q49.         | $Ri \cap Rj = \emptyset$                                                                                          | [1.5]          |  |  |  |  |  |
|              | Above property states that                                                                                        | [CO4]          |  |  |  |  |  |
|              | 1. The union (or sum) of all regions equal the whole image. All pixels in the must be assigned to a               |                |  |  |  |  |  |
|              | region.<br>2. The region is contiguous and connected.                                                             |                |  |  |  |  |  |
|              | 3. The intersection of any pair of adjacent regions equals the empty set. Each pixel belongs to                   |                |  |  |  |  |  |
|              | a single region only; there is no overlap between adjacent regions.                                               |                |  |  |  |  |  |
|              | 4. For each region the uniformity predicate is true. Each region must satisfy some particular uniformity          |                |  |  |  |  |  |
|              | criteria.                                                                                                         | [1.5]          |  |  |  |  |  |
| Q50.         | Several highly contrasted objects with different gray level distributions. The shape of the histogram             |                |  |  |  |  |  |
|              | contains several hills and valleys of separation. it is referred as <b>1. Multimodal distribution</b>             |                |  |  |  |  |  |
|              | 2. Bimodal distribution                                                                                           |                |  |  |  |  |  |
|              | 3. Unimodal distribution                                                                                          |                |  |  |  |  |  |
| Q51.         | Two images having one pixel gray value 01010100 and 00000101 at the same location, are operated                   | [2]            |  |  |  |  |  |
|              | against AND operator. What would be the resultant pixel gray value at that location in the enhanced               |                |  |  |  |  |  |
|              | image?                                                                                                            |                |  |  |  |  |  |
|              | 1. 10100100<br>2. 11111011                                                                                        |                |  |  |  |  |  |
|              | <b>3. 0000100</b>                                                                                                 |                |  |  |  |  |  |
|              | 4. 11100011                                                                                                       |                |  |  |  |  |  |
| Q52.         | What is the sum of the coefficient of the mask defined using gradient.                                            |                |  |  |  |  |  |
|              | 1.0                                                                                                               |                |  |  |  |  |  |
|              | 2.1                                                                                                               |                |  |  |  |  |  |
|              | 31                                                                                                                |                |  |  |  |  |  |
| Q53.         | 4. not defined<br>Which morphological operation is used for smoothing the contour of an object in grayscale image | [1.5]          |  |  |  |  |  |
| w            |                                                                                                                   | [1.5]<br>[CO3] |  |  |  |  |  |

|      | 1. Erosion                                                                                                                                 |                |  |  |  |  |  |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|--|--|--|
|      | 2. Dilation                                                                                                                                |                |  |  |  |  |  |  |  |  |
|      | 3. Opening                                                                                                                                 |                |  |  |  |  |  |  |  |  |
| Q54. | <ul> <li>4. Closing</li> <li>Which of the following filter(s) attenuates low frequency while passing high frequencies of an</li> </ul>     | [1.5]          |  |  |  |  |  |  |  |  |
| Q34. | image?                                                                                                                                     |                |  |  |  |  |  |  |  |  |
|      | 1. Unsharp mask filter                                                                                                                     | [CO2]          |  |  |  |  |  |  |  |  |
|      | 2. Highpass filter                                                                                                                         |                |  |  |  |  |  |  |  |  |
|      | 3. Zero-phase-shift filter                                                                                                                 |                |  |  |  |  |  |  |  |  |
| Q55. | 4. All of the above         Zero crossing operator use the following                                                                       |                |  |  |  |  |  |  |  |  |
| Q00. | 1. First derivative                                                                                                                        | [1.5]<br>[CO5] |  |  |  |  |  |  |  |  |
|      | 2. Second derivative                                                                                                                       |                |  |  |  |  |  |  |  |  |
|      | 3. Sobel operator                                                                                                                          |                |  |  |  |  |  |  |  |  |
| Q56. | 4. Gaussian operator<br>wiener filtering is used for                                                                                       | [1.5]          |  |  |  |  |  |  |  |  |
| QJU. | 1. noise filtering only                                                                                                                    | [CO5]          |  |  |  |  |  |  |  |  |
|      | 2. image enhancement                                                                                                                       | []             |  |  |  |  |  |  |  |  |
|      | 3. image restoration                                                                                                                       |                |  |  |  |  |  |  |  |  |
| Q57. | <ul> <li>4. image registration</li> <li>Consider the two image subsets I1 and I2. For V = {2}, determine whether I1 and I2 are:</li> </ul> | [2]            |  |  |  |  |  |  |  |  |
| Q37. | (i) $4$ -connected.                                                                                                                        | [2]<br>[CO5]   |  |  |  |  |  |  |  |  |
|      | (ii) 8-connected.                                                                                                                          | []             |  |  |  |  |  |  |  |  |
|      | (iii) M-connected.                                                                                                                         |                |  |  |  |  |  |  |  |  |
|      |                                                                                                                                            |                |  |  |  |  |  |  |  |  |
|      |                                                                                                                                            |                |  |  |  |  |  |  |  |  |
|      | 4 2 0 0 4 2 1 1 5 2                                                                                                                        |                |  |  |  |  |  |  |  |  |
|      |                                                                                                                                            |                |  |  |  |  |  |  |  |  |
|      |                                                                                                                                            |                |  |  |  |  |  |  |  |  |
|      |                                                                                                                                            |                |  |  |  |  |  |  |  |  |
|      |                                                                                                                                            |                |  |  |  |  |  |  |  |  |
|      |                                                                                                                                            |                |  |  |  |  |  |  |  |  |
|      | 1. 4-Connected only                                                                                                                        |                |  |  |  |  |  |  |  |  |
|      | 2. 8-Connected only<br>3. m-Connected only                                                                                                 |                |  |  |  |  |  |  |  |  |
|      | 4. 4,8 and m-Connected                                                                                                                     |                |  |  |  |  |  |  |  |  |
| Q58. | Consider the following image segment                                                                                                       | [2]            |  |  |  |  |  |  |  |  |
|      | 3 1 2 1 (g)                                                                                                                                | [CO5]          |  |  |  |  |  |  |  |  |
|      | 3 1 2 1 ( <b>q</b> )                                                                                                                       |                |  |  |  |  |  |  |  |  |
|      | 2 2 0 2                                                                                                                                    |                |  |  |  |  |  |  |  |  |
|      | 1 2 1 1                                                                                                                                    |                |  |  |  |  |  |  |  |  |
|      |                                                                                                                                            |                |  |  |  |  |  |  |  |  |
|      | (p) 1 0 1 2                                                                                                                                |                |  |  |  |  |  |  |  |  |
|      | Let set of intensities $V = \{0, 1\}$ . Compute the $D_4$ , $d_8$ , and $D_m$ distances (if any) between pixels <b>p</b> and               |                |  |  |  |  |  |  |  |  |
|      | q.                                                                                                                                         |                |  |  |  |  |  |  |  |  |
|      | 1. D4=0, D8=5 and 6, Dm=5                                                                                                                  |                |  |  |  |  |  |  |  |  |
|      | 2. D4=0, D8=0, Dm=5<br>3. D4=0, D8= 6, Dm=5                                                                                                |                |  |  |  |  |  |  |  |  |
|      | 3. D4=0, D8= 6, Dm=5<br>4. D4=0, D8=5 and 6, Dm=0                                                                                          |                |  |  |  |  |  |  |  |  |
| Q59. | Consider the following histogram of 3-bit gray level image: The image has two regions R1 and R2,                                           | [2]            |  |  |  |  |  |  |  |  |
|      | where R1 belongs to foreground pixels and R2 belongs to background. It is given that the 40%                                               | [CO5]          |  |  |  |  |  |  |  |  |
|      | pixels belong to the r2 region. Find the optimum threshold T using p-tile method.                                                          |                |  |  |  |  |  |  |  |  |
|      | i 0 1 2 3 4 5 6 7                                                                                                                          |                |  |  |  |  |  |  |  |  |
|      |                                                                                                                                            |                |  |  |  |  |  |  |  |  |
|      |                                                                                                                                            |                |  |  |  |  |  |  |  |  |

|      | Ni                | 10                            | 80       | 210 | 200       | 100 | 150 | 50 | 200                                                                            |              |
|------|-------------------|-------------------------------|----------|-----|-----------|-----|-----|----|--------------------------------------------------------------------------------|--------------|
|      | 1.4<br><b>2.3</b> |                               |          |     |           |     |     |    |                                                                                |              |
|      | 3. 5<br>4. 6      |                               |          |     |           |     |     |    |                                                                                |              |
| Q60. | a pixe            | el to be in<br>Ilate the<br>7 | n region |     | e to nois |     |     |    | an gray level values. The probability o<br>om the mean values is 1 gray-level. | [2]<br>[CO4] |