MODELING & SIMULATION OF PROPYLENE/PROPANE FRACTIONATOR (C₃ SPLITTER) USING ASPEN HYSYS

A PROJECT REPORT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF TECHNOLOGY

IN

Refining & Petrochemical Engineering (ACADEMIC SESSION: 2005-2007)

BY
RAM KUMAR SUNDARAPU
Roll No: R080205015

UNDER THE SUPERVISION OF

Dr. D.N. Saraf

(Distinguished professor)

College Of Engineering,
University of Petroleum & Energy Studies,
Dehradun (U.A.)

May 2007

LIBRARY

UNIVERSITY OF PETROLEUM & ENERGY STUDIES

CERTIFICATE

This is to certify that the project work entitled "Modeling & Simulation of Propylene/Propane Fractionator(C₃ Splitter) using ASPEN HYSYS" submitted by Mr.Ram Kumar Sundarapu in partial fulfillment of the requirements for the degree of Master Of Technology (Refining & Petrochemical Engineering), at college of engineering, University of Petroleum and Energy Studies, is a record of the work carried by him at UPES, Dehradun under the guidance of "Dr.D.N.Saraf, Distinguished Professor, COE, UPES".

To the best of my knowledge, the contents of this project work did not form a basis of the award of any previous degree or published material by any one else.

Dr.D.N.Saraf

Professor, COE

UPES

Dehradun

Dr. B. P. Pandey 14 05 07

Dean, COE

UPES

Dehradun

UNIVERSITY OF PETROLEUM & ENERGY STUDIES

CERTIFICATE

This is to certify that the work contained in this thesis entitled "Modeling and Simulation of Propylene/Propane fractionator (C₃ Splitter) using ASPEN HYSYS" has been carried out by Mr.Ram Kumar Sundarapu under my supervision and that this work has not been submitted elsewhere for a degree.

Dr. D.N.Saraf,

Distinguished professor, College of Engineering,

University of petroleum and Energy Studies,

Dehradun - 248007.

<u>ACKNOWLEDGEMENT</u>

This is to acknowledge with thanks the help, guidance and the support that I have

received during my project work.

I avail this opportunity to place our profound sense of gratitude to our project guide

Dr. D.N. Saraf, Distinguished professor of college of engineering, UPES, Dehradun

for giving his valuable advice and guidance to pursue my project.

I am very much thankful to Mr. M.A. Subramanian (General Manager), Mr. J.N Shah

(DGM), GOP and Team of Naptha Cracker plant of IPCL (Indian Petrochemicals

Corporation Limited, Vadodara complex) in allotting a valuable project & extended

their co-operation throughout my project work.

I also express my sincere gratitude to Mr. T.Chandrasekhar, lecturer of college of

engineering, UPES, Dehradun for his guidance right from the beginning of the

investigation to its completion.

Iam immensely indebted to my parents, who have always rendered their support and

helped me to complete this project successfully.

I also place on record my recognition of the support provided by my colleagues, team

of UPES during the completion of this project.

Ram Kumar Sundarapu

Pay Lunar 14/05/05

M.Tech (Refining & Petrochemical Engineering)

Roll No. R080205015

UPES, Dehradun.

Email ID: ramkumar034@gmail.com

CONTENTS

List of tables

List of flow sheets .	
List of charts	
List of plots	
Chapter 1: Introduction	1-6
1.1 Distillation	1
1.2 Propylene/Propane fractionator	2
1.3 Objective of the thesis	. 6
Chapter 2: Mathematical Model Development	7-16
2.2 MESH equations for analytical modeling	8
2.3 General strategy of mathematical solution	11
2.4 Synthesis of equilibrium stage process	12
2.5 Inside-Out Method	17
Chapter 3: Introduction to Simulation	20-31
3.1 About Simulation package ASPEN HYSYS	21
3.2 Selecting thermodynamic models for process simulation	22
3.3 Selecting phase Equilibria method	23
3.4 Procedure for simulation	30
Chapter 4: Simulation results	32-41
4.1 Plant data	32 ·
4.2 Design case	34
4.3 Starting the Simulation	34
4.4 Results	41

Chapter 5: Sensitivity Study	
Work book results obtained from ASPEN HYSYS	42-48
5.1 Work book on C3 Splitter	
5.2 Connections page	
5.3 Solver page	
5.4 Vessel dynamic specification	,
5.5 Datasheet of feed, PGP, CGP, Bottom	
5.6 Recovery	
Chapter 6: Closing thoughts	50-59
7.1 Results & Discussion	50
7.2 Recent developments on C ₃ Splitter	51
7.3 Demand/Supply of propylene	56
7.4 Conclusion.	60
Nomenclature	61
References	62-63

62-63

List of tables: Table No. **Description** Page. No Tab 3.1 Simulation Packages 20 Tab 3.2 Classification of mixtures 24 Selection of phase equilibria method Tab 3.3 24 EOS(Equation of State) VS ACM(Activity Tab Coefficient models) 27 Tab SRK(Soave-Redlich-Kwong) VS PR(Peng Robinson) Models 29 Tab 5.1 Trays VS Packings 43 Tab 5.2 Types of trays differentiation 44 List of figures: Figure No. **Description** Page. No. Fig 1.1 Typical olefins plant 04 Fig 1.2 flowchart of Fluid catalytic cracking 05 Fig 2.1 Distillation column with one feed, one side Stream, total condenser & partial reboiler 16 Fig 2.2 Inside-out method Algorithm 18 List of charts: Chart No. **Description** Page No. Char 3.1 Decision making chart (Temperature)-1 25 Char 3.2 Decision making chart (Pressure)-2 26 List of plots: Plot No. **Description** Page No. Plot 1 Pressure VS tray position from top 47 Temperature VS tray position from top Plot 2 47 Column Properties VS tray position Plot 3 48 Plot 4 Flow VS tray position from top 48 Plot 5 K-value VS tray position from top 49 Plot 6 Composition VS tray position from top 49

Separations are "big business" in chemical processing. It has been variously estimated that the capital investment in separation equipment is 40-50 % of the total for a conventional fluid processing unit. Of the total energy consumption of an average unit, the separation steps accounts for about 70%. And of the separation consumption, the distillation method accounts for about 95%. In general, initial design of distillation tower involves specifying the separation of a feed of known composition and temperature. Constraints require a minimum acceptable purity of the overhead and/or bottoms product. The desired separation can be achieved with relatively low energy requirements by using a large number of trays, thus incurring large capital costs with the reflux ratio at its minimum value. On the other hand, by increasing the reflux ratio, the overhead composition specification can be met by a fewer number of trays but with higher energy costs. In particular, the optimization of reflux ratio is attractive for distillation columns that operate with:

- 1. High reflux ratio.
- 2. high differential product values between overhead and bottom
- 3. high utility costs
- 4. low relative volatility
- 5. feed light key far from 50%

In this project we explore a distillation column used in Petrochemical Complex; called Propylene splitter, an existing tower in a Naptha Cracking Process Plant.

1.1 Distillation:

Distillation is defined as a process in which a liquid or vapor mixture of two or more substances is separated into its component fractions of desired purity, by the application and removal of heat. It is also one of the most energy intensive operations. Hence, optimization of distillation column design and operation should get high priority.

The difference between liquid and vapor compositions is the basis for distillation operations. Relative volatility is a measure of the differences in volatility between two components, and hence their boiling points. It indicates how easy or difficult a particular separation will be. The relative volatility of component 'i' with respect to component 'j' is defined as

$$\alpha_{i,j} = y_i/x_i / y_j/x_j$$

Numerous distillation heuristics (rules of thumb) for quick optimization have emerged over the years[1]. For instance, heuristics on optimal reflux ratio as a certain multiple of the minimum reflux ratio have been widely used as quick tools to estimate optimum reflux ratio.

However, changes over time in the relative cost of equipment and energy (which affects operating cost) can affect the validity of such rules of thumb. Meanwhile, it has now become more feasible to assess their validity, as today's availability of commercial simulators and high-speed computers allows rigorous and thus more accurate distillation calculations be carried out with relative ease.

Distillation columns present challenging:

- design problems
- Energy integration Problems
- Control problems

Rigorous modeling and simulation has proven to be insightful and productive process.

1.2 Propylene/Propane Fractionator (C₃ Splitter):

Distillation columns that separate close – boiling components have the dynamic feature of very large time constants. There are large no. of distillation columns that separate very close boiling materials. These fractionator applications include the separation of number important isomers, some alcohols, mixed butylenes and

ethylbenzene/styrene. Probably the most common and commercially most important example is the separation of propylene and propane.

Columns that make these difficult separations are characterized by very high reflux ratios (greater than 10), large no. of trays (more than 100), and very long time constants (2-10h or more). The systems are usually binary. Temperature gradients are very small, so direct composition measurements are usually required.

Propylene production is projected to come from a number of sources, both refinery and Petrochemical-complex based. On the refinery side, propylene production is from FCC units and on the petrochemical side; there are more alternatives but mainly from steam cracker. (Refer Fig:1 & 2)

Indian Petrochemicals Corporation Limited (Vadodara Complex, India) has operated a propylene unit at the back end of the olefins plant (Naptha cracker) since from 1972. The purpose of the unit is to separate a C₃ stream into a top product containing 99% pure polymer grade propylene, side stream containing 94% pure chemical grade propylene and a bottom product containing 98% of propane. The separation has achieved conventially by low temperature and/or high pressure distillation. This makes the propylene/propane one of the most energy expensive separations because of the low relative volatility.

Propylene is the most important building block in any petrochemical industry. Demand for propylene is ever increasing and mixtures including olefins produced in the petroleum refining process and petrochemical complex are often used as fuel. Therefore, the recovery of olefins in this stream would be a substantial conservation of resources

A strong financial incentive exists for tight control of top product purity given the high premium for polymer grade propylene. Propylene give away in the bottom product is to be minimized given \$230 per tonne price differential between propylene and propane.

Figure 1. Typical Olefins Plant

Figure 2. Flow Chart of Fluid Catalytic Cracking

1.3 Objective of the Thesis:

The separation of olefin/paraffin is quite complex because the characteristics of the molecules are similar. Large efforts are being done to cryogenic distillation for olefin/paraffin separation. Experimental steady state and dynamic plant data used to obtain steady state models. Then computer simulation studies were performed for a number of conventional and non conventional structures.

The main objective of thesis work was modeling of C3 splitter and simulate it by using ASPEN HYSYS.

The lighter component (key element) propylene is more valuable than propane. The overhead stream has to be at least more than 97% of pure propylene and bottom product should not contain more than 5% of propylene. Based on the two component system we have to find optimum reflux ratio and minimum number of stages to accomplish the separation efficiently.

In C₃ splitter which I collected plant data from IPCL plant, it has achieved its purity of propylene at the top, but where as at the bottom the valuable product propylene was loosing 50% (considering economics) along with propane which is used as fuel. The main objectives were checking the plant data and do the modeling with necessary variables and simulate it by using ASPEN HYSYS.

Chapter: 2

MATHEMATICAL MODEL DEVELOPMENT

Introduction:

Mathematical models used for chemical process simulation and design are increasingly large due to the inclusion of many equipment details and of realistic descriptions of the physico-chemical behavior of the materials processed. Expressions for the physico-chemical properties of materials, such as fugacity or activity coefficients, are often long and intricate, and various tests are needed before assuming that a computational implementation is correct.

Before 1950s, column calculations were performed by hand. Although rigorous calculation procedures were available, they were difficult to apply for all but very small columns[5]. Short cut methods were therefore the primary design tool. Rigorous procedures were only used for small columns or for final design checks. Inaccuracies and uncertainties in the short cut procedures were usually accommodated by over design.

The introduction of computers has entirely revised the design procedure. Rigorous calculations, once taking several days, sometimes weeks, for even a relatively simple column, can now be performed quickly using a computer. In modern distillation practice, rigorous methods are primary design tool.

With the superior accuracy and capabilities of modern rigorous methods, a column should not be designed with out them. A short cut calculation is inferior in accuracy, and in some cases may give misleading results. In most modern column design work, the role of shortcut calculations is restricted to eliminating the least desirable design options, providing the designer with an initial estimate for rigorous step and for trouble shooting the final design. The rigorous methods are used as the primary design and optimization tool.

The mathematical model can be developed in two ways:

- 1. Short cut methods(or Approximate method)
- 2. Rigorous computer methods

Short cut methods are commonly referred to as the fenske-underwood-gilliland or FUG method. In addition, application of the kremser method is extended to and illustrated for strippers and extraction. These methods are suitable only for preliminary design studies (multi stage separation, such as binary distillation) like estimation of stage and reflux requirements.

Rigorous methods are used for final design of multistage equipment for conducting multi component separations requires determination of temperature, pressure, stream flow rates, stream compositions, and heat transfer rates at each stage. This determination is made by solving material balance (M), enthalpy balance (H), and equilibrium relations (E) at each stage. These relations are nonlinear algebric equations that interact strongly. Solution procedures are relatively difficult and tedious. A wide variety of iterative solution procedures for solving nonlinear algebric equations were available. Choosing the best possible method is important. Once the procedures are programmed for high speed digital computer (Simulation), solutions are achieved fairly rapidly and almost routinely.

MESH equations for analytical modeling:

The basic equations below fully describe a distillation column. They must be satisfied in any solution technique. These equations define the overall column total material balances, energy balances and product compositions. Internal to the column, they describe equilibrium conditions, internal (stage-to-stage) component and total material balances, and enthalpy balances. The independent variables of a column are the product rates and composition, internal vapour and liquid rates and compositions, and stage temperatures. Equilibrium constants, K-values, and mixture enthalpies are dependent variables. Each stage is assumed to be at equilibrium (a theoretical stage), though an efficiency can be applied in the equation.[5]

The rigorous methods thus convert a column to a group of variables and equations.

The MESH variables are often referred to as state variables.

Here i = No.of stages

j =No.of components

M equations-material balance for each component(C equations for each stage):

The summation equation or composition constraint states that the sum of the mole fractions on each stage is equal to unity.

$$Mi,j = Ljxi,j-1 + Vj+1yi,j+1 + Fjzi,j - (Lj+Uj)xi,j - (Vj+Wj)yi,j = 0$$

$$j=1,-----C(=2)$$

N=total no.of equilibrium stages

C=total no. of components in the feed.

E equations – phase equilibrium relation for each component(C equations for each stage)

$$Ei,j = yi,j - Ki,jxi,j = 0$$

Where ki,j is the phase equilibria ratio.

$$j=1,-----C(=2)$$

N=total no.of equilibrium stages

C=total no. of components in the feed.

S equations - mole fraction summations(one for each stage)

$$(Sy)j = \sum yi, j - 1.0 = 0$$

$$(Sx)j = \sum xi, j - 1.0 = 0$$

H equations - energy balance(one for each stage)

$$Hj = Lj-1hj-1 + Vj+1hvj+1 + FjhFj - (Lj + Uj)hLj - (Vj + Wj)hvj - Qj = 0$$

Where kinetic and potential energy energy changes are ignored.

$$i=1,2,----N(=182)$$

$$j=1,-----C(=2)$$

N=total no.of equilibrium stages

C=total no. of components in the feed.

The bubble point and Dew point equations:

The equilibrium equation and composition constraint are combined to get the bubble point equation,

$$\sum yi = 1$$

And the dew point equation:

$$\sum xi = 1$$

The bubble point and dew point equations are used in some of the solution methods to help determine the stage temperature.

Tray efficiencies:

To characterize the deviation from ideality, stage efficiencies are often used. Most computer simulations work with ideal stages. Once the no. of ideal stages is established, the number of actual trays is calculated using stage efficiencies. Commonly, a Murphree vapour efficiency used for each component, given as

$$E_{\text{MV}} = y_{ij} - y_{ij+1} / y^*_{ij} - y_{ij+1}$$

Where y^*_{ij} = vapour composition would be if the vapour were equilibrium with the actual liquid on the stage and y_{ij} , and y_{ij-1} an actual vapour compositions.

2.2 General strategy of Mathematical Solution:

• Pre computer methods:

The Thiele-Geddes and Lewis-Matheson methods are rigorous methods referred to as stage-to-stage methods. Both preceded the computer and are suitable manual calculations.[5]

Classification of methods:

- 1. The bubble point method(BP)
 - 2. The sum rates method(SR)
 - 3. The 2N Newton methods
 - 4. The simultaneous correction method(SR)
 - 5. Inside-out methods
 - 6. Relaxation methods
 - 7. Homotopy methods
 - 8. Non equilibrium models

The Thiele-Geddes method, where the no. of equilibrium stages above and below the feed, the reflux ratio, and the distillate flow rate are specified, and the stage temperature and interstage vapour (or liquid) flow rates are the iteration (tear) variables. However, it was found to be numerically unstable when attempts were made to program it for digital computer.

The Lewis Matheson method is also an equation tearing procedure. It was formulated to determine stage requirements for specifications of the separation of two key components, a reflux ratio and a feed stage location criterion. This method was widely used for hand calculations, but it also proved often to be numerically unstable when implemented on a digital computer.

Bubble point (BP) method is restricted to distillation problems, for separations where the feed(s) contains only components of similar volatility (narrow boiling range).

Sum rate (SR) method is generally restricted to stripping, absorption, extraction problems, for a feed(s) containing components of widely different volatility (wide boiling case) or solubility.

The simultaneous correction (SC) and inside-out methods are designed to solve any type of column configuration for any type of feed mixture. Because of its computational efficiency, the inside-out method is often the method of choice; however, it may fail to converge when highly nonideal liquid mixture are involved, in which case the slower SC method should be tried. Both methods permit considerable flexibility in specifications.

Relaxation and homotopy methods can be tried, when both the SC and inside-out methods fail.

2.3 Synthesis of equilibrium stage process:

The first step in the analysis of any system is to count the total number of variables Nv. The number Nv is analogous to the number of unknowns in a system of simultaneous algebric equations. The second step is to count all the restricting conditions or relationships existing in the system. The number of such restrictions will be denoted as Nc. These restrictions are analogous to the independent equations which can be written in an algebric system. If the number of equations are equals the number of unknowns, a unique solution is possible. Likewise, if the number of restrictions Nc existing in a system equals the total number of variables Nv, then the system is completely defined. Such an equality does not often exist in the typical design problem. Then, just as in the case of an algebric system, the designer must arbitrarily specify certain variables. The number which he can specify is reffered to as the degrees of freedom in the system and can be calculated by the following equation.

$$Ni = Nv - Nc$$

Where Nv = total no. of variables

Nc = total no.of restrictions(or constraints or equations)

Ni = degrees of freedom(or called as design variables, since these are the variables which the designer must specify to define the design problem completely.

Propylene/Propane fractionator contains:

Column with one feed stream, one side stream, reflux ratio, total condenser, partial reboiler

Stream divider: A divider (reflux) simply splits a stream into two or more product streams.[6]

$$Nv = 3(C+2)=1 = 3C+7$$

 $Nc = 2C+2$

Ni = Nv - Nc = C+5Each material stream contributes C+2 variables.

Total condenser: The condenser is described as total when all the vapour feed is condensed to a liquid.

$$Nv = 2(C+2)+1$$
 $Nc = C+1$
 $Ni = C+4$

Partial Reboiler: If the reboiler causes only part of the entering stream to change phase, it is termed a partial reboiler. Partial reboilers are always assumed to be equilibrium stages in so far as the separations are always assumed is concerned.

V1

$$Nv = 3(C+2) + 1$$

Nc = 2C+3

Ni = C+4

__

14---

Simple Equilibrium Stage: A schematic representation of a simple equilibrium stage (no fresh feed or side stream). Four material

streams and one heat stream involved.

$$Nv = 4(C+2) + 1$$

$$Nc = 2C+3$$

$$Ni = 2C + 6$$

Vn Ln+1

Feed stage: A feed stage differs from a simple equilibrium stage in that a fifth material stream F is involved.

$$Nv = 5(C+2) + 1$$

$$Nc = 2C+3$$

$$Ni = 3C + 8$$

Feed Stage

Side Stream Stage: A side stream stage is an intermediate stage in a series of simple equilibrium stages from which a product stream is withdrawn. The side stream may be returned to another stage after cooling or heating, but this is immaterial at this stage of the analysis. [6]

Since five material streams and one heat stream are involved, the total no. of variables is same as for a feed stage, namely 5C+11. The no. of restricting relationships Nc is not the same as for feed stage. The stream S must be identical in composition with either Vn or Ln and also have the same temperature and pressure as Ln and Vn. Therefore, C+1 identities or restricting relationships must exist between S and Ln or Vn.

$$Nv = 5(C+2) + 1$$

 $Nc = (C+1) + (2C+3)$
 $Ni = 2C+7$

This number exceeds that for a simple equilibrium stage by one, and this additional degree of freedom would probably be used to specify the rate of S. the composition, temperature, and pressure of S are fixed by the specifications usually made for the equilibrium stage.

Combination of Elements to form units:

Distillation column with one feed, one side stream, total condenser, and partial reboiler: (Propylene/Propane fractionator) (fig:2.1)

Element	$Nv = \sum Ni$
Total condenser	C+4
Divider (reflux)	C+5
(N-S) simple equilibrium stages	2C+2(N-S) +5
Side stream	2C+7
(S-1)- (M+1) simple equilibrium stages	2C+2(S-M-2) +5
Feed stage	3C+8
(M-1) simple equilibrium stages	2C+2(M-1)·+5
Partial reboiler	C+4
	14C+2N+37

The addition of side stream to the unit increases the number of elements. Thirteen inner streams give an

$$Nc = 13(C+2)$$

Then, Ni = C + 2N + 11

The addition of side stream has increased the degrees of freedom by two. These two degrees of freedom could be used to specify the rate of S and the number of stages between the side stream and feed stages.

2.4 Inside-out Method:

In bubble point method(BP), Sum rate(SR) method and Simultaneous correction(SC) method, a large percentage of the computational effort is expended in calculating K-values, vapor-phase enthalpies and liquid phase enthalpies, particularly when rigorous thermodynamic property models(e.g., SRK, PR, Wilson, NRTL, UNIQUAC) are utilized.[7]

Boston and Sullivan presented an algorithm designed to significantly reduce the time spent in computing thermodynamic properties when designing steady state, multi component separation operations.

As shown in figure 2.2, two sets of thermodynamic property models are employed:

- 1. A simple approximate empirical set used less often in converge inner loop calculations.
- 2. The rigorous complex set used less often in the outer loop.

The MESH equations are always solved in inner loop with the approximate set. The parameters in the empirical equations for the approximate set are updated in the outer loop by the rigorous equations, but only at infrequent intervals. A distinguishing feature of the Boston-Sullivan method is these inner and outer loops; hence the name inside-out for this class of methods. It is also called as two-tier method.

The inside-out method in 1974, the development and application was restricted to hydrocarbon distillation (moderately non ideal systems), but with multiple feeds, side streams and intermediate heat exchangers. For these applications, the inside-out was shown rapid and robust. These extensions permit the inside-out method to be applied to almost any type of steady state multi component, multi stage vapour liquid separation operation.

The inside-out method takes advantage of the following characteristics of the iterative calculations:

- 1. Component relative volatility varies much less than component K-values.
- 2. Enthalpy of vaporization varies less than phase enthalpies.
- 3. Component stripping factors combine effects of temperature and liquid and vapor flows at each stage.

The inner loop of the inside-out method uses relative volatility, energy and stripping factors to improve stability and reduce computing time.

The main assumptions adopted for the model development are as follows:

- 1. Liquid on the tray was perfectly mixed and incompressible.
- 2. The molar vapor holdup was negligible compared to the molar liquid holdup.
- 3. The liquid and vapor leaving each plate were in thermal equilibrium (same temperature) but not in phase equilibrium (Murphree vapor-phase efficiency \doteq 100%).
- 4. Vapor-liquid equilibrium (VLE) was calculated using the SRK (Soave-Redlich-Kwong) thermodynamic model.
- 5. Equi molal overflow.
- 6. Heat losses up the column and temperature changes from tray to tray (sensible heat effects) are assumed negligible.

These assumptions mean that the vapor and liquid rates through the stripping and rectifying sections will be constant under steady state conditions.

Chapter: 3

INTRODUCTION TO SIMULATION

A model can be defined to be an abstract representation of a system usually containing structural, logical or mathematical relationships which describe a system in terms of state, entities and their attributes sets, process, events, activities and decays. However, many real world systems are so complex, that the models of these systems are virtually impossible to solve analytically. In these instances, numerical computer based simulation can be used.

Simulation is the initiation of operation of real world process or system. Simulation is considered to be the computation technique to solve problems by the observation of the performance of the dynamic model of the system. The simulation technique makes no specific attempt to involve the relationships between any particular variables instead it observes the way in which all variables of the model change with time.

Complex flowsheeting programs, that simulate the operation and a complete process, or individual units, have been developed by several commercial software organizations.[12]

Table: 3.1 Simulation packages

Acronym	Туре	Internet Address
ASPEN PLUS	Steady state	Aspentech.com
DESIGN II	Steady state	Winsim.com
ASPEN HYSYS	Steady state	Hyprotech.com
PRO II	Steady state	Simsci.com
DYNSIM	Dynamic	
CHEMCAD	Steady state	Chemstations.net
UNISIM	Steady state, Dynamic	Honeywell.com

In this case (Propylene/Propane Fractionators), HYSYS from Aspentech was chosen as the steady state simulation tool because of its ability to quickly create a model. Steady state simulation based on first principles models is a mature technology, which is now routinely used for designing processes. Plant designs have thereby become increasingly complex, integrated and interactive. Heat integration, process recycles and minimum hold-ups are typical design features. Whilst such design optimizes steady state operation, they present particular challenges to plant control and operational engineers.

3.1 About Simulation Package: ASPEN HYSYS

Aspen HYSYS is an integrated steady-state process simulation package application that brings new levels of productivity and profitability throughout the plant lifecycle.[9] Aspen HYSYS helps engineers to create simulation models for:

- Plant design
- Performance monitoring
- Troubleshooting
- Operational improvement
- Business planning
- · Asset management

Comprehensive thermodynamics foundation.

Aspen HYSYS ensures accurate calculation of physical properties, transport properties, and phase behavior; and contains an extensive component database with the ability to add user components.

- Clear and concise graphics. Aspen HYSYS provides PFDs that offer a graphical representation of the process flow sheet, productivity features, and graphics that depict comprehensive unit operations.
- Integration with other AspenTech and third party Applications. Aspen HYSYS interfaces easily with applications such as Microsoft Excel and Visual Basic, and features Active X compliance.

The simulation software Aspen HYSYS is a desktop package for both steady state and dynamic simulation. It has long been recognized that engineering effort in simulation activities can be minimized by reusing models. However, the full potential of simulation for the design and tuning of control strategies has not been fully exploited to date, for numerous reasons, including lack of awareness of the technology and maintenance costs.

3.2 Selecting Thermodynamic Models for Process Simulation:

Proper selection of thermodynamic models during process simulation is absolutely necessary as a starting point for accurate process simulation. A process that is otherwise fully optimized in terms of equipment selection, configuration, and operation can be rendered essentially worthless if the process simulation is based on inaccurate thermodynamic models. Because of this, good heuristics and appropriate priority should be placed on both selecting thermodynamic models and reporting the selections in process reports.[9]

Simulation generally differs from hand calculations in two ways: (1) the simulator allows use of more sophisticated models without significantly expending more of the engineer's time and (2) simulations in chemical engineering typically involve VLE (vapor-liquid equilibrium) where the ideal gas EOS (equation of state) is inaccurate. Productivity is rarely diminished by selecting rigorous thermodynamic models as

Compared to models that make for easy calculations, and so, criteria for selecting thermodynamic models during simulation are based primarily on accuracy and not the optimal combination of accuracy and effort. However, acquiring accurate binary interaction coefficients or data still fall within the realm of increasing accuracy at the expense of increased effort.

During process simulation, thermodynamic model selection should be performed in at least two steps. Firstly, as with initial process configurations, the thermodynamic model should be chosen based on heuristics (rules of thumb) that provide for a good base case but may or may not provide the desired level of accuracy. Secondly, based on the results of the base case simulation (complete with cost estimate), improving the accuracy of the thermodynamic models should be prioritized relative to optimizing other design parameters such as the configuration of unit operations, optimization of specific unit operations, heat integration, and other degrees of freedom used to optimize processes. Optimization includes both economic and simulation accuracy aspects. Thermodynamic model definition should be revisited as often as necessary during process optimization.

Selection of vapor pressure models, pure component fugacity models, or other methods such as interpolation of available data are typically performed automatically by simulation packages only as necessary and without operator interaction.

3.3 Selection of Phase Equilibrium method:

The choice of the best method for deducing vapour-liquid and liquid-liquid equilbria for a given system will depend on three factors:[12]

- 1. The composition of the mixture (the class of the system)
- 2. The operating pressure(low, medium or high)
- 3. The experimental data available.

Table: 3.2 classification of mixtures

· · · · · ·	Class	Principle	Examples
		interactions	
1	Simple molecules	Dispersion forces	H2, N2, CH4
II	Complex non polar molecules	Dispersion forces	CCL4, I C5H10
III	Polarisable	Induction dipole	CO2, C6H6
I V	Polar molecules	Dipole moment	Dimethyl formaldehyde, chloroethane
V	Hydrogen bonding	Hydrogen bonds	Alcohols, water

Table: 3.3 selection of phase equilibria method

Class of mixture	Low <3 bar		Pressure moderate <15 bar		High >15 bar	
	F_{I}	fv	F_{I}	F_v	F_{l}	F_{v}
I, II, III (none supercritical)	ES	I	ES	ES	ES	ES and K
I, II, III (supercritical)	ES	I	ES	ES	ES	ES and K
I, II, III, IV, V (vapor- liquid)	ACT	I	ACT	ES	ES	ES and K
I, II, III, IV, V (liquid- liquid)	ACT	I	ACT	ES	ES	ES
Hydrocarbons & water	ES	ES and K	ES	ES and K	ES	ES and K

I= ideal, vapor fugacity = partial pressure

ES = approximate equation of state

K = equilibrium constant (K factor) derived from experimental data.

ACT = liquid phase activity coefficient

Decision making charts:

WITH PRESSURE-1:

Eigure 8.4. Flow chart for the selection of phase equilibria method

Equation of state VS Activity coefficient Models:

EOS (Equation of state) Model:

- ✓ EOS models calculate both liquid and vapor properties and are generally used
 to model systems such as LNG and cryogenic processes, mixed refrigerants,
 air separation, low temperature oil absorption processes, light naphtha
 processing, and hydrogen systems. [13]
- \checkmark EOS models can calculate pure, mixture, and infinite dilution properties.
- ✓ Available EOS models are:
 - Ideal Gas Law
 - Generalized Gas law
 - R-K(Redlich-Kwong)
 - SRK(Soave Redlich Kwong)
 - Peng Robinson
- ✓ Peng-Robinson and SRK can be used to model other processes such as dehydration and crude fractionation. Both of these models also support hydrate, water freezing point, and CO2 freeze out predictions.
- ✓ Equations of state have developed rapidly for the calculation of phase equilibria in non-polar and polar mixtures.
- ✓ The advantage of the equations of state method is its applicability over wide ranges of temperature and pressure to mixtures of diverse components, from the light gases to heavy liquids.
- ✓ The Peng-Robinson and Soave-Redlich-Kwong equations are widely used in industry. The advantages of these equations are that they can accurately and easily represent the relation among temperature, pressure, and phase compositions in binary and multicomponent systems. They only require the critical properties and acentric factor for the generalized parameters, little computer time and lead to good phase equilibrium prediction.

Activity co-efficient models:

- ✓ Unlike EOS models, Gibbs Excess/Activity Coefficient models calculate infinite dilution and mixture properties for the liquid phase only, and cannot calculate pure properties or vapor phase properties.
- ✓ When a Gibbs Excess/Activity Coefficient model is selected, liquid properties
 are calculated using the specified model, and vapor phase properties are
 calculated using Ideal Gas (IG), Peng Robinson (PR), or Soave-RedlichKwong (SRK).
- ✓ For low pressure (70 Pisa or less), Ideal Gas should be suitable for predicting vapor phase properties. For higher pressures, SRK or PR should be used to calculate vapor phase properties because they account for vapor phase imperfections at higher pressures.
- ✓ Two types of activity coefficients models: Electrolytic and Molecular Gibbs Excess/Activity Coefficient models.

Molecular Gibbs Excess/Activity Coefficient models:

- ✓ These models are applicable to binary and multi component systems and are intended to be used in chemical industry type applications.
- ✓ Gas Processing applications should instead use an EOS model for general properties and an Electrolytic Gibbs Excess/Activity Coefficient model for amine treating of hydrocarbons.
- ✓ Available Molecular Gibbs Excess/Activity Coefficient models are:
 - Margules
 - NRTL
 - Wilson
 - UNIFAC LLE
 - UNIFAC VLE
 - UNIQUAC
 - Van Laar
 - Wilson

Electrolytic Gibbs Excess/Activity Coefficient models:

- ✓ Electrolytic models are applicable for systems in which dissociation of compounds is important (e.g. amine sweetening applications and systems containing ammonia and an acid gas such as H₂S or CO₂).
- ✓ Available electrolytic activity coefficient models are:
 - Electrolytic ELR
 - Electrolytic NRTL
 - Electrolytic Kent-Eisenberg
- ✓ Systems containing glycols should not be modeled using an electrolytic package. Instead, an Equation of State model such as Peng-Robinson or SRK should be used.

Soave-Redlich-Kwong (SRK) VS Peng-Robinson (PR) EOS Models:

Among many equations of state proposed for predicting phase behavior(vapor-liquid equilibria) of non-polar systems, cubic equations of state Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) models are probably the most widely used in the refinery and gas processing industries because of their simplicity and accuracy. [14]

Examining the accuracy of reproducing the activity coefficients, as given in the PR and SRK equations of state produce almost identical results of all different mixing rules. Table 3 also compares the VLE predictions of the cubic equations of state. The comparisons show that there is little difference in the accuracy of the predictions with these two methods. Based on these results, it seems to indicate that both equations of state are equivalent to each other and neither one has an advantage over the other in phase equilibrium calculations as long as the alpha correlation.

The application of the PR or SRK equation of state to systems containing highly non-ideal components requires an appropriate mixing rule for the equation of state parameter a. However, their mixing rule has not become widely used because the available excess Gibbs energy parameters at low pressure cannot be used in their mixing rule.

3.4 Procedure for simulation:

A propylene/propane splitter is generally an easy column to converge. However, the critical factor in producing good results is not the ease of solution, but rather the accurate prediction of the relative volatility of the two key components. Special consideration was given to these components, along with others, in developing the binary interaction coefficients for the Peng Robinson and Soave Redlich Kwong Equations of state to ensure that these methods correctly model this system.[9]

These splitters have many stages, and are often built as two separate columns. This simulation will contain two columns, a stripper and a rectifier. The stripper is operated as a reboiled absorber and contains 94 theoretical stages. The rectifier is refluxed absorber containing 89 theoretical stages. The stripper contains two feed streams, one is the known stream FEED, and the other is the bottom from the rectifier. Propane is recovered from the stripper bottom (95%) and propene is taken off the top of the rectifier (99%).

There are two basic steps in this process simulation.

- Setup: The Soave Redlich kwong (SRK) property package will be used and the component list includes propane, propene and traces.
- Steady State Simulation: The case will consist of a column divided into two tray sections: a Refluxed Absorber as a Rectifier and a Reboiled Absorber as Stripper.

SIMULATION RESULTS

Chapter: 4

4.1 Plant data:

Feed Conditions:

Feed: Propylene/propane mixture

Feed flow rate: 11.6 m3/hr

Feed condition: saturated liquid

Quantity: 12.5 TPH (or) 300 TPD

Feed plate: 102, 108, 114

Feed composition:

Propylene: 95.20%

Propane: 4.08%

Traces: 0.72 ppm

Inlet temperature of feed: 56° C

Inlet pressure: 21.62kg/cm2.g (or) 15619 mm Hg (or) 20.26 bar (or) 20.55 atm

Pressure is constant (Isobaric)

Temperature changes

Product Conditions:

Top Product: Polymer Grade Propylene (PGP) - distillate

Quantity: 10m3/hr (or) 5TPH (or) 122.14 TPD

Distillate composition:

• Propylene: 99.58%

• Propane: 0.39%

• Ethane: 9.79 ppm

• Ethylene: 0 ppm

PD:0

• MA: 14.07 ppm

Side stream product: Chemical Grade propylene (CGP)

Quantity: 170.61 TPD (or) 7.10 TPH (or) 15.45 m3/hr

Side stream Composition:

• Propylene: 94.87%

• Propane: 4.96%

• Ethane: 1.34 ppm

• Ethylène: 0 ppm

• PD: 0.04 9

• MA: 0.12% ppm

Bottom product conditions: Propane

Quantity: 0.89m3/hr (or) 0.34 TPH (or) 8.16 TPD

Composition:

Methane: 0.10%

• Ethane: 0.51%

• Propylene: 50.79%

• Propane: 38.15 %

• PD: 4.53 %

MA: 2.87%

• Traces: 2.45 %

Tower specifications:

Tower height: 64.95m

Tower diameter: 2.6m

Tower is made up of carbon steel and hence should not be cooled less than 0° C.

Total number of trays: 152

Tray type: Valve trays/plates

Tray spacing: 375mm (from 1 to 101 plates, from top) & 400mm (from 102 to 152

plates)

Operating conditions:

Operating pressure: 20.8 kg/cm2.g

Tower pressure drop: 0.68 kg/cm2.g

Operating temperature:

Base: 59.4⁰ C

Reboiler outlet: 59.4°C

Overhead outlet: 49.5 °C

Reflux: 45.40C

Reflux:

Ratio: 18.1

Pump discharge pressure: 26kg/cm2.g

Pump flow: 85648kg/hr

Quench water to reboiler:

Reboiler: Thermosphyn (2)-Horizontal

Flow: 509648 kg/hr Temperature: 79^o C

Cooling water to condenser:

Flow: 10225 kg/hr

Temperature: 35°C

4.2 Design case:

Fill the plant data results by choosing the thermodynamic package as shown below.

Steady state simulation:

The case will be setup in steady state using the custom column option. Both the rectifier and stripper columns will be built in the same column environment.[9]

4.3 Starting the simulation:

Fluid Package: Basis-1

Feed stream:

The conditions and composition of the feed stream are shown below:

Material stream [feed]	
In the cell	Enter
Name	Feed
Vapor fraction	1.0000
Pressure (Kg/cm2)	20
Molar flow (TPD)	300.000
Comp mole fraction(propane)	0.40
Comp mole fraction(Propene)	0.60

Enter this stream in the main simulation environment.

Feed

Installing the column:

The next step is to install the column.

- Click the custom column icon on the object palette. The custom column will be used to build both columns in a single column environment.
- 2. Click the starting with a blank flow sheet button. Double click on the column on the PFD to open the column view.
- Click on the flow sheet tab and open the set up page.
- In the inlet stream group, enter the stream feed as an external feed stream, making this stream accessible to the template environment.

For this example, we need a total condenser, reboiler and two tray sections. A tray section and a condenser will be used for the refluxed absorber (rectifier), a reboiler and another tray section will be used for the reboiled absorber (stripper). The overhead product from the stripper will serve as the feed to the rectifier, and the bottom product from rectifier provides a second feed to the stripper, entering on stage 1.

Column: T-100 / COL1 Fluid Pkg: Basis-1 / SRK

Stripper (Reboiled Absorber):

The reboiled absorber is installed before the reboiler. This column has 93 ideal stages and a reboiler.

Installing the tray section:

For this column a new tray section has to be installed.

- Double click the tray section button from the palette and it is placed on the PFD.
- The tray section property view appears. Supply the following information on the connections and the pressures pages of the design tab.

Tab[page]	In the cell	Enter
Design[connections]	Column name	Stripper
	Liquid inlet	Rect out
	Vapour inlet	Boil up
	Vapor outlet	To rect
	Liquid outlet	To reboiler
	Optional feed streams	Feed(stage 47)
Design [parameters]	Number of trays	93
Design[pressure]	Tray I	1999 K Pa
<i>O</i> [F]	Tray 93	2068 K Pa

3. Close the tray section view.

Installing the Reboiler:

The reboiler for the absorber must be installed with the stripper column. Click the reboiler icon and supply the inputs shown here on the connections page of the reboiler property view.

Reboiler [reboiler]		
Tab[page]	In this cell	Enter
Design[connections]	Name	Reboiler
Design(eomeower)	Boil up	Boil up
	Inlets	To reboiler
	Bottom outlets	Propane
	Energy	Reboiler duty

Rectifier [Refluxed Absorber]

The rectifier is installed next. This column has 89 ideal stages and a total condenser.

Installing the tray section:

Again, a new tray section must be installed for the absorber.

- 1. Click the tray section icon on the object palette.
- 2. Open the tray section property view and supply the parameters shown below.

Tray section[Rectifier]		
Tab[page]	In the cell	Enter
Design[connections]	Column name	Rectifier
	Liquid inlet	Reflux
	Vapour inlet	To rect
	Vapor outlet	To condenser
	Liquid outlet	Rect out
Design [parameters]	Number of trays	89
Design[pressure]	Tray 1	1931 K Pa
G[L,1	Tray 89	1999 K Pa

3. Close the tray section view.

Installing the total condenser:

A total condenser is required for the column. Click the total condenser button from the palette, and supply the following parameters.

Tab[page]	In this cell	Enter
Design[connections]	Name	Condenser
	Inlets	To condenser
	Distillate	Propene
	Reflux	Reflux
•	Energy	Condenser duty

Adding the specifications

Three specifications are given for this column.

- 1. flow of the rectifier distillate(propene) is
- 2. rectifier top stage reflux ratio is
- 3. composition fraction

Product stream:

The conditions and composition of the Product stream are shown below:

PGP PGP PGP Stream Name Worksheet 1.0000 Vapour / Phase Fraction Conditions 46.59 Temperature [C] Properties 1931 Pressure [kPa] Composition 351.3 Molar Flow [kgmole/h] K Value Mass Flow [kg/h] 1.478e+004 User Variables Std Ideal Lig Vol Flow [m3/h] 28.37 Notes 1.965e+CO4 Molar Enthalpy [kJ/kgmole] 64.98 Molar Entropy [kJ/kgmcle-C] Cost Parameters 6.905e+006 Heat Flow [kJ/h] Liq Vol Flow @Std Cond [m3/h] 28.25 Fluid Package Dynamic: Altachments Worksheet Define from Other Stream... Delete

4.4 Results:

SENSITIVITY STUDY

Work book (Results) obtained from ASPEN HYSYS:

- Work book on C3 splitter.
- > Connections page
- > Solver page
- > Tray sections
- > Products
- > Vessel dynamic specifications.
- > Data sheet of FEED, PGP, CGP and BOTTOM.
- > Trays VS Packings
- > Vessel dynamic specifications.

Vessel dynamic specifications					
Vessel	Reboiler	Condenser			
Diameter(m)	1.193	1.193			
Height(m)	1.789	1.789			
Volume(m3)	2.000	2.000			
Liquid volume percent (%)	50.0	50.0			
Level calculator	Horizontal cylinder	Horizontal cylinder			
Fraction calculator	Use levels and nozzles	Use levels and nozzles			
Vessel delta P(K pa)	0.00	0.00			
Fixed vessel P spec(K Pa)	2068	1931			
Fixed P Spen Active	Not active	Not active			

Table: 5.1 TRAYS VS PACKINGS [5]

Factors favoring Trays	Factors favoring Packing
High liquid feed rate (occurs with high	Operation under pressure
Column pressure) Large column diameter(packing poses	Lowe pressure drop
maldistribution changes) Complex columns(e.g. multiple draw	Small(2-3-ft) column diameter
offs) Varying feed composition	Corrosive systems(wider choices in materials of construction)
Easier scale up	Less prone to foaming Lower liquid hold up
Lower overall weight Entrained solids accommodated better	More amenable to batch operation

UPES, Dehradun

Table: 5.2 Types of Trays Differentiation

Type	Sieve trays	Valve trays	Bubble cap trays
Capacity	High	High-very high	Moderately high
Efficiency	High	High	Moderately high
Turndown	Approx. 2to1. not generally suitable for variable load operation	About 4-5 to 1. Some design claim 10 to 1 or more.	Excellent, better than valve trays. Especially suitable at very low liquid rates
Entrainment	Moderate	Moderate	High(about 3 times higher than that of sieve trays)
Pressure drop	Moderate	Moderate. Older designs some what higher. Newer designs same as sieve trays	High
Cost	Low	Approx. 20% higher than that of sieve trays	High. About 2-3 times that sieve trays
Maintenance	Low	Low - moderate	Relatively high
Fouling tendency	Low	Low – moderate	High. Tendency to collect solids
Effects of corrosion	Low	Low – moderate	High
Availability of design information	Widely available	Proprietary, but information is readily available	Widely available
Main applications	Most columns if turndown is not critical	1. most columns 2. service where turndown is a key factor	very low flow conditions if leakage must be minimized
Other			

UNIVERSITY OF PETROLEUM Calgary, Alberta CANADA

Case Name: X:\ramkumar\chandru4.hsc SI Unit Set: Wed Apr 25 11:49:21 2007 Date/Time:

Workbook: C3 Splitter (COL1)

ŭ								
9 10	Material Streams						d Pkg:	All
11	Name		Rect Out	Boilup	To Reboiler	To Rect	Prop	ane ·
12	Vapour Fraction		0.0000	1.0000	0.0000	1.00	00	0.0000
13	Temperature	(C)	48.20	58.05	58.04	48.	20	58.05
14	Pressure	(kPa)	1999	2068	2068	19	99 .	2068
15		• •	3.860e+005	4.015e+005	4.017e+005	3.863e+0	05	242.0
16	Mass Flow	(kgmole/h)	1.624e+007	1.770e+007	1.771e+007	1.626e+0	07	1.067e+004
17	the second secon	(kg/h)	3,118e+004	3,492e+004	3.494e+004	3.121e+0	04	21.05
18	Liquid Volume Flow	(m3/h)	2.944e+009	-4.122e+010	-4.589e+010	7.599e+0	09	-2.769e+007
19	Heat Flow	(kJ/h)	To Condenser	Reflux	Propene	Feed	CGP	1
20	Name		1.0000	0.0000	0.0000	1.00	00	0.0000
21	Vapour Fraction		46.59	46.59	46.59	52.	59	48.88
22	Temperature	(C)	1931	1931	1931	20	68	2027
23	Pressure	(kPa)		3.800e+005	351.3	60	0.0	6.690
		(kgmole/h)	3.803e+005	1.599e+007	1,478e+004	2.573e+0	04	281.6
4	Mass Flow	(kg/h)	1.600e+007	3.069e+004	28.37	49.	97	0.5408
25	Liquid Volume Flow	(m3/h)	3.072e+004	2.822e+009	2.609e+006	-1.788e+0	07	4.348e+004
26 27	Heat Flow	(kJ/h)	7.477e+009					
28				Compositions			d Pkg:	AII
9	Name		Rect Out	Boilup	To Reboiler	To Rect	Prop	
ю	Comp Mole Frac (Propane)		0,0002	0.9900	0.9900	0.00	····	0.9913
1	Comp Mole Frac (Propene)		0,9998	0.0100	0.0100	0.99		0.0087
12	Name		To Condenser	Reflux	Propene	Feed	CGF	
33			0.0000	0.0000	0.0000	0.40		0.0100
4	Comp Mole Frac (Propane)		1,0000	1.0000	1.0000	0.60	00	0.9900
35 36	Comp Mole Frac (Propene)			Energy Stream	s	Flu	d Pkg:	Ali
37	Name		Q-Reboiler	Q-Condenser				
38		(1,1%)	4.644e+009	4.652e+009				
39	Heat Flow	(kJ/h)		IInit One				
40				Unit Ops	Products	Igno	red	Calc. Level
븨	Operation Name	Ope	eration Type	Feeds				
2			L	To Reboiler	Propane		o	500.0
3	Reboiler	Reboiler	<u>'</u>	Q-Reboiler	Boilup			
5				To Condenser	Propene	l N	_	500.0
5	Condenser	Total Con	denser	Q-Condenser Reflux		,,	No	
6	4011361	10.0.00	· 		Q-Condenser			
17				Rect Out	To Reboiler	N		500.0
8	Stripper	Tray Sect	ion I	Boilup	To Rect		١	500.0
\neg	hhet	liay Sect		Feed	CGP			
49		1			Rect Out	I	. 1	
49 50		 		Reflux	To Condenser	N	0	500.0

UNIVERSITY OF PETROLEUM Calgary, Alberta CANADA

Case Name: X:\ramkumar\chandru4.hsc

Unit Set:

SI

Date/Time:

Mon Apr 23 12:18:31 2007

CONNECTIONS

4		
	Inlet S	stream
STREAM NAME	Stage	FROM UNIT OPERATION
Q-Reboiler	Reboiler	
Feed	52 Stripper	
, 300	Outlet S	Stream
	Stage	TO UNIT OPERATION
STREAM NAME		
Propane	Reboiler	
Q-Condenser	Condenser	
Propene	Condenser	
	70 Chrimner	!

MONITOR

<u> </u>		Specific	cations Summary					
		Current Value	Wt. Error	Wt. Tol.	Abs. Tol.	Active	Estimate	Used
	Specified Value	1082	64.96	1.000e-002 *	1.000e-002 °	Off	On	Off
Reflux Ratio	16.40		3.273e-004	1.000e-002 *	1.000 kgmole/h *	On	On	On
Draw Rate	351.1 kgmole/h *	351.3 kgmole/h	4.292e-004	1.000e-002 °	1.000e-003 °	On	On	On
Comp Fraction	1.000e-002 *	1.001e-002		1.000e-002	1.000e-003 *	On	On	On
Comp Fraction - 2	0.9900 *	0.9900	-9.695e-004	1.0000-002			 -	

SPECS

Column Specification Parameters

Reflux Ratio

3		Dimen / Alternate: Primary	Lower Bound:	Upper Bound:	
4	Fixed / Ranged: Fixed	Primary / Alternate.	Liquid Specification:		
5	Stage: Condenser	Flow Basis: Notal	Liquid Opening	 	

Draw Rate

	15 Outer Stream											
16	OTIVE AND TAXABLE				Stage	<u> </u>		TO UI	NIT OPER	ATION		
17	Propane		Re	boiler								
18	Q-Condenser			ondenser								
19	Propene		Co	ondenser								
20	_CGP		73									
21					MOI	NITOR						•
22											-	
23					Specification	ons Summary	· · ·			A -45	Te-m	
24	Specified Value Curren			Value	Wt. Error	Wt. Tol.	Abs.		Active	Estimate	Used	
25	Reflux Ratio	1	6.40 °		1082	64.96	1.000e-002 *		00e-002 *	Off	On	Off
26	Draw Rate	351.1 kgm		351.3	kgmole/h	3.273e-004	1.000e-002 °		gmole/h *	On	On	On
27	Comp Fraction	1.000e		1	.001e-002	4.292e-004	1.000e-002 *		00e-003 *	On	On	On_
28	Comp Fraction - 2		9900 •		0.9900	9.695e-004	1.000e-002 *	1.0	00e-003 *	On	On	On
29	Taction - 2	<u></u>			SP	ECS						
30												
31					Column Specific	ation Parame	eters					
32					Reflu	x Ratio						
33	_								Upper B	ound:		
34	Fixed / Ranged:	Fixed F	rimary	/ Alternate:	Primary	Lower Bou			Оррего	ouna.		
35	Stage:		low Ba	sis:	Molar	Liquid Spe	ecincation.		L			
36 37					Drav	v Rate						
							ind.	·-	Upper B	oring.		
38	Fixed / Ranged:	Fixed F	rimary	/ Alternate:	Primary	Lower Box	ına		Орро: С	ouriu.		
39 40	Stream:	Propene F	low Ba	sis:	Molar				L			
40					Comp	Fraction						
41									Upper B	lound:		
42	Fixed / Ranged:	Fixed F	rimary	/ Alternate:	Primary	Lower Bou	una:	Liquid	Оррсі С	ouriu.		
43	_		low Bas	sis:	Mole Fraction	Phase:		Liquid				
44	Components:		ropene						L			
45					Comp F	raction - 2						
46						Lower Bou	ind:		Upper E	lound:		
47	Fixed / Ranged:	Fixed F	rimary	/ Alternate:	Primary	Phase:	und.	Liquid				
48	Stage:	73 Stripper F	low Ba	sis:	Mole Fraction	Pliase.	· · · · · · · · · · · · · · · · · · ·					
49	Components:	F	ropene						l			
50					SUBC	OOLING						
51	51											
52												
53 Degrees of Subcooling												
54	Subcool to											
55			-		User V	'ariables						
56	_											
57					PRO	FILES						
58	man and a second	•				Parameters						
59						Number o	f Stages:					182
60	Sub-Flow Sheet:				T-100 (COL1)	Number o	, olagos.					102
61												
62						2004 (1)	2 1 0 6150)	· ·			Page	1 of 42

Comp Fraction

4	Primary Lower Bound:	Upper Bound:
	Fixed / Ranged: Fixed Primary / Atternate.	
4	Stage: 182_Stripper Flow Basis: Mole Fraction Phase: Equitor	
4	Components: Propene	

Comp Fraction - 2

4	Primary Lower Bound:	Upper Bound:
4	Fixed / Ranged: Fixed Primary / Alternate.	
8	Stage: 73 Stripper Flow Basis: Mole Fraction Phase: Liquid	
9		
7		

SUBCOOLING

	Condenser	
Degrees of Subcooling		***
Subcool to	The state of the s	

User Variables

PROFILES

General Pa	ameters	
T 100 (COL1)	Number of Stages:	182 •

Aspen HYSYS Version 2004 (13.1.0.6150)

UNIVERSITY OF PETROLEUM Calgary, Alberta CANADA Case Name: X:\ramkumar\chandru4.hsc

Unit Set: SI

Date/Time: Mon Apr 23 12:18:31 2007

6 7							
8	<u> </u>			Stage Efficiencies			
10				Propene	,		
11	Stages	Overall Efficiency	Propane 1.000	1.000			
12	148_Stripper	1.000	1.000	1.000	• •		
13	149_Stripper	1.000	1.000	1.000			
14	150_Stripper	1,000	1.000	1.000	A CONTROL OF THE CONT	1	
15	151_Stripper	1.000	1.000	1.000			
16	152_Stripper	1.000	1.000	1.000			
17	153_Stripper	1.000	1.000	1.000			
18	154_Stripper	1.000	1.000	1.000			
19	155_Stripper	1,000		1.000			
_	156_Stripper	1,000	1.000	1.000			
20	157_Stripper	1.000	1.000	1.000			
21	158_Stripper	1.000	1.000	1.000			
22	159_Stripper	1.000	1.000	1.000			
23	160_Stripper	1.000	1.000	1.000	· · · · · · · · · · · · · · · · · · ·		
24	161_Stripper	1.000	1.000	1.000			
25	162_Stripper	1.000	1.000				
26	163_Stripper	1,000	1.000	1,000			
27	164_Stripper	1.000	1.000	1.000			
28	165_Stripper	1.000	1.000	1.000			
29	166_Stripper	1.000	1.000	1.000			
30	167_Stripper	1.000	1.000	1.000			
31	168_Stripper	1.000	. 1.000	1.000			
32	169_Stripper	1.000	1.000	1.000			
33	170_Stripper	1.000	1.000	1.000			
34	171_Stripper	1.000	1.000	1.000			
35	172_Stripper	1.000	1.000	1.000			
36	173 Chris	·1.000	1.000	1.000			
37	173_Stripper		1.000	1.000			
38	174_Stripper	1.000	1.000	1.000			
39	175_Stripper	1.000	1.000	1.000			
\$	176_Stripper	1.000	1.000	1.000			
41	177_Stripper	1.000	1.000	1.000	*		
42	178_Stripper	1,000	1.000	1.000			
42	179_Stripper	1.000	i	1.000			
13	180_Stripper	1.000	1.000	1.000			
1	181_Stripper	1.000	1.000	1.000			
44 45 46	182_Stripper	1.000	1.000	1.000			
	Reboiler	1.000	1.000				
47 48				SOLVER			
49			Column Solving Alg	orithm: HYSIM Inside-	Out .		
50					Acceleration Parameters		
51		Solving Optio	ns	1000 * Accelerate I	(Value & H Model Parameters:	Off	
52	Maximum Iterations:		4.6	000e-05_			
	Equilibrium Error Toler	ance:		00e-004			
53	Heat/Spec Error Tolera	ance:	5.00	On			
54 55	Save Solutions as Initi	al Estimate:		imple K			
56	Super Critical Handling	Model:	S	Low			
_	Frace Level:			Off	Damping Parameters		
57	Init from Ideal K's		AND THE RESIDENCE OF THE PARTY	Azeotrope C		Off	
58	Initia	Estimate Generato	r Parameters			1	
59	Iterative IEG (Good for	Chemicals):		Off Fixed Damp		· ·	
60	_ (0000101						
62				TE CTRIPDEDS		······································	
-				SIDE STRIPPERS	1.0.6150)	Page 12 of 43	
63	Hyprotech Ltd.		Aspen HYSY	'S Version 2004 (13.	1.0.01001	* Specified by user	
	Licensed to UNIVERSITY OF DETROI FUM						

1 —							
1			Case Name: X:\ramkumar\chandru4.hsc				
3	UVR	UNIVERSITY OF PETROLEUM	/ Unit Set:	SI			
4	HYPROTECH	Calgary, Alberta CANADA					
5			Date/Time:	Mon Apr 23 12:18:31 2007			
6				oo Ollein (continued	,		
7 8	Distillation: T-100 @Main (continued)						
9	SIDE STRIPPERS						
10	SIDE RECTIFIERS						
11	SIDE RECTIFIERS						
12 13			PUMP AROU	NDS			
14			VAD DVDAG	eee			
15			VAP BYPASS				
16			RATING				
18					· · · · · · · · · · · · · · · · · · ·		
19			Tray Section	ns 			
20	Tray Section	Stri	ррег	Rectifier			
21	Tray Diameter		600	1.500 °	· · · · · · · · · · · · · · · · · · ·		
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 33 34 35 36 37 39 39 39 39 39 39 39 39 39 39 39 39 39	Weir Height		0e-002 080	1.200			
24	Weir Length Tray Space	(111)	6000	0.5000			
25	Tray Volume	(111)	655	0.8836			
26	Disable Heat Loss Calculations		10	No			
27	Heat Model	. No	one	None No			
29	Rating Calculations		No 8e-002 8	.836e-002			
30	Tray Hold Up	(m3) 8.836	Vessels				
31				Condonser			
32	Vessel		Ollei	1.193			
3/3	Diameter Length	(11.7)	193 789	1.789			
35	Volume	<u> </u>	000 •	2.000			
36	Orientation		ZOIIIAI	-lorizontal No			
37	Vessel has a Boot		10				
39	Boot Diameter	(111)	-				
40	Boot Length Hold Up		000	1.000			
41	Т	Othe	r Equipment In Colu	ımn Flowsheet			
42 43							
44			Pressure Pro	file			
45	·				essure Drop (kPa)		
46			Pressure (kPa 1931 kPa)	0.0000 kPa		
48	Condense		1931 kPa	•	0.7835 kPa		
49	1Rectifie		1931 kPa		0.7835 kPa		
50	2Rectifie 3Rectifie		1932 kPa		0.7835 kPa 0.7835 kPa		
51	4_Rectifie		1933 kPa 1934 kPa		0.7835 kPa		
53	5Rectifie		1934 kPa		0.7835 kPa		
54	6_Rectifier 1935 kPa 0.7835 kPa						
55	7Rectifie 8Rectifie		1936 kPa		0.7835 kPa 0.7835 kPa		
56	9_Rectifie		1937 kPa 1938 kPa		0.7835 kPa		
58	10Rectifie		1938 kPa		0.7835 kPa		
59	11Rectifie		1939 kPa		0.7835 kPa		
60	12_Rectifie		1940 kPa		0.7835 kPa 0.7835 kPa		
45 46 47 48 49 50 51 52 53 55 55 56 57 58 59 60 61 62 63	13Rectific		1941 kPa		0.7835 kPa 0.7835 kPa		
63	15 Pactifie		1942 kPa n HYSYS Version 200	04 (13.1.0.6150)	Page 13 of 43		
	Hyprotech Ltd.	Aspei	1 H1313 VEISION 200		 Specified by user 		
	Licensed to UNIVERSITY OF PETE	ROLEUM					

Distillation: T-100 @Main (continued)

PROPERTIES

Name		Feed @Main	Propane @Main	PGP @Main	CGP @Main	
Cv (Semi-Ideal)	(kJ/kgmole-C)	89.94 *	157.6 *	80.17 *	136.6 *	
Mass Cv (Semi-Ideal)	(kJ/kg-C)	2.097 *	3.575 *	1.905 *	3.245 *	
d 🕰	(kJ/kgmole-C)	66.48	113.9 *	60.70 *	97.17 *	•
Mass Cv	(kJ/kg-C)	1.550 *	2.583 *	1.442 *	2.308 *	
il c.,	(kJ/kgmole-C)			60.69 *	132.9 *	
Mass Cv (Ent. Method)	(kJ/kg-C)	_		1.442 *	3.156 *	
Cp/Cv (Ent. Method)	(KJ/Kg-C/			1.458 *	1.091 *	
Reid VP at 37.8 C	(kPa)	1494 *				
True VP at 37.8 C	` '	1500	1321 •	1583 *	1581 *	
Liq. Vol. Flow - Sum(Std. C	(kPa) Cond) (m3/h)	49.79	21.01 •	28.25 *	0.5384 *	

SUMMARY

- 4		LINE COURT OF C	ETDO! CU!!	Case Name: X:\ramkumar\chandru4.hsc					
3	MVDDATEC		EIRULEUM	Unit Set:	SI				
5	LIFECVELS INNOVAT	CANADA		Date/Time	Mon A	pr 23 12:18:31 20	07		
6									
8			Distilla 	ation: T	-100 @N	<i>l</i> lain (con	itinued)		
4 5 6 7 8 9)			PROPER	RTIES				
		Fee	ed @Main	Propane @N	fain Po	GP @Main	CGP @Main		
12	Cv (Semi-Ideal)	(kJ/kgmole-C)	89.94 *		157.6 *	80.17 *	136.6		
14	Mass Cv (Semi-Ideal)	(kJ/kg-C)	2.097		3.575 *	1.905 * 60.70 *	3.245 * 97.17 *		
15	Cv Mass Cv	(kJ/kgmole-C)	66.48		113.9 * 2.583 *	1.442 *	2.308 *		
16	Cv (Ent. Method)	(kJ/kg-C)	1.550 *		<u></u>	60.69	132.9 *	· · · · · · · · · · · · · · · · · · ·	
17	Mass Cv (Ent. Method)	(kJ/kgmole-C) (kJ/kg-C)	_			1.442 *	3.156 *	,	
18	Cp/Cv (Ent. Method)	(KU/Kg-C)				1.458 *	1.091 *		
9	Reid VP at 37.8 C	(kPa)	1494 *						
20	True VP at 37.8 C	(kPa)	1500 *		1321 *	1583 *	1581 *		
<u>ا آ</u>	Liq. Vol. Flow - Sum(Std.		49.79 *		21.01 *	28.25 *	0.5384 *	<u> </u>	
13 14 15 16 17 18 19 20 21 22 3	SUMMARY								
4	Flow Basis:			Molar	nome 🛊 🛊 totale grad given	The reco	very option is selected		
6				Feed Comp	osition	omandije (2494.) Koje (2. ali (30.44			
27		Feed		2000年以前1000 2000年	an Timbrica Walk	COMPRESSION CONTRACTOR	vaner, zar satutus ilvital vale	CAN THE CONTRACTOR STATE	
28	Flow Rate (kgmole/h)	600.0000							
9		<u> </u>		e e e e e e e e e e e e	, · · · · ·				
0	Propane	0.4000							
1	Propene	0.6000		Molar		The reco	very option is selected		
2	Flow Basis:			Feed Flo	ows:				
3				美国的	在17.15 M.E.		NEW WAY		
4	Flow Rate (kgmole/h)	Feed	14 Burks and the Condition						
5	rara (kgmole/h)	600.0000						er server om er og er om og er og er	
8	Propané (kgmole/h)	240.0000			ay come appearance or consider consider. The	. March 1988 Michigan Company			
7 8	Propene (kgmole/h)	360.0000							
•				Produc	:IS	The reco	very option is selected		
9	Flow Basis:			Molar		The reco			
+				roduct Comp	Propane				
	TOTAL OF MEDICAL COLORS OF THE A		al a constant of the	P1년 8년 조립년	PASS LICHAILE				
ıΓ		Propene			242 0478				
2	Flow Rate (kgmole/h)	Propene 351.2625	6.689		242.0478			The second of th	
2 3 4	Flow Rate (kgmole/h)		6.689		242.0478 0.9913				
2 2 2 2	Propane		0.010						
2 3 4 5 5	Propage	351.2625	6.689	00 00 Molar	0.9913 0.0087		very option is selected		
1	Propane	351.2625 0.0000 1.0000	6.689 0.010 0.990	00 00 Molar	0.9913 0.0087	The recov			
	Propage	351.2625 0.0000 1.0000	6.685 0.010 0.990	00 00 Molar	 0.9913	The recov			
	Propane Propene Flow Basis:	351.2625 0.0000 1.0000 Propene	6.685 0.010 0.990	Molar	0.9913 0.0087	The recov			
7	Propage	351.2625 0.0000 1.0000	6.689 0.010 0.990	Molar	0.9913 0.0087 Tows Propane 242.0478	The recov			
	Propane Propene Flow Basis: Flow Rate (kgmole/h):	351.2625 0.0000 1.0000 Propene 351.2625	6.689 0.010 0.990	Molar Product F	0.9913 0.0087 Tows Propane 242.0478 ————————————————————————————————————	The recov			
	Propane Propene Flow Basis: Flow Rate (kgmole/h): Propane (kgmole/h) Propene (kgmole/h)	351.2625 	0.010 0.990 CGF 6.688	Molar Product F P	0.9913 0.0087 Tows Propane 242.0478	The recov			
	Propane Propene Flow Basis: Flow Rate (kgmole/h): Propane (kgmole/h) Propene (kgmole/h)	351.2625 0.0000 1.0000 Propene 351.2625	CGF 6.689 0.010 0.990	Molar Product F P 97 69 69 Molar	0.9913 0.0087 Iows Propane 242.0478 — 239.9330 2.1147	The recov			
	Propane Propene Flow Basis: Flow Rate (kgmole/h): Propane (kgmole/h) Propene (kgmole/h) Flow Basis:	351.2625 	6.685 0.010 0.990 CGF 6.685 0.066 6.622	Molar Product F Molar Molar Molar Molar Molar Product Rec	0.9913 0.0087 lows Propane 242.0478 	The recov			
	Propane Propene Flow Basis: Flow Rate (kgmole/h): Propane (kgmole/h) Propene (kgmole/h) Flow Basis:	351.2625 0.0000 1.0000 Propene 351.2625 0.0001 351.2625	6.685 0.010 0.990 CGF 6.685 0.066 6.622	Molar Product F P 97 69 69 Molar	0.9913 0.0087 lows Propane 242.0478 239.9330 2.1147 overles	The recov			
7 8 9 0 1	Propane Propene Flow Basis: Flow Rate (kgmole/h): Propane (kgmole/h) Propene (kgmole/h) Flow Basis:	351.2625 	6.685 0.010 0.990 CGF 6.685 0.066 6.622	Molar Product F P P P Molar Molar P P P P P P P P P P P P P P P P P P P	0.9913 0.0087 lows Propane 242.0478 	The recov			
	Propane Propene Flow Basis: Flow Rate (kgmole/h): Propane (kgmole/h) Propene (kgmole/h) Flow Basis:	351.2625 0.0000 1.0000 Propene 351.2625 0.0001 351.2625	6.689 0.010 0.990 CGF 6.689 0.066 6.622	Molar Product F 97 S9 Molar Product Rec	0.9913 0.0087 lows Propane 242.0478 239.9330 2.1147 overles	The recov			
	Propane Propene Flow Basis: Flow Rate (kgmole/h): Propane (kgmole/h) Propene (kgmole/h) Flow Basis:	351.2625 0.0000 1.0000 Propene 351.2625 0.0001 351.2625 Propene 351.2625 0.0000	6.689 0.010 0.990 6.689 0.066 6.622	Molar Product F P Molar Molar Product Rec P Molar Product Rec	0.9913 0.0087 Iows 242.0478 239.9330 2.1147 overles Propane 242.0478	The recov			
7 8 9 0 1	Propane Propene Flow Basis: Flow Rate (kgmole/h): Propane (kgmole/h) Propene (kgmole/h) Flow Basis:	351.2625 0.0000 1.0000 Propene 351.2625 0.0001 351.2625 Propene 351.2625	6.689 0.010 0.990 6.689 0.066 6.622 CGF 6.689	Molar Product F P Molar Product Rec P Molar Product Rec P Molar P Mola	0.9913 0.0087 lows Propane 242.0478 	The recov			
8 9 0 1 2 3	Propane Propene Flow Basis: Flow Rate (kgmole/h): Propane (kgmole/h) Propene (kgmole/h) Flow Basis:	351.2625 0.0000 1.0000 Propene 351.2625 0.0001 351.2625 Propene 351.2625 0.0000	6.685 0.010 0.999 6.685 0.066 6.622 CGF 6.689 0.027 1.839	Molar Product F P P P P Molar P P P P P P P P P P P P P P P P P P P	0.9913 0.0087 lows 242.0478 239.9330 2.1147 overles Propane 242.0478 99.9721 0.5874	The recov	very option is selected	Mala	
The state of the s	Propane Propene Flow Basis: Flow Rate (kgmole/h): Propane (kgmole/h) Propene (kgmole/h) Flow Basis:	351.2625 0.0000 1.0000 Propene 351.2625 0.0001 351.2625 Propene 351.2625 0.0000 97.5729 1082 Reboil Rati	6.685 0.010 0.999 6.685 0.066 6.622 CGF 6.689 0.027 1.839	Molar Product F P P P P Molar P P P P P P P P P P P P P P P P P P P	0.9913 0.0087 lows 242.0478 239.9330 2.1147 overles Propane 242.0478 99.9721 0.5874	The recov	very option is selected	Mala	

Column: T-100 / COL1 Fluid Pkg: Basis-1 / SRK

Sensitivity analysis:

- > Recovery
- Pressure VS Tray position from top
- > Temperature VS tray position from top
- Column properties VS tray position
- > Flow VS tray position from top
- ➤ K-Value VS tray position from top
- Composition VS tray position from top

Column: T-100 / COL1 Fluid Pkg: Basis-1 / SRK

Pressure VS Tray Position from Top

Temperature VS Tray position from the Top

Flow vs. Tray Position from Top

K-Value vs. Tray Position from Top

Composition vs. Tray Position from Top

Chapter: 6

6.1 Results and Discussion:

The simulation result obtained from ASPEN HYSYS 2004 Version and the resulting analysis has been studied under different conditions.

- ✓ Steady state simulation of column is done using HYSYS, for predicting the mixture properties; an appropriate thermodynamic model (fluid package) is selected based on the decision chart and recommendations given in the HYSYS documentation.
- ✓ One feed stream taken with only two components (propane & propylene) are taken and remaining traces are neglected.
- ✓ Total condenser is chosen because the feed contains non-condensable components.
- ✓ While simulating, we consider manipulated variables as reflux ratio, No. of stages, pressure and controlled variables as top and bottom product composition.
- ✓ The specification under which the splitter was converged is reflux ratio, draw rate (D), Composition fraction. The specifications should be selected such that the degree of freedom should be zero, which is a basic condition for simulation process.
- ✓ Instead of shortcut method, we have chosen rigorous method. Inside- out method is chosen for mathematical solution.
- ✓ In this case study, propylene product purity of 98.5% was obtained with a recovery of 96%.
- ✓ Finally, in this analysis, we didn't consider any economics; instead we focused mainly on recovery and product purity.

6.2 LATEST DEVELOPMENTS IN PROPYLENE RECOVERY UNIT:

Propylene is one of basic feed stocks and is used in huge quantities in petrochemical industry. The separation of propylene-propane mixtures have been performed by highly energy intensive distillation process at 40° C and 240 psig (16 kg/cm²) in a column of 220 trays because of the close relative volatility of the components. A number of alternative methods have been investigated for olefin/paraffin separation.[4]

1. Possible operating schemes for Propylene/Propane Fractionator:(Ref Fig:)

- Scheme A: The column is operated at a pressure high enough for the overhead to be condensed by cooling water.
- Scheme B: The process is operated with refrigeration, at a level such that the heating medium is cooling water at 30°C.
- <u>Scheme C:</u> The process utilizes vapor recompression distillation, with only mechanical work being added to the system.
- Scheme D: This is alternative form of vapor-recompression distillation, in which the bottom liquid is expanded for refrigerant value, to condense the over head stream, and is then recompresses as reboiler vapor.

Reference:

Recent developments in chemical process and plant design by Y.A.LIU & HENRY A. MCGEE, JR (chapter-3, Title: Energy efficient separation process design, page no: 71 − 97).

ENERGY-EFFICIENT SEPARATION PROCESS DESIGN

2. Propylene separation from C_3 fractionator feed gas by pressure swing adsorption:

In this work, the separation of propylene-propane mixtures was performed by pressure swing adsorption using a g-complexation sorbent (agno₃/aliminasilica). A three bed and a six step PSA cycle was used for propylene separation from C₃ fractionator fed gas in naptha cracker center. The PSA unit was operated in the pressure range of 35mmHg to 980 mmHg (0.048 – 1.35 kg/cm2) and the performance was examined with the absorber temperature range of 25 to 80° C. the best PSA performance was shown at the adsorber temperature of 70°C. In this case, propylene product purity of 99.5 % was obtained with the recovery of 96 % and the productivity of 3.56 gmol/ (kg.h).

Reference:

- > separation process research center, Korea institute of energy research, south Korea
- > Chemical process technology team, SK Corporation, South Korea.

3. Vacuum swing adsorption process for separating propylene and propane:

A vacuum swing adsorption process is provided for the separation of propylene from feed stream comprising propylene and propane using an adsorbent compromising AIPO-14. To produce a high purity propylene product stream at high recovery. The vacuum swing adsorption process of the present invention can be employed in a variety of petroleum refining and petrochemical processes to purify and separate propylene from the mixtures of propylene and propane alone or in combination with fractionation.

Reference:

United States patent 6296688

4. Utilization of Hybrid membrane in propylene separation :

Membrane separations, which are generally less energy intensive than conventional separations, have been considered promising alternatives for some industrial applications. One of the examples considered is ethylene production in which more than 70% of the energy required is consumed in the purification sections.

A very critical process located in the separation sections of the ethylene plant is the propane/propylene fractionation. This process is currently based on distillation technology that is both expensive and energy intensive. In general, the separation of a low relativity mixture, such as propane/propylene, by using distillation alone is a critical task. It requires large number of equilibrium trays and high reflux ration. A reflux ratio of 20 and up to 200 trays is required for such a separation. However, the application of new technologies, such as selective membrane, may enhance this process.

To produce polymer grade propylene, the membrane alone cannot perform the separation and a hybrid distillation/membrane system is required. Furthermore, the use of simple diffusion membranes for such a process is uneconomical because of the slow transfer rates and selectivity in separation. However, using the facilitated transport (FT) scheme, membranes can make this process feasible. In the FT scheme, the simple diffusion processes coupled with a chemical reactant that reversibly binds with one of the species to be separated which increases the net transport rate.

Hybrid distillation with FT membranes has been evaluated recently for the propane/propylene separation. In the study, the conventional distillation column for propane/propylene is coupled in different configurations with a facilitated transport membrane to form a hybrid system. Simulation and optimization processes are performed for each hybrid configuration. In the process of the simulations, the design parameters, such as membrane pressure ratio, carrier concentration, and reflux ratio are considered. The economic effect of the main design variables on the hybrid system is examined through

parametric studies. For each case of parametric study, design and cost of all equipment associated with each hybrid system are evaluated. The ultimate design is based on economic comparisons. Economic criteria such as processing costs and NPV (net Present value) are used to evaluate the profitability. The hybrid separation system provides considerable reduction in both capital and operating costs.

Reference:

"Membrane /distillation hybrid design for propane/propylene separation" presented at the AIChE spring national meeting new Orleans.

- 5. Extractive Distillation with a polar solvent such as furfural or an aliphatic nitrile that will reduce the volatility of propylene. (Ref: U.S. patent 2,588,056)[7]
- 6. Adsorption with silica gel or a zeolite that will selectively adsorb propylene (Ref: J.Am.chem.soc, 72, 1153-1157(1950))
- 7. Facilitated transport membranes using impregnated silver nitrite to carry propylene selectively through the membrane. (Ref: recent developments in separation science)

6.3 Demand / Supply of propylene:

Propylene production is projected to come from a number of sources, both refinery and petrochemical-complex based. On the refining side, increased propylene production from FCC units is expected to be a major contributor to the on-purpose requirement. It is expected that this FCC production will come from revamps of existing FCC units as well as an increasing petrochemical focus in new FCC units installed to meet transportation fuel market demands.[16]

On the petrochemical side, there are more alternative routes to propylene available than ever before. These alternatives include propane dehydrogenation, methanol-to-olefins, and olefin conversion including metathesis and olefin cracking processes. Each of these alternatives can offer competitive economics in certain situations.

Propylene Supply and Demand Polymer Grade & Chemical Grade

Source: CMAI

Demand growth expected will exceed 4.5% - 5.0% per year in the next few years.

Demand in Asia will be stronger, growing at nearly 6% per year.

Present price of the propylene grade was as follows:[17]

Grade of Propylene	Dollars(\$) per Pound
Polymer grade propylene(PGP)	0.225
Chemical grade propylene(CGP)	0.210

Ethylene/Propylene Price relationships:

Strong demand for propylene derivatives is one of the keys:

- Polypropylene
- Acrylonitrile
- Oxo chemicals
- Propylene oxide
- Cumene
- Isopropyl alcohol
- Polygas chemicals

Polypropylene accounts for more than 60% of propylene demand due to its favorable properties in end use products like very low density, good mechanical properties, and low moisture transmission.

The domestic petrochemical industry has been growing at the rate of 14-15%, which is more than double the growth rate of GDP. The consumption of commodity plastics and synthetic fibres during 2001-02 was 3.8 million tonnes and 1.65 million tonnes

respectively. Despite very high demand of in growth petrochemicals, the per consumption is still much below the world average. The comparison of per capita consumption of major petrochemical segments is given in Per : Figure Consumption of Petrochemicals

The production and consumption of major petrochemicals namely polymers, synthetic fibre and surfactants are in Figure 3

3441 3294 3500 Pelym Agusses for 1989 TRA 2580 1544 1567 Fibre: 2000 1680 359 369 Surfa: O 00-01 (C) 00-01 (P) 90-91 (C) 90-91(P)

Figure 3 Trends in Production and Consumption of Petruchemicals.

Driven by high polypropylene and other propylene derivative demand, propylene growth rate will exceed ethylene growth rate.

6.4 Conclusion & Recommendation:

- ❖ The C₃ splitter of a commercial Petrochemical complex was modeled and simulated from plant tests using HYSYS and has been presented. The various important parameters of the column from the results of simulation were studied and compared at the following conclusion.
- ❖ The project was illustrated on the challenging problems posed by the C₃ splitter for which it was found that a classical plant test was not feasible.
- ❖ The procedure is based on the premise that a reliable steady state simulation of the process and every variable that participates in the scheme is developed.
- ❖ A propylene-propane splitter is generally an easy column to converge. However, the critical factor in producing good results is not the ease of solution, but rather the accurate prediction of the relative volatility of the two key components. Special consideration was given to these components, along with others, in developing the binary interaction coefficients for the Peng Robinson and Soave Redlich Kwong equations of state to ensure that these methods correctly model the system.
- ❖ Here, the splitter is simulated which will contain two columns, a stripper and a rectifier. The stripper is operated as a reboiled absorber and the rectifier is a refluxed absorber.
- ❖ In this extensive investigation, we didn't consider optimization (i.e., economics like annual cost, operating cost etc). Instead we focus mainly on product purity and recovery.
- The model created provides us with an opportunity to know about the working of an actual plant as well as study the alternative modes of operation or optimize the existing operation.

NOMENCLATURE

A= general stream designation; moles, weight, or volume per unit time.

B= bottom product rate; moles, weight, or volume per unit time.

C= number of components; moles, weight, or volume per unit time.

D=overhead product; moles, weight, or volume per unit time.

F= upper feed rate; moles, weight, or volume per unit time.

Ki = yi / xi = equilibrium distribution coefficient for component i

 $L_{N+1} = RD = liquid phase entering stage N;$

M= number of theoretical plates below the feed stage

M+1 = Feed stage

n = subscript referring to any stage

N = total number of theoretical stages including reboiler (if it is a theoretical stage) and the feed stage but excluding the condenser.

Nc = independent restricting variables

 N_V = total number of variables which the designer must consider.

Ni = degrees of freedom; variance; number of design variables which the designer must arbitrarily specify.

q = general designation for a heat system.

Qc = heat removed in the condenser

Qr = heat input to reboiler

R = external reflux ratio

S = side stream rate; moles, weight, or volume per unit time.

V = light phase rate; moles, weight, or volume per unit time.

References

- 1. Lek C.M., Rangaiah G.P and Hidajat.K., Distillation: Revisiting Some Rules of Thumb, *chemical engineering*, pp. 50-55, September, 2004.
- 2. G.P Rangaiah, Yue C.T, K. Hidajat., Optimization of Complex Distillation Cloumns, *chemical engineering journal*, pp. 60-64, September, 2006.
- 3. D.N. Saraf, Vineet Kumar, Anuj Sharma, S.Ganguly, Dept. of Chem.Engg, IIT, Kanpur., A Crude distillation unit model suitable for online applications, fuel processing technology73(2001) 1-21., ELSEVIER
- 4. Fair, J.R., "Energy efficient separation process design", Recent developments in chemical process and design, Y.A.Liu, John Wiley& sons(1987).
- 5. Henry Z. Kister, Distillation Operation, chp-4 Rigorous distillation calculations., McGraw-Hill(1990).
- 6. Buford D. Smith, *Design of Equilibrium stage processes*, chapter-3 Design variables., McGraw Hill.
- 7. J.D Seader & Ernest.J.Henley, Seperation process Principles, chapter -1,2,9 & 10, John Wiley & Sons.
- 8. Apllied case study to a propylene/propane splitter, Scanraff Refinery in Lysekil, Sweden., Authors: Nicholas Alsop & Jose Maria Ferrer
- 9. HYSYS Tutorials on Propylene/Propane Splitter collected from ASPEN TECH(www.aspentech.com) and Chemical Engineers Resource Page, Forum.(www.cheresources.com).
- 10. S K Masud Hossain & M kanga Sabapathy., Modeling & Simulation of binary distillation column., Chemical Engineering World journal.,pp. 57-59, September 2006.
- 11. Robert H. Perry, *Perry's chemical Engineer's Handbook.*, Distillation, chp 13 (13-49); 7th Edition Mc-Graw Hill.
- 12. R.K Sinnott, *Chemical Engineering Design*, COULSON & RICHARDSONS'S CHEMICAL ENGINEERING SERIES, P.P. 350-352, Volume- 6, fourth Edition.

- 13. Powerful process simulation technology, PROMAX. Property packages
- 14. "A comparison of the Peng Robinson and Soave Redlich kwong equation of state using a non zero pressure based mixing rule for the prediction of high pressure and high temperature phase equilibria". Authors: Chorng H. Twu*, John E. Coon, and David Bluck, Simulation Sciences Inc., 601 Valencia Avenue, Brea, CA 92823 (USA), Source: Internet
- 15. J. Mark Houdek & James Andersen "ON-PURPOSE" PROPYLENE TECHNOLOGY DEVELOPMENTS, UOP. Presented at the ARTC 8th Annual Meeting,29-April-2005,Kuala Lumpur.
- 16. George M. Intille, V.P, SRI consulting, "Propylene in asia growing demand and issues in supply", Asia Petrochemical Industry Conference(APIC), Yokohama, Japan, May 19, 2005.
- 17. R.W Gaikwad & A.K Chauhan, "Computer aided design & dynamic simulation of distillation column", pp. 74-86, Chemical engineering world, December 2006.