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Abstract

Operations scheduling of chemical process industries has been great matter of attention in
last couple of decades because of its importance in increasing the capacity of plant
performance and reducing the cost associated with running the plant. Numerous
formulations have been proposed to address the problems of optimizing short term and
cyclic schedules of batch and continuous plants based on different time and event based
model.. Short term scheduling of batch and continuous processes is a critical issue to
ensure optimal use of resources, such as raw materials or equipments in process plants.
The objectives of the process may either be to maximize profit or to minimize cost of
production or make span. This requires best possible allocation of batches to the time
horizon of interest. This can be done either by discrete time formulation or continuous
time formulation. Discrete time formulation involves the division of time into equal
intervals over the time horizon such that the starting or ending of a task can take place
only at an event point. Continuous time formulations involve allocating the starting or
ending of the task at any point in the time horizon. Continuous time formulations have
been found to be more advantageous as compared to discrete time in terms of model

complexity, number of variables in the model and the computation time.

Oil refineries are increasingly concerned with improving the planning of their operations
and optimizing not only single production units but the whole production enterprise.
However, the modeling of the overall refinery operation from the crude oil arrival to the
distribution of oil products gives rise to intractable mathematical models. Researchers in
the past have developed decomposition technique to reduce the computational burden. An
effort has been made to understand short term scheduling of Refinery operation and to

analyze benchmark examples from literature and draw conclusion on analyses.

When a plant in operation encounters an unforeseen event either in the form of machine
breakdown or addition/ deletion of customer orders, reactive scheduling comes into

picture. Reactive scheduling requires information about the original schedule before the




occurrence of the deviation and the time and nature of deviation. It then creates a
schedule which takes into account the deviation, keeping in view the objective of the
process.

As a prerequisite to reactive scheduling, an effort has been made to understand short term

scheduling and to implement benchmark examples from literature.
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Chapter 1
Introduction

1.1 General Scheduling

Optimal use of the resources for getting the maximum profit has always been the area of
great concern for the people working in industry and in academics. Scheduling in process
operations refers to the procedures of allocating the different resources (processing units,
materials, utilities etc) to the processing tasks required to manufacture one or more
product and is crucial for improving production performance. Significant amount of
work has appeared in chemical literature concerning the scheduling. Reklaitis (1992)
reviewed the scheduling and planning of batch process operations, focusing on the basic
elements of scheduling problems of chemical manufacturing systems and the available

solution methods.

Rippin (1993) summarized the development of batch process systems engineering with
particular reference to the areas of design, planning, scheduling and uncertainty. Shah
(1998) examined different techniques for optimizing production schedules. Pekny and
Reklaitis (1998) discussed the nature and characteristics of the scheduling/planning and
pointed out the key implications for the solution methodology for these problems. Pinto
and Grossmann (1998) presented an overview of assignment and sequencing models used
in process scheduling with mathematical programming techniques. Recently Mendez at al

(2006) provided an up-to-date review of the state-of-the-art in this challenging area.

There are a great variety of aspects that need to be considered when developing
scheduling models for batch and continuous processes. Types of process, process
topology, inventory policies, demand patterns, resource constraints have great influence
on formulation. Time horizon, Changeovers, Batch size, batch processing times, Costs
associated with equipments, utilities, Inventories also put additional complexities to the

model. This diversity of factors makes the task of developing unified general methods
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quite difficult. At the same time. there might be the trade-off of having a number of
specialized methods that can address specific cases of this classification in a more

efficient way.

A roadmap is introduced that describes the main features of current optimization
approaches. This section is of particular importance because alternative ways of
addressing/formulating the same problem. These usually have a direct impact on the
computational performance, capabilities and limitations of the resulting optimization

model.
1.1.1 Time representation

First and most important issue is the time representation. Depending on whether the
events of the schedule can only take place at some predefined time points, or can occur at
any moment during the time horizon of interest, optimization approaches can be
classified into discrete and continuous time formulations. Discrete time models are based
on: (i) dividing the scheduling horizon into a finite number of time intervals with
predefined duration and, (ii) allowing the events such as the beginning or ending of tasks
to happen only at the boundaries of these time periods. Therefore, scheduling constraints
have only to be monitored at specific and known time points, which reduces the problem

complexity and makes the model structure simpler and easier to solve.

In continuous time formulations, timing decisions are explicitly represented as a set of
continuous variables defining the exact times at which the events take place. In the
general case, a variable time handling allows obtaining a significant reduction of the
number of variables of the model and at the same time, more flexible solutions in terms

of time can be generate
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1.1.2 Material Balance

The handling of batches and batch sizes gives rise to two types of optimization model
categories. The first category refers to monolithic approaches, which simultaneously deal
with the optimal set of batches (number and size), the allocation and sequencing of
manufacturing resources and the timing of processing tasks. These methods are able to
deal with arbitrary network processes involving complex product recipes. These models
employ the state-task network (STN), or the resource-task network (RTN) concept to
represent the problem. As shown in Fig. 1, the STN-based models represent the problem
assuming that processing tasks produce and consume states (materials). A special
treatment is given to manufacturing resources aside from equipment. The STN is a
directed graph that consists of three key elements: (i) state nodes representing feeds,
intermediates and final products; (ii) task nodes representing the process operations
which transform material from one or more input states into one or more output states
and; (iii) arcs that link states and tasks indicating the flow of materials. State and task

nodes are denoted by circles and rectangles, respectively.
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Figure 1.1: STN Representation
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In contrast. the RTN-based formulations employ a uniform treatment and representation
framework for all available resources through the idea that processing and storage tasks
consume and release resources at their beginning and ending times (see Fig. 2). In this
particular case, circles represent not only states but also other resources required in the

batch process such as processing units and vessels.

The second category comprises models that assume that the number of batches of each
size is known in advance which decomposes the whole problem into two stages, batching
and batch scheduling. The batching problem converts.the primary requirements of
products into individual batches aiming at optimizing some criterion like the plant
workload. Afterwards, the available manufacturing resources are allocated to the batches

over time
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Figure 1.2: RTN Representation
1.1.3 Event Representation

In addition to the time representation and material balances, scheduling models are based
on different concepts or basic ideas that arrange the events of the schedule over time with

the main purpose of guaranteeing that the maximum capacity of the shared resources is

never exceeded.
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Figure 1.3: Different concepts of event representation

As can be seen in Fig. 3, we classified these concepts into five different types of event
representations, which have been broadly utilized to develop a variety of mathematical
formulations for batch scheduling problems. Particularly, Fig. 3 depicts a schematic
representation of the same schedule obtained by using the alternative concepts. The small
example given involves five batches (a, b, ¢, d, €) allocated to two units (J1, J2). To
represent this solution, the different alternatives require: (a) 10 fixed time intervals, (b)
five variable global time points, (c) three unit-specific time events, (d) three
asynchronous time slots for each unit, (€) three immediate precedence relationships or

four general precedence relationships.

For discrete time formulations, the definition of global time intervals is the only option
for general network and sequential processes. In this case, a common and fixed time grid
valid for all shared resources is predefined and batch tasks are enforced to begin and
finish exactly at a point of the grid. In contrast to the discrete time representation,
continuous time formulations involve extensive alternative event representations, The
global time point representation corresponds to a generalization of global time intervals
where the timing of time intervals is treated as new model variable. In this case, a
common and variable time grid is defined for all shared resources. The beginning and the

finishing times of the set of batch tasks are linked to specific time points through the key

14




discrete variables. Models following this direction are relatively simple to implement

even for general scheduling problems.

In contrast to global time points, the idea of unit-specific time events defines a different
variable time grid for each shared resource. allowing different tasks to start at different
moments for the same event point. Because of the heterogeneous locations of the event
points, the number of events required is usually smaller than in the case of global time

points.

Slot based continuous-time formulations were initially focused on a wide variety of
sequential processes, have been recently extended to also consider general batch
processes. Time slots stands for a set of predefined time intervals with unknown
durations. The main idea is to postulate an appropriate number of time slots for each
processing unit in order to allocate them to the batch tasks to be performed. The selection
of the number of time slots required is not a trivial decision and represents an important
trade-off between optimality and computational performance. Slot-based representations
can be classified into two types: synchronous and asynchronous. The synchronous
representation, which is similar to the idea of global time points, defines identical or
common slots across all units in such a way that the shared resources involved in network
batch processes are more natural and easier to handle. Alternatively, the asynchronous
representation allows the postulated slots to differ from one unit to another, which for a
given number of slots provides more flexibility in terms of timing decisions than its

synchronous counterpart.

1.1.4 Objective function:

There are different measures of the quality of the solution that can be used for scheduling
problems. Typical measures of overall objective function in process scheduling problems
include minimize makespan, minimize earliness, minimize tardiness, minimize costs, and

maximize profit.
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1.2 Objective

We aim to understand short term scheduling models and the objective of this project is to
implement both continuous and discrete time formulations of benchmark examples of
short term scheduling from literature.

There are few models available for the short-term scheduling of refinery problem but
most of them rely on special assumptions that generally make the solution inefficient or
unrealistic for real world cases. To account for the major weaknesses of the available

mathematical approaches and suggest for improvement is the major goal of this project.
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Chapter 2
Literature Review

A critical review is given on the scheduling of different chemical processes. There has
been significant progress in the area of short-term scheduling of chemical processes,
including the solution of industrial-sized problems, in the last 20 years. Main features,
strengths and limitations of existing modeling and optimization techniques as well as
other available major solution methods are reviewed. Literature on the scheduling of
chemical processes can be divided into several classes on the basis of time and event

representation.

2.1 General Scheduling

2.1.1 Discrete time representation (Global time intervals)

The event representation based on the definition of global time intervals employs a
predefined time grid that is valid for all shared resources involved in the scheduling
problem, such as processing units. Events such as the beginning and ending of a task are
associated with the boundaries of these time intervals. Two of the earliest research
contributions that employed this type of discrete time representation were presented by
Bowman (1959) and Manne (1960) for job shop schedﬁling problems in the operations
research community literature. There have been notable subsequent developments, for
example, those by Pritsker, Watters, and Wolfe (1969) for resource-limited multiproject

and job shop scheduling.

Relevant modeling features of discrete models are based on the STN and RTN process
representation. The most relevant contribution for discrete time models is the state task
network representation proposed by Kondili, Pantelides, and Sargent (1993) and Shah,
Pantelides, and Sargent (1993) (see also Rodrigues, Latre,& Rodrigues, 2000). The STN
model covers all the features that are included at the column on discrete time in Table 1.
A simpler and general discrete time scheduling formulation can also be derived by means
of the resource task network concept proposed by Pantelides (1994). The major

advantage of the RTN formulation over the STN counterpart arises in problems involving
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identical equipment. Here, the RTN formulation introduces a single binary variable
instead of the multiple variables used by the STN model. The RTN-based model also
covers all the features at the column on discrete time in Table 1. The main limitations of
the time discretization methods are that (i) they correspond to an approximation of the
time horizon and (ii) they result in an unnecessary increase of the number of binary
variables in particular and of the overall size of the mathematical model. As a result of
these shortcomings of the time discretization methods, recent work aims at developing

efficient methods based on the continuous time representation.

2.1.2. Continuous time representation

Due to the inherent limitations of the discrete-time approaches, there has been a
significant amount of attention on the development of continuous-time representations in
the past decade. We classify all continuous-time approaches into two categories based on
the type of processes. The first category of approaches focuses on sequential processes
and the second category aims at the scheduling of general network-represented processes.
The critical differences between these two types of processes is that sequential processes
are order or batch oriented and do not require the explicit consideration of mass balances,

which has important implications for the modeling of related scheduling problems.

Sequential processes

One of the first approaches to formulate continuous-time models for the scheduling of
sequential processes, which can be single or multi-stage, is based on the concept of time
slots. At each stage, there can be one or multiple parallel units. When multiple units are
involved, time slots are defined for each unit. The basic idea is illustrated in Fig. 5(b).
Research contributions following this direction include those presented by Pinto and
Grossmann (1994, 1995, 1996), Pinto, Ttirkay, Bolio, and Grossmann (1998), Karimi and
McDonald (1997), Lamba and Karimi (2002a,b), Bok and Park (1998), Moon and
Hrymak (1999).

Because of the batch or order oriented characteristics of the sequential processes, it is
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possible to define continuous variables directly to represent the timings of the batches
without the use of time slots. This alternative direction has also been pursued to
formulate continuous-time scheduling models for sequential processes, as reported in the
work presented by Ku and Karimi (1988), Cerdd, Henning, and Grossmann (1997),
Meéndez et al. (2000b, 2001), Moon, Park, and Lee (1996), Hui, Gupta, and van der
Meulen (2000), Hui and Gupta (2001), Orgun, Altinel, and Hortasu (2001), and Lee. Heo,
Lee, and Lee (2002).

General network-represented processes

For general network-represented processes that allow batches to merge/split and thus
require explicit consideration of mass balance, two types of approaches have been
developed to build continuous-time scheduling formulations. The first approach
introduces a set of events or time slots that are used for all tasks and all units. We denote
the formulations applying this approach as “global event based models.” The second
approach defines event points on a unit basis, allowing tasks corresponding to the same
event point but in different units to take place at different times. This is the most general

and most rigorous representation and we denote it as “unit-specific event based models.”

Global event based models

There have been an increasing number of research contributions on continuous-time
formulations for scheduling of general processes. The earliest efforts were presented by
Zhang and Sargent (1996, 1998), Zhang (1995), Mockus and Reklaitis (1997, 1999a, b),
and Schilling and Pantelides (1996, 1999). Recent developments include the work
presented by Castro, Barbosa-Pévoa, and Matos (2001), Majozi and Zhu (2001), Lee,
Park, and Lee (2001), Burkard, Fortuna, and Hurkens (2002) and Wang and Guignard

(2002).

Most of these formulations have been based on either the STN or RTN process

representations. The basic idea of the continuous-time scheduling models based on global
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events is to introduce continuous variables to determine the timings of events or variable
time slots and use binary variables to assign important state changes of the system, for
example, the start or end of a task, to these events or time slots. Zhang and Sargent (1996,
1998) and Zhang (1995) developed the first such continuous-time model based on both
STN and RTN for mixed production facilities involving both batch and continuous

processes.

Mockus and Reklaitis (1997, 1999a, b) (also see Mockus, Eddy, Mockus, Mockus, &
Reklaitis, 1997, part V) proposed a similar approach based on the STN framework and
applied it to a variety of scheduling problems for muitiproduct/ multipurpose batch and
continuous plants. Their continuous-time formulation, which is called Non-Uniform
Discrete-Time Model (NUDTM), also leads to large scale MINLP problems. They can be
transformed into MILP problems if the objective function is of simple form. When a
more complicated objective is involved (for example, the maximization of overall profit
which takes into account storage cost and utility cost), they proposed a modified outer
approximation (Duran & Grossmann, 1986) or a Bayesian heuristic approach to solve the
resulting nonconvex MINLP problems. Schilling and Pantelides (1996, 1999) proposed a

continuous-time formulation based on the RTN framework.

Unit-specific event based models

In order to gain more flexibility in timing decisions without increasing the number of
time points to be defined, an original concept of event points was introduced by
lerapetritou and Floudas (1998). lerapetritou and Floudas (1998a, b), lerapetritou, Hene,
and Floudas (1999), Lin and Floudas (2001), lerapetritou and Floudas (2001) proposed a
novel continuous-time formulation for short-term scheduling of batch, semicontinuous,
and continuous processes. This formulation introduces an original concept of event points,
which are a sequence of time instances located along the time axis of a unit, each Fig. 5.
Event points defined for each unit representing the beginning of a task or utilization of

the unit. The basic idea is illustrated in Figure 5 The location of event points are different
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for different units, allowing different tasks to start at different moments in different units
for the same event point. The timings of tasks are then accounted for through special

sequencing constraints, as will be discussed in detail below.

Because of the heterogeneous locations of the event points for different units as well as
the definition of an event as only the starting of a task (compared to that in a global-event
based model which considers the starting and the finishing of a task as two events), for
the same scheduling problem, the number of event points required in this formulation is
smaller than the number of events in the global event based models described in the
previous section. This results in substantial reduction of the number of binary variables.
Compared to the discrete-time models and most of other continuous-time models, this
formulation leads to MILP models of smaller size mainly in terms of the number of

binary variables, which consequently requires less computational effort for their solution.

Janak, Lin and Floudas (2004), extended the work of lerapetritou and Floudas (1998) and
Lin and Floudas(2001) to account for resource constraints, various storage policies (UIS,
FIS, NIS, and ZW), variable batch sizes and processing times, batch mixing and splitting,
and sequence-dependent changeover times. In that model, tasks are allowed to continue
over several consecutive event points in order to accurately monitor the utilization of

resources and the storage of states so that specified limits are enforced.

Although JLF (2004), is relevant for batch plants with resources, allows task to continue
over several event points, and can handle mixed storage policies, but computationally it
does not perform well for problems without resources. Shaikh and Floudas (2008)
bridged these gaps in the literature and unifies both problem with and with out resources
to form a novel short term scheduling model using three index binary and continuous
variables that efficiently merges both the problems involving resource and no resource

constraints into a unified , eneric common framework.
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2.2 Cyclic Scheduling

Campaign mode of operation can be selected in batch plant operation when demands and
operating conditions are relatively stable. In this case, plants focus on producing only a
subset of products over a certain time period. In the same context, cyclic scheduling is
developed to make the operation decisions easier and profitable. It establishes an

operation schedule and makes it executed repeatedly.

Shah, Pantelides, and Sargent (1993) modified the formulation of Kondili et al. (1993)
formulation and extended it to the periodic scheduling of batch plants using a discrete
time representation. Schilling and Pantelides (1999) presented a periodic scheduling
formulation which is based on their earlier work on continuous-time representation for
short-term scheduling problem. More recently, Castro, Barbosa-Povoa, and Matos (2003)
modified their short-term scheduling formulation to fit periodic scheduling requirement
for an industrial application. The proposed model is based on the basic RTN

representation and encounters the main limitation of the prohibitive model size.

In most of the early work presented in the area of single-campaign scheduling, the cycle
time of a particular product was commonly defined as the average elapsed time for the
production of a batch of that product. This definition is not suitable for schedules in
which different batches of the same product may be of different sizes. Wellons and
Reklaitis (1989) consider a number of batches of potentially different sizes following
different paths through the plant equipment. In this case, a cycle involves the production
of exactly one batch along each of the paths, and the cycle time is defined as the shortest
period between the start of successive cycles. In the multiple product campaign case, a
different cycle time is defined for each product. However, neither of the above cycle time
definitions is appropriate for schedules of the generality considered here. First, because of
the possible coupling of products through shared intermediates, it is not always
meaningful to define different cycle times for different products. Also relating cycle time

to the production of one or more batches is not particularly helpful since batch identity is

not necessarily preserved.
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Shah, Pantelides, and Sargent (1993) considered a cycle as a sequence of operations
potentially involving the production of all desired products, and the utilization of all
available resources. The cycle time is the shortest time interval at which these operations

can be repeated - thus, there is only one cycle time for all products being considered.

Wu and lerapetritou (2004) extended the work by lerapetritou and Floudas (1998a, b)
based on the STN representation, and develops the cyclic scheduling formulation with the

inherited advantage of using few binary variables.

Although the emphasis has always been on developing the cyclic schedule of batch plants
but quite a few works has also been done on developing the cyclic schedule of continuous
plant. Sahinidis and Grossmann (1990) addressed the problem of cyclic multiproduct
scheduling on continuous parallel product lines. This plant configuration is typically used
in the manufacturing of specialty chemicals plant. Pinto and Grossmann(1994) presented
a novel formulation for cyclic scheduling of multistage, multiproduct continuous plant
which consists of stages involving one production line that are interconnected by storage
tanks. Castro and Novais (2007) presented a new mixed integer nonlinear program
MINLP model for the periodic scheduling of multistage, multiproduct continuous plant
featuring equipment units in parallel that are subject to sequence dependent changeovers.

The formulation was based on RTN based presentation.
2.3 Short term scheduling of refinery operations

In the literature, mathematical programming technologies have been extensively
concerned with and developed in the area of long-term refinery planning, while short-
term scheduling has received less attention. Fewer publications have been appeared to
address the short-term scheduling of refinery operations. (Zhang & Zhu, 2000) proposed
a decomposition approach, which decomposes the overall refinery model into a site level
and a process level. Pinto and Moro (2000) presented planning and scheduling model.

Luo and Rong (2007) presented hierarchal approach for short term scheduling in
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refineries. This paper focuses on a hierarchical approach with two decision levels for
short-term scheduling problems in refineries. The optimization model at the upper level

and the heuristics and rules adopted in simulation system at the lower level are presented.

The overall oil-refinery system is decomposed into three parts. The first part involves the
crude-oil unloading, mixing and inventory control, the second part consists of the
production unit scheduling which includes both fractionation and reaction processes, and

the third part depicts the finished product blending and shipping end of the refinery.

Shah (1996) applied mathematical programming techniques to crude-oil scheduling.
However the models are prohibitively expensive due to the nature of discrete time
representation. The problem of crude-oil unloading with inventory control is addressed
by Lee, Pinto, Grossmann, and Park (1996) based on time discretization and by Jia and
lerapetritou (2003) using continuous time based model. Reddy, Karimi and Srinivasan
(2004) presented the first complete continuous-time (MILP) formulation for the short-
term scheduling of crude-oil unloading operations and later improved the formulation by
adding Revised Reddy’s Algorithm(RAA).

Furman, Jia and lerapetritou (2007) proposed a generalized model to robustly hand the
synchronization of time events with material balances than the previous models in
literature by Jia and lerapetritou (2003). Karuppiah, Furman and Grossmann (2008)
proposed a new decomposition approach to the MINLP problem proposed by Furman, Jia
and lerapetritou (2007). Very recently, Saharidis and lerapetritou (2009) and Saharidis
and Dallery(2009) proposed a new approach which provides not only the optimal

scheduling but also the optimal type of mixture preparation.
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Jia and lerapetritou (2004) developéd a comprehensive mathematical programming
model based on a continuous time formulation for the scheduling of oil-refinery
operations and decomposed the overall problems into three domains: the crude-oil
unloading and blending, the production unit operations, and the product blending and
delivery. Gasoline blending is a crucial step in refinery operation as gasoline can yield
60-70% of a refinery’s profit. The process involves mixing various stocks, which are the
intermediate products from the refinery, along with some additives, such as antioxidants

and corrosion inhibitors, to produce blends with certain qualities.
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Chapter 3

Scheduling of Refinery Crude Oil Operations

Planning and scheduling of the flow of crude oil is a very important problem in
petroleum refineries due to the potential realization of large cost savings and improved
feeds. The overall oil-refinery system can be decomposed into three parts as depicted in
Figure. 10. The first part involves the crude-oil unloading, mixing and inventory control,
the second part consists of the production unit scheduling which includes both

fractionation and reaction processes, and the third part, depicts the finished product

blending and shipping end of the refinery.
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Figure 3.1: Graphical Overview of refinery system

Significant amount of work has been done on developing the schedules for the first
problem. People have proposed different formulations using different time
representations. Initial works were based on discrete time based formulation but proved
prohibitive in nature when tested for large complex configurations of crude oil loading

and unloading. But, in recent past, researchers have switched to continuous time based

techniques to schedule the crude oil loading and unloading operations.
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Jia and lerapetritou (2003) addressed the problem of gasoline blending and
distribution .The problem involves the optimal operation of gasoline blending, the
transfer to product stock tanks and delivering schedule to satisfy all of the orders. An
efficient mixed — integer linear programming formulation is developed based on

continuous representation of time domain.

Summary and Future Directions

In this paper, a continuous-time formulation was presented for the short-term scheduling
of a gasoline blending and distribution system. It is shown that the resulting model can be
solved efficiently even for realistic large-scale problems. The main advantage of the
proposed approach is the full utilization of the time continuity. This results in smaller
models in terms of variables and constraints because only the real events have to be
modeled. On the contrary, discrete-time formulations which are commonly used for
refinery operations result in an excessive number of variables and constraints because of
unnecessary time discretization. The relaxation of the fixed product recipe is our current
focus. However, this results in a non convex formulation for which global optimization
should be employed.

The overall refinery scheduling consists of all three stages: the scheduling for a crude oil
charging system, the downstream production steps, and a finished product blending and
shipping system. Previously published work addressed the crude oil unloading, mixing,
and inventory, control (Jia and lerapetritou6). Work is currently performed that involves
the production unit scheduling ( Figure 1) as well as the integration of all three different

problems (Figure 1) and will be the subject of future publications
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Chapter 4

SHORT TERM SCHEDULING OF BATCH & CONTINUOUS
PROCESSES

4.1 Introduction

The research area of batch and continuous process scheduling has received great attention
from both the academia and the industry in the past two decades. This is motivated, on
one hand, by the increasing pressure to improve efficiency and reduce costs, and on the
other hand, by the significant advances in relevant modeling and solution techniques and
the rapidly growing computational power.

In multiproduct and multipurpose batch, semicontinuous and continuous plants, different
products are manufactured via the same or different sequence of operations by sharing
available pieces of equipment, intermediate materials and other production resources.
They have long been accepted for the manufacture of chemicals that are produced in
small quantities and for which the production process or the demand pattern is likely to
change. The inherent operational flexibility of these plants provides the platform for great
savings reflected in good production schedules.

general, scheduling is 2 decision making process to determine when, where and how to

In

produce a set of products given requirements in a specific time horizon, a set of limited

resources, and processing recipes. Due to the discrete decisions involved (e.g., equipment

assignment, task allocation over time) these problems are inherently combinatorial in
nature, and hence very challenging from the computational complexity point of view
Given the computational complexity of combinatorial problems arising from process
scheduling, it is of crucial importance to develop effective mathematical formulations

"to model the manufacturing processes and to explore efficient solution approaches for
such problems. All of the mathematical models in the literature can be classified into two
main groups based on the time representations. Early attempts relied on the discretization

of the time horizon into a number of time intervals and inevitably has the main
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limitations of model inaccuracy (i.e., discrete approximation of the time horizon which
leads to suboptimal solution by definition) and unnecessary increase of the overall size of
the resulting mathematical programming problems due to the introduction of large
number of binary variables associated with each discrete time interval. To address these
limitations, methods based on continuous-time representations have attracted a great
amount of attention and provide great potential for the development of more accurate and
efficient modeling and solution approaches

4.2 Classification of scheduling formulations

4.2.1 Time representation

The key issue for process scheduling broblems concerns the time representation. All
existing scheduling formulations can be classified into two main categories: discrete-time

models and continuous-time models. Early attempts in modeling the process scheduling
problems relied on the discrete-time approach, in which the time horizon is divided into a
number of time intervals of uniform durations and events such as the beginning and
ending of a task are associated with the boundaries of these time intervals.

To achieve a suitable approximation of the original problem, it is usually needed to use a
time interval that is sufficiently small, for example, the greatest common factor (GCF) of
the processing times. This usually leads to very large combinatorial problems of
intractable size, especially for real-world problems, and hence limits its applications.

The basic concept of the discrete-time approach is illustrated in Fig. 1 and further
discussion.

Due to the aforementioned limitations of the discrete time approach, researchers have
started developing continuous-time models in the past decade. In these models, events are
potentially allowed to take place at any point in the continuous domain of time. Modeling
of this flexibility is accomplished by introducing the concepts of variable event times,
which can be defined globally or for each unit. Variables are required to determine the
timings of events. The basic idea of the continuous-time approach is also illustrated in
Fig. 1. Because of the possibility of eliminating a major fraction of the inactive event-
time interval assignments with the continuous-time approach, the resulting mathematical
programming problems are usually of much smaller sizes and require less computational

efforts for their solution. However, due to the variable nature of the timings of the events

30




it becomes more challenging to model the scheduling process and the continuous-time
approach may lead to mathematical models with more complicated structures compared
to their discrete-time counterparts.
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Discrete-time representation

\j

Time
Continuous-time representation

Fig. 1. Discrete and contimious representations of time.

Figure 4.1

4.2.2 Discrete-time approaches

In discrete-time approaches for scheduling problems, the time horizon of interest is
divided into a number of time intervals of uniform durations. Events such as the
beginning and ending of a task are associated with the boundaries of these time intervals.
The main advantage of the discrete-time representation is that it provides a reference grid
of time for all operations competing for shared resources, such as equipment items. This
renders the possibility of formulating the various _constraints in the scheduling problem in

a relatively straightforward and simple manner,

Mathematical model

One of the common components in scheduling problems involves the allocation of units
to tasks. To model these assignments, binary variables Wijt are introduced to determine
whether or not a task (i) starts in unit ( j) at the beginning of time interval (T ) and the

following allocation constraints are formulated:
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where 1j is the set of tasks that can be performed in unit ( j), aij is the fixed processing
time of task (i) in unit ( j) and M is a sufficiently large positive number. Constraint
(1)states that at most one task can start in any unit at any time interval. Constraint (2)
further expresses the requirement that if task (i) starts in unit ( j) at time interval (T ) (i.e.,
Wijt =1), then no other task can start in the same unit until task (i) is finished after the
duration of «ij . Note that the latter constraint becomes trivially satisfied when task (i)
does not start at time (T ) (i.e., Wijt = 0). To account for batch-sizes and mass balances,
continuous variables Bijt are used to represent the amount of material which starts
undergoing task (i) in unit ( j) at time interval (T ), and Sst is the amount of material state
(s) during time interval (T ). The following constraints are introduced to represent the

relations among them and the corresponding binary variables
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where Vminij and Vmaxij are the minimum and maximum capacity of unit ( j) for task (i),
respectively; Ips and Ics the set of tasks that produce and consume state (s),
respectively;p p isand pc is the fractions of state (s) produced and consumed by task (),
respectively; Ji the set of units suitable for task (i); ais the processing time for state (s) by
task (i); and Cs is the storage capacity limit for state (s). Rst is the amount of state (s)

received from external sources at time interval (T ). Variable Dst represents the amount
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of state (s) delivered at time interval (T ). Constraints (3) enforce that if task (i) starts in

unit ( j) at time interval (T ) (i.e., Wijt = 1), the batch-size is bounded by the minimum

and maximum capacities of the involved unit (Vminij< Bijt £ Vmaxij ). When the task

does nottake place (i.e., Wijt = 0), the corresponding batch-size is zero (i.e., Bijt = 0).
The mass balance is expressed by Constraint(4), which states that the amount of state (s)
during time interval (T ) is equal to that during the previous time interval (T — 1) plus the
amount produced by tasks that finish at the end of the previous time interval (T -1
minus the amount consumed by tasks that start at the beginning of the current time
interval (T ), further adjusted by the amount received from or delivered to external
systems at this time interval (T ). The restriction on storage of a material state is then

represented by Constraint (5).
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4.3 MODEL & RESULTS

Four examples were implemented from literature, the first three based on discrete time

representation and the last based on continuous time representation.

CASE STUDY 1:

The example was taken from Shah et al (1993). The problem involved three feeds, four

intermediates and two products. The STN for the problem is shown below:

Product
ﬁﬁ%h
. IntAB
O._. Hesthng [ ] Resction2 P‘%"‘{}—_
Pecd A HoxtA N _—m
10% (2h
Impure B
It BC C) Separatica ;;O
Produes2
2h 15
O—’Z& Resction1 S0%] Reaction3
FeniB 0% 0%
FeedC
)
N/
Figd.2. STN for Case Study 1 (Shah et al, 1993)
The data and the recipe for the problem is given below:
Table 1.Data for Case Study 1
Time horizon: 9 h
Process Units Size Suitability Processing Time, h
Heater 100 Heating 1
Reactor 1 80 Reaction 1,2,3 2,2.1
Reactor 2 50 Reaction 1,2,3 2,2.1
Still 200 Separation 1 h for product 2, 2h
for impure E
Process States Storage Initial Amount Price
Capacity,kg
Feeds Unlimited Unlimited 0
Hot A 100 0 0
Intermediate AB 200 0 0
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Intermediate BC 150 0 0

Impure E 200 0 0

Products 1,2 Unlimited 0 1

The objective function was maximization of profit which was obtained using CPLEX

solver in GAMS as 241.5 units which was consistent with the result in the paper.

- -
=
PN

Sets

-

i tasks/ n, i, r2, r3, 8/

j units/heater, reacrorli, reactord, still/
t time points /td*t5/

s states/A, hotk, B, C, 3C, 28, E, pl, p2/

raw(s) raw mat / B, 3, C /;

alias(i,ii)
alias(t,tt)?’

Parameters
C(s) max storage capacity
/a3 inf
3 inf
C inf
nota 1090
pa:] 200
8C i590
E 200
pl inf
p2 inf/:

Parameter ct(i) completion time for task i

/h 1
ri 2
r2 2
r3 1
s 2/:

scalar H /9/:

scalar GCF / 1 /:

scalar int inverval;

int = H / (card{t) * GCF}:
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display int;
parameter p(i) no of inverval over which cthe task i coccurs ;
/i

p(i) = CI (i) int;

display p’

Table

suit(i,j) suitabilicy for task i in unitc j
hearay reactarl reacrtor? s3till

n 1

rl 3 L

xrZ 1 3

r3 i 1

3 i;

Table

Vmax (i,j) max storage available for task i in unit j
heacer reactorl reactoxrd still

h 100

xl 80 50

r2 g0 50

r3 80 50

3 200;

Table

Vmin (i,j) min storage available for task i in unit j
heatear reactorl reactor2 still

h 0 0 0 0

rl 0 0 0 0

x2 0 0 0 0

r3 0 0 0 0

s 0 0 0 0;
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Table

rao({i,3) pYCEOrTich of inpuc of task i frcom 3tate 3
L  notz 3 z 2C 2 £ pl  pZ
: .5 0.5
P 7.4 0.6
rs g.2 9.8
E i :
Table
rhobar (i,8) proportion of output of task i from state 3
& notk 2 C aC 2 E pl p2
n 1
4
rl 4
x2 0.6 0.4
r3 1
0.1 0.9;

Table pt(i,3) processing time for output of task i to state s
2 hotk B C 8C 28 E pl ©p2

n 1

"
vl <
2 2
r2
3 i
r3
2 i
!
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Parameter Cc3t(3) ccst data

'

A

¥
0
(%]
W

IR T W

T ) gy
3 )
=l

LAE]
3
REERERY

)

kel
(3]
]
.

variable £ ocjective functaon?

binary Variables
W(i,3,c) if unic 3 performs task i in beginning of time interwval t;

positive Variable
B(i,j,t) amount of material which undergoes task i in unit j at the beginning of

Stated (s) amount of material which is stored in state s at the beginning of ctime

.
12

Bquations

alloc(j,t) allocation constraints
alloc2(i,j,t)

hatchconstraintmin (i,
batchconstraintmax (i,3,t) batch size constraint
1sizeconstraint(s,t) amc of material stored in state s must not exceed Cs

j,t) batch size constraint

teria
tbalance (s, T) macerial balance constraint
tbalanced (s, T) material balance constraint

sostfunction objective function;

alloc(j,t).. sum(i$(suit(i.j)); Wi, == 1;

Cime ¢

Stace (s,t) amount of material which is stored in state s at the beginning of time t

T

alloc2(i,j,)$(suit(i,j))-. sum(iiS(suit(ii.j), sum(tt$(ord(tt)>=ord(t) and ord(tt)<= (ord(t) +

p(i)'l))’ W(ii9j9tt))) -1 == H* (1 - W(isj:t));

batchconstraintmin(i,j,t)$(suit(i.))-- W(i,j,t)* Vmin(i,j) - B(i,j,t) =I= 0;
batchconstraintmax(i.j,t) $(suit(i.j))-- B(i,j,t) -W(i,,t)* Vmax(i,j) =I= 0;
materialsizeconstraint(s,t).. State(s,t) - C(s) =I=0;

matbalance(s,t)$(ord(t)>1 )..State(s,t)=e=State(s,t-1)+ sum(i,(rhobar(i,s)*
(Sum(j$(SUit(i,j)),(B(i:j,t'P(i)))))))-sum(i,(rho(i,s)*(sum(i$(suit(i,j)),B(i,j,t))))) :

matbalance0(s,t)$(ord(t)=1 )..State(s,t)=e=State0(s)+
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sum(i.(rhobar(i,s)* (sum(j$(suit(i.j)).(B(i.j.t-p(i)))))))-sum(i.(rho(i,s)*
(sum(j$(suit(i,))),B(1.j-)))) ;

costfunction..f=e=sum(s,sum(t$(ord(t)=card(t)),(Cost(s)*State(s,t))))-
sum(s,Cost(s)*State0(s));

*B.lo(i,j,t)=0;
*W.lo(i,j,t)=0;
state0.fx(s)$(not raw(s)) = 0;

Model discrete /all/;

option optcr=0;
option limrow = 1000;

option limcol = 1000;

solve discrete USING MIP maximizing f;
display W.1, B., state.l, state0., f.I;
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CASE STUDY 2:
The second case study was also taken from Shah et al (1993) and was the same as the
first case study except for the following modifications:
e Time horizon =10 h
e The storage capacities for hot A, intermediate AB and impure E is assumed to be
1000 kg while no storage capacity is available for intermediate BC.

e The price of the two products is set at 10 units.

The objective function was maximization of profit which was obtained using CPLEX

solver in GAMS as 2296.25 units which was consistent with the result in the paper.
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Sets

i tazks. -, rl, ¥Z, r3, 3

§ unita nezTer, razonoYl, reactorz, 3tilil
t time point3 o TivTll/

3 grares ., nctk, 3, C, 3C, B2, I, B, pa/
raw(s) raw mat / &, 3, C /3

alias(i,ii)
alias(t,tt):

Parameters
C(s) max storage capacity

B inf

c inf

hoth 1000
a3 1000
BC 0

E 1000
pl inf

r2 inf/;

Parameter ct (i) completion time for task i

/n 1
rl 2
r2 Z
r3 1
3 2/:

scalar H /10/;

scalar GCF / 1 /:

scalar int inverval;

int = H / (card(t) * GCF) :

display int’
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parameter p(i) nc of inverval cver which the task i obéursr ;,
p(i) = CT(i)} / int;
display p;

Table

suit (i,j) suitabilicy for task i in unit ]
heater reactorl  reactorl atill

n 1

rl 1 1

19 1 1

3 1 1

3 1;

Table

Vmax (i,j) max storage available for task i in unit j
heacer reactorl . reactor? still

h 100

rl 80 50

r2 80 50

r3 B0 50

s 200;

Table

Vmin(i,j) min storage available for task i in unit j
heater reagtorl reactorz 8till

h 0 0 0 0

r1 0 0 0 0

r2 0 0 0 0

r3 0 0 0 0

] 0 0 0 0:
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Table

rhobar (i,3) proportzon of output of task 1 from atate 3
L rotkh 3 C 3C A% £ pl  p2

r2 J.€ Jet

3 2.2 0.9;

Table pt(i,s) crocessing time for output of task i to state 3

) pY
Y hoti 3

~

B ! C 5C 33 E pl p2
n 1
rl 2
r2 2z 2
r3 1
3 2 1:

Parameter Cost(3) cost data
/
1Y
noth
B
C
3C
2B
IE
pl 10

p2  10/;

OO

[ve I vo T ' TR vo B s }

variable £ objective function;

binary Variables
P(i,j,t} if unit j performs task i in beginning of time interval t;
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positive Variahle

dmmﬁrmmmmmMmMMMMmhmwﬁw
s

oﬁmmqumﬁxneﬁﬂﬁMhHmuwxwwmsmtmmmmmﬂrme
Stated(s) ancant of raterial which iz stored in state 3 &v the beginning of tine

]
4

|
Equations

alloc(j,t) allocation constraints
alloc2(i,3,%)
%&tchconstraintmin(i,j,t) batch size constraint

%atchconstraintmax(i,j,t) batch size constraint
haterialsizeconstraint(s,t) ant of material stored in state s must not exceed (s

tbalance (s,t) material balance constraint
matbalanced (s, t) material balance constraint
eostfunction objective function;

alloc(i,t).. smii$(suit(i, i)}, BE,3,0)) 1= L
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alloc2(ij,t)S(suit(.i)).. sum{iiS(suir(iij)). sum(tS(ord(tt)>=ord(t) and ord(m)<= (ord(t) -

p@)-1). Wiy -1 =l= H* (1 - W0

batchconstraintmin(j.0)S(suit@)).. W(j.t* VminGj) - Bij.0) =l=0;

batchconstraintmax(j.t)S(suit(ij)).. B@.j.t) -W(.j.0)* Vmax(@j) =l=0;

materialsizeconstraint(s,0).. State(s,)- C(s) =I=0;
matbalance(s,)S(rd(t)>1)..State(s,t)=e=State(s.t-1)y+ sum(,(thobar(i.)*
(sum(GS(suit@).BG.j.t-pHMNN)-sum (. (tho(i,s)* (sum(S(suit(.)).BAi.0)))) ;
matbalance0(s.t)S(ord(t)=1)..State(s,)=e=Statel(s) + sum(i.(thobar(i.s)*
(sum(iS(suit(.)).BG.t-p(1))))))-sum(i.(tho(i.s)*(sum(iS(suit(Q.j)).B(ij.t)))) ;

~ostfunction.. £ =e= sun(s,sm{t$(ord(t)=card(t)), (Cost(s)*State(s,t))))-sm(s, Lost (3) *Staced (g))

T otalyo=ishs
PP A PYBIES

WE Tege o4 rizh
Folora,,oi=u

lstate0. fx(s)$ (not raw(s)) = 0;
Model discrete /all/;
option optcr=0;

option limrow = 1000;
option limcol = 1000;

solve discrete USING HIP maximizing £;
display W.1, B.1, state.l, state0.l, £.1;
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CASE STUDY 3:

This case study was taken from the Appendix of Shah et al (1993) and involved three

feeds, three intermediates and three products. The STN for the problem is as shown: .

FetdB bt /l:m\ B2
—/

FoedC ct @ c2
/

Fig.4.3. STN for Case Study 3 (Shah et al,1993)

The data and the recipe for the problem is shown below:
Table 2: Data for Case Study 3

Time Horizon:10 h

Process Units Size Suitability Task Processing
Times (h)
Unit 1 2029 Al )
Unit 2 1691 A2,Cl1 1,1
Unit 3 720 B1,C2 1,2
Unit 4 929 B2 1
Process States Storage Capacity Initial Amount Price
Feeds Unlimited Unlimited 0
Intermediate B, 10,000 0 0
Intermediate C
Intermediate A 0 0 0
Products A,B,C Unlimited 0 1,1,2.5

The objective function was maximization of profit which was obtained using CPLEX

solver in GAMS as 16,756 units which was consistent with the result in the paper.
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Sets

()

tasks/

unics/ 2

ai,
3

-t

states’k,
aw(s) xzaw mat / A, 3, C/

3
t time roints
3
r

alias (i,
alias(t,tt):

ii)

3,

C(s) max storage capacity

Parameter ct (i) completion time for task i

Parameters
23 inf
B inft
c inf
intk 10000
incB 100
intC 100
PR int
p3 inf
pC inf
/ :

/al 2
a2 i
bl i
b2 1
cl 1
c2 2
/:

scalar GCF
scalar int invervel;
int = H / (card(t) * GCF):

display int:;

lscalar H /10/:

/ 1/
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Table
suit(i,3) suitabilicy for task i ir
oy 3z

A

4

O Q G O w
L T R N R I
- [

- -~
)

~e

Table - -
Vmax (1,j) max storage available for task i in unit j

nl w2 u3 ué
2028

o

720

[

[
N = NY 1= N

928
1691

2]

720

Q

~e

Table o -
Vmin (i,3j) max storage available for task i in unit j

ul ul u3 u4

al
a2
(sX1
h2
cl
c2

3
’
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Table

rno(i,s) propcrtucn cf input

w
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]

Table

Y B C
a1
a2

bl

a B C
3l
a2
bl
b2
cl
c2

rhobar (i, 3) proportion cf cutput of task : from

Table pt(i,s) processing time for output

cf tazk 1 from state 8

-] e e
e vt meil deee e
”

-

nth inc3 intC

-
-

-
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Parameter Co3t(3) co3t daté

HETEE

P
wn

s e |
O w

~e

wvariable £ objective function;

binary Variables
W{(i,j,t) if unit j performs task i in beginning of time interval ¢;

positive Variable
B(i,j,t) amount of material which undergoes task i in unit j at the beginrning of

Stated(s) amount of material which is stored in 3tate s ac the beginning of time
4 1

.
’

]

Equations

alloc(j,t) allocation cengtraints

alloc2 (i,],t)

*pack (1,%)

atchconstraintmin (i, j,t) patch size constraint

atchconstraintmax(i,j, t) batch size conatraint \
terialsizeconstraint(s,t) amt of material stored in state s must not exceed Cs
tbalance(s,t) material balance canstraint
tbalancel(s,t) material balance constraint

costfunction objective function;
f P
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time t

scate(s,t) amount of material which is store i £t inmi .
tate(s,t) T d in state s at the beginning of time ¢



alloc(j,t).. sum(@S(suit(ij)). W(ij.t) =l=1;

alloc2(i j,)S(suit, ). sum(iiS(suit(iii)). sum(rS(erd@t)>=ord() and ord()=<= (ord(x) +
p@-1). Wi -1 =l= H* (1 - W) o

*pack(iy). sum(iS(suit@i). sum@SGrd@>=ord® and @<= ord()-p(r+1)
W) == 1; - ’

batchconstraintminGj.)S(suit@D).. W(id.)* Vmin(j) - Blj.t) == 0;

AN AN NARCAN

batchconstraintmax(ij,t)$(suit@j)).- BGj.t) -W(.j.* Vmax(ij) =l=0;

materalsizeconstraint(s,).. State(s.t) - C(s) == 0;

matbalance(s,))S(ord(t)>1). State(s,t) =e= State(s.t-1) + sum(, (thobar(.5)*
(S (suit)).(Bi+-pOMN)-sum . (cho(i.s)* (sum((S(suieG.N BALNN) :

matbalmceO(WS(gQ(tk1)..State(g§)=e=$tate0(s)+ sum(i,thobar(,.s)*
(sm(iS it B PEMN)-sumG. (ol (sum(S(suit i) BELON)

costfunction.. f =& s (3, sun (t$ (ord (v)=card(t} ), (Cost (s) *State(s,t))))-swn(s, [ost(s)*Stated(s))
’ ] '-

lstate0. £x(s)$ (not raw(s)} = 0;
Model discrete /all/:
option optcr=0;

option limraw = 1000;
option limcol = 1000;

lsolve discrete USING MIP magimizing f;
display W.1, B.1, gtate.l, gtated.l, f.1;
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CASE STUDY 4:
This case study was taken from lerapetritou & Floudas (1998). It consists of four states
and three units and the STN is as shown below. The model was implemented using

continuous time formulation using the constraints mentioned in the same paper.

Mathematical Formulation

The proposed formulation focuses around the following key ideas:

(a) Continuous time representation: The proposed formulation is based on a continuous
time representation that avoids the prepostulation of unnecessary time intervals. It only
requires the initial consideration of a necessary number of event points corresponding to
either the initiation of a task or the beginning of unit utilization. The location of these
points is unknown. (b) Decoupling of task events from unit events : The basic idea of the
proposed formulation is that it decouples the tusk events (i) from the unit events (j). This
is ac hievedby the consideration of different variables to represent the task events (i.e.,
the beginning of the task), denoted as ulv(i, n), and the unit events (i.e., the beginning of
unit utilization), denoted as yv(j, n). If task event (i) starts at event point (n) then
wv(i,n)=, otherwise it is zero. If unit event (i) takes place at event point (n), then yv(i,n)=
1, otherwise it is zero.(c) Variable Processing times: Processing times are considered to
vary with respect to the amount of the material being processed by the specific task.The

mathematical model for the short-term scheduling of batch plants involves the following

constraints:

Allocation Constraints

Y we(i,n) = yoliin), Vi€ mEN ()
tel; .

These constraints express that at each unit (j) and at a event point(n) only one of the tasks
that can be performed in this unit (i.e., i E 1j) should take place. If unit(i) is utilized
at event point (n), that is, yv(i,n) equal 1, then one of the wv(i,n) variables should be

activated. If unit (j) is not utilized at point (n), then all wv(i,n) variables take zero values

52



that is no assignments of tasks are made

Capacity Constraints

VMrw(i,n) < B(ijin) S ViP*twe(iin),
Viel, j€Ji, n€N (2)

where B(i, j, n) correspond to the amount of material undertaking task (i) in unit (j) at
event point (n). These constraints express the requirement for minimum amount, V.Fin,
of material in order for a unit (j) to start operating ta'k (i), and the maximum capacity of a
unit (i), Viy’z, when performing task (i). If wv(i,n) equals one, then constraints (2)
correspond to lower and upper bounds on the capacities B(ij,n). If wv(i,n) equals zero,

then all B(ij,n) variables become zero.

Storage Constraints

ST(s,n) < ST(s)™**, Vs €S, n €N 3)

where ST(s, n) corresponds to the amount of material (s) at event point (n). These
constraints represent the maximum available storage capacity for each state (s)

at each event point (n).

Material Balances

ST(s,n) = ST(s,n-1)-d(s,n)+
Zﬂfi Z B(ifjin -1)+

46’. jeJi

pri Z B(i, j,n),
ielo jeJi
Vs€S, neN 4)

where p¢; <0 >0 .

Pai = N A Represent the proportion of state (s) consumed or produced

from task (i), respectively. According to these constraints the amount of material of stat
e

(s) at event point (n) is equal to that at event point (n-) adjusted by any amount
s
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produced or consumed between the event points (n-I) and (n) and the amount required by

the market at event point(n) within the time horizon.

Duration Constraints

T!(i,jn) = T°(i.J,n) + aijwuli,n) + B;B(i,5,n)
viel, j€Ji, n€N (6)

Sequence Constraints: Same task in the same unit

TG, jn+1) > T/(i.jn)
~H(2 - wv(i,n) - yv(j, n))
viel, jeJ, neENn#N
N

The sequence constraints (7) state that task (i) starting at event point (n+l) should start
after the end of the same task performing at the same unit (i) which has already started at
event point (n). If task (i) takes place in unit (j) at event point (n) (i.e., wv(i,n)=yv(i,n)=1),
then we have the second term of (7) become zero. If either wv(i,n) or yv(j,n) or both are
equal to zero, then constraint (7) is relaxed. In a similar manner sequence constraints are

introduced for different tasks that can take place in the same or different units

(Ierapetritou and Floudas, 1997a.b).

Objective: Maximization of profit
Z Z price(s)d(s, n) (8)
a n

The objective shown in (8) is the maximization of production in terms of profit due to

product sales .
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Fig.4.4. STN for Case Study 4

The data and recipe for the problem is as shown below:
Table 3: Data for Case Study 4

Produce

Time Horizon:12 h

Units Capacity Suitability Mean Processing
Time (h)

Unit 1 100 Task 1 45
Unit 2 75 Task 2 3
Unit 3 50 Task 3 15
States Storage Capacity Initial Amount Price
State 1 Unlimited Unlimited 0
State 2 100 0 0
State 3 100 0 0
State 4 Unlimited 0 1

The objective function was maximization of profit which was obtained using CPLEX

solver in GAMS as 71.518 units which was consistent with the result in the paper.
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I

i tazxz /Tlv-

alias(i,ixr);
alias(j,33):

alias (n,nn)?
parameter Vmin(i,J):
Vmin (i,3)=0;

table suit(i,Jj)
al u2 w3
ti 1

T2 i
T3

Y

[

.
’

table Vmax(i,J)
ul uz u3

ct ot
[
-1
w

~e

parameter STmax(s)
/

sl inf
32 100
33 100
s4 inf
/:
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table rhoP

W o w n
W N e
}-

.

cduced frcm tesk i

(]

Ls}]
0
M
ct
|J
0
3
0}
el
W
ct
w
5]
m
o}
H

(s,1) rr

table rnhoC(s,i)} rropcrtion of stacte produced from task i
Ti T2 T3

£ i

52 1

33 1

34

.
’

table alpha(i,3j) constant term of processing task i at unit j

i u2 u3
Tl 3
2 2
£3 1

table beta(i,3) constant term of processing task i at unit j

ul
tl 0.03
v2
t3

.
-

ul u3

0.0266

scalar H /12/:

R

o

PR .
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[ —"

parameter price(s) price of state 3

/

()

v

[T
s Ry oy

~
~

binary variable
wv(i,n) binary variable that assign the beginning cf task i at event peint n
vyv(j,n) binery variable that assign the utilisation of unit j at even; goint n

.
’

positive variable

B (i, j,n) amount of material undergoing task i te unit j at event point n

ST (3,n) amecunt of state s at event point n

Ts(i,j,n) time that task i starts in unit j at event point n

Tf(i,j,n) time that task i finishes in unit j while it starts at event point n
STO(s) initial state of s

d(s,n) demand of state s at time point n

variable £;

equations
alloc(j,n)
capacitymin (i, j,n)
capacitymax (i, j,n)
storage (s, n)
matbalance (3,n)
E:tbalanceO(s,n)
duration(i,j,n)
eq_ssi(i,j,n) constraincs for same task in same unit
Eeq_ss2(i,j,n)
seq_ss3(i,j,n)

*seq_ds(iiijn) different taskin same unit
seq_dd(ijiij.n) different task in different unit
seq_comp(.j.n) completion of previous task
horizon_consl(ijn)

horizon_cons2(ij.n)

b
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alloc(.n).. sum(iS(suit@)). wy@m) ) =e=yv(n):
Vmin(.j)*wyn) =1=B{jn);

AN VR

capacitymin(ij.n)S(suitj))--

A AT

capacitvmax(i,j)S(suit@j)).. Bin) == Vmax@.)*wyGn):

storage(s.).. ST(s.p) =1= STmax(s);
ance(s,n)S(ard(@)>1)..ST(s.n)=e=ST(sn-1)+ sum(.hoP(s.i)*

matbal

SN R ATATA VA

(sum(§S(suit(.j)).BG.j.n-1))))-sum(i,¢hoC(s,i)* (sum G S(suit(.})).B(ij.n)))))-d(s.n) ;
matbalance0(s,n)S(ord(m)=1)..ST(s,n)=e=STO(s)}+ sum(i.(thoP(s.i)*
(sumGS(suit(().BG.ja-1))))-sum(i, (hoC(s.iy* (sum GS(suit).BGI )N

durationj .. TEGjR) =e= TsGimalphaGi)*

wy@n)tbeta(i])*Ba.in):

seq _ss1(ijmS( ord@)<card(m) 3(suit@.j) ).. TsGi.jn+l) =g= TfGjin) -H*Q-wv(in)-

w(m);

seq_ss2(ij.8(ord(m)<card@)S(suit@.D)).- Isijn+l) =g=Tsqjn);
seq_ss3QWS@&(nFcard(n)S(suit(ivJ))).- Tf(.j.n+1) =g= TfGjn);

eem deee a w10 iepdor,gnavA ml 3nS Apafri ez rrgiiTy Trguebts
: ISR ERRLe S BATGALE NI MURSACG S S ERARERUEE LR AR S S b

IR 5}

vl =gm TFie

-ptlraTar £ R P LWL B P oo
aleamal FEEOOLL,N,0 :’(4-;,:,,,;_ T, nine

3eq_dd(ii,jj,i,j,n)$i {ordn)<card{n) and ord(i) ne ord(if) V8 (suie(i,3) ). Ta(d,3,ne0) =g= TE(L, 33, 0) - 2-wiid, n) -y iid,n) )
Lt RN

SEq.cm(i,J',nmordlni<card(s)$lsui:(i.j}))-~ Te(i,j,2el) <= sm(ont {ord(zn)<Pord(n)) , swiii , (TE(1,3,mj ~Tsiii, 3, i)} ) ):

aorizon_ccnsl(1,j,n)S(suif.(i,j|).. TE{i, 3,0 31= B
sorizon cons2 (1,3, (suicii,3)) .. T80L,3,8) 1= B

2b3..f =e= sm(s, smin, price(sj*d(s,n) ) )i
1.fx{3,0)5 (ord(s)=4 and ord{a)=L )=0;

570,£x(3)$ (not raw(s))=0:
aption opter=0;
rode] continuous /all/;

solve continuous using HIP maximsing £
display £.1, d.1, ST.L, wv.l, yw.l, 1.1, 18.1,3.1
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CHAPTER 5

SUMMARY / CONCLUSIONS

Discrete & continuous time formulations were implemented from benchmark examples

from literature. The models were based on the constraints given in Shah et al (1993) for

discrete time models and on lerapetritou & Floudas (1998) for continuous time models.

The results obtained were consistent with that found in literature. Model statistics for the

case study are summarized below:

Table 4: Summary of Case Study Results

CASE STUDY 1 2 3 4
Discrete variables 48 88 66 30
Single variables 160 285 241 177
Single Equations 277 - 507 441 281
Objective value 241.5000 | 2296.2500 | 16756.0000 | 71.5182
Solver status Normal Normal Normal Normal
Completion | Completion | Completion Completion
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5.1 SCOPE OF FUTURE WORK

Future work would involve:
¢ Implementation of unit-specific continuous time formulations from research

papers showing an improvement on the lerapetritou & Floudas (1998) model
¢ Implementation of reactive scheduling formulations from research papers

¢ Development of a reactive scheduling model as an improvement on previous

existing models
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Chapter 6
Brief Introduction to GAMS

GAMS is a high level modeling system with following components :-

Components

e Language compiler

e Integrated high performance solvers
Models supported

e Linear Programs

¢ Non-Linear Programs

e Mixed Integer Optimization

Structure of GAMS model comprises of the following;:-

INPUTS
Set
e Declaration
e Assignment - indices
Data (Parameters, Tables, Scalars)
e Declaration
e Assignment - values
Variables
e Declaration
e Type Assignment
e Assignments of Bounds (optional)
Equations
o Declaration
e Definition
Model and Solve Statements

« Display Statements (optional)
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OouTPUT
Echo Print
e Errors (if present)
e Reference Maps
e Equation Listings
e Status Reports

e Results

Sets

e Sets are the basic building blocks of a GAMS model, corresponding exactly to the

indices in the algebraic representations of models.

Different ways of declaration sets :-
i supply points /1, 2/
j demand points n, 2,3/
set j demand points /1*3/;
e Alias(i,k)
e Multidimensional sets

e Dynamic Sets

Data

Different formats for data entry
e Lists
e Tables
e Direct Assignments

e Assignments from files

Data entry by lists
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e parameter d(j) demand at point j

/1100
2 200
3 300/
¢ List must be enclosed within slashes, entries separated by commas or

separate lines

M Domain Checking

M Default value is zero

. Scalar is considered as a parameter with no domain

. Parameter’s with multi-dimensional domains can also be entered by lists
e Data entry by tables

table dist(i,j) distance from i toj

1 2 3
1 102 53 50
2 30 212 45
® Declares parameter dist and specifies its domain as set of ordered pairs of Cartesian
product of i, j
Blanks are interpreted as zero

Domain checking
Entering tables with more than one dimension

Data entry by direct assignment
e parameter c(i,j) cost of transportation from i to j;

ci,j)=M* dist_1(i,j)*10;
e Semicolon between two statements
e Parameters used in computation have to be previously declared
e Domain checking

e Specific elements in the domain can be assigned by

C(‘l’,,3,) _ 100,
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Variables

Decision variables must be declared

Variables
x(i,j) shipment quantities in cases
z total transportation costs in  thousands of dollars ;

= Default type is free
= Different permissible types for variables

Variable Type Allowable Range of Variables
[free (default) L o0 to +00
|Positive 0 to +o0
[Negative -0 to 0
inary 0 or 1
IInteger 0,1,2,..etc

Summation and Product in GAMS

e Not possible to have standard mathematical notation for summation and product

e Summation
e sum(index of summation, summand)

e sum(j, x(i,))) is equivalent to

o sum((i,j), c(i,j)*x(i,j)) is equivalent to
e Product

e prod(j, x(i, j)) is equivalent to
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® Product and Summation can be used to make assignments and in implementing
equations

e Conditional summation and product

Equations

Must be declared and defined in separate statements

® Declaration :
® equations obj, constl, const2;
® Definition :
e The name of the equation being defined
® The domain
e  Domain restriction condition (opfional)
e The symbol .
o Left-hand-side expression
e Relational operator: =I=, =e=, or =g=
e Right-hand-side expression
The transportation example contains three of these statements.
o cost .. z=e=sum((i,j), c(i,j)*x(i.j)) ;
» supply(d) -- sum(j, x(i,j)) =I= a(i) ;
o demand(j) .. sum(i, x(i.j)) =g= b(j) ;

GAMS OUTPUT

e Echo Print

e Errors (if present)
e [Example ¥*** $160

e Summary of the error messages is given at the end of the filename.lst file
e Reference Maps
e Equation Listings
e Status Reports

e Result
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