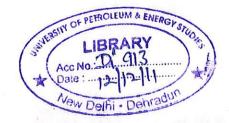
"DESIGNING OF SIEVE TRAY"

A FINAL PROJECT REPORT

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF BACHELOR OF TECHNOLOGY

(APPLIED PETROLEUM ENGINEERING)



Submitted To UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Guided by Dr. D.N. Saraf

Submitted By
JAVED KHAN SHERVANI
R-010103017

UNIVERSITY OF PETROLEUM & ENERGY STUDIES

CERTIFICATE

This is to certify that the Project Report on "DESIGNING OF SIEVE TRAY" submitted to University of Petroleum & Energy Studies, Dehradun, by JAVED KHAN SHERVANI in partial fulfillment of the requirements for the award of Degree of Bachelor of Technology in Applied Petroleum Engineering (Academic Session 2003 – 07) is a bonafide work carried out by him under my supervision and guidance. This work has not been submitted anywhere else for any other degree or diploma.

Date: May 8, 2007

Dr.D.N.Saraf (Distinguished Professor)

Acknowledgement

With great pleasure we would like to express our sincere thanks to Dr. **Deoki.N.Saraf**, College of Engineering (COE), University of Petroleum & Energy Studies, for giving us the opportunity to carry out our training and work on the project "**Designing of Sieve Tray**" under his guidance and support.

We are deeply indebted to our college Lab staff for their timely and generous help at every stage during the progress of our project work.

JAVED KHAN SHERVANI
[R010103017]
B.Tech.
Applied Petroleum Engineering
Downstream Specialization
University of Petroleum & Energy Studies
Dehradun
India

Index

- 1. Introduction
- 2. General Characteristics of tray design
- 3. Methods of design of Sieve Tray
- 4. Designing of Sieve Tray for stripping aniline-water solution
- 5. References

INTRODUCTION:

TRAY TOWERS

Tray towers are vertical cylinders in which the liquid and gas are contacted in stepwise fashion on trays or plates, as shown schematically for one type (bubble-cap trays) . The liquid enters at the top and flows downward by gravity. On the way, it flows across each tray and through a downspout to the tray below. The gas passes upward through openings of one sort or another in the tray, then bubbles through the liquid to form a froth, disengages from the froth, and passes on to the next tray above. The overall effect is a multiple countercurrent contact of gas and liquid, although each tray is characterized by a cross flow of the two. Each tray of the tower is a stage, since on the tray the fluids are brought into intimate contact, interphase diffusion occurs, and the fluids are separated. The number of equilibrium stages (theoretical trays) in a column tower is dependent only upon the difficulty of the separation to solely from material balances and equilibrium be carried out and is determined considerations. The stage or tray efficiency, and therefore the number of real trays, is determined by the mechanical design used and the conditions of operation. The diameter of thetower, on the other hand, depends upon the quantities of liquid and gas flowing through the tower per unit time. Once the number of equilibrium stages, or theoretical trays, required has been detennined, the principal problem in the design of the tower is to choose dimensions and arrangements which willrepresent the best compromise between several opposing tendencies, since it is generally found that conditions leading to high tray efficiencies will ultimatelylead to operational difficulties. For stage or tray efficiencies to be high the time of contact should be long to Permit it the diffusion to occur, the interfacial surface between phases must bemade large, and a relatively high intensity of turbulence is required to obtainhigh mass-transfer coefficients. In order to provide long contact time, the liquidpool on each tray should be deep, so that bubbles of gas will require a relativelylong time to rise through the liquid. When the gas bubbles only slowly throughthe openings on the tray, the bubbles are large, the interfacial surface per unit ofgas volume is small, the liquid is relatively quiescent, and much of it may evenpass over the tray without having contacted the gas. On the other hand, when the gas velocity is relatively high, it is dispersed very thoroughly into the liquid, which in turn is agitated into a. froth. This provides large interfacial surfaceareas. For high tray efficiencies, therefore, we require deep pools of liquid andrelatively high gas velocities. These conditions, however, lead to a number of difficulties. One is the

mechanical entrainment of droplets of liquid in the rising gas stream. At highgas velocities, when the gas is disengaged from the froth, small droplets of liquidwill be carried by the gas to the tray above. Liquid carried up the tower in this manner reduces the concentration change brought about by the mass transfer

and consequently adversely affects the tray efficiency. And so the gas velocitymay be limited by the reduction in tray efficiency due to liquid entrainment. Furthermore, great liquid depths on the tray and high gas velocities both result in high pressure drop for the gas in flowing through the tray, and this in turn leads to a number of difficulties. In the case of absorbers and humidifiers, high pressure drop results in high fan power to blow or draw the gas through the tower, and consequently high operating cost. In the case of distillation, highpressure at the bottom of the tower results in high boiling temperatures, which in turn may lead to heating difficulties and possibly damage to heatsensitivecompounds. Ultimately, purely mechanical difficulties arise. High pressure drop maylead directly to a condition of flooding. With a large pressure difference in the space between trays, the level of liquid leaving a tray at relatively low pressure and entering one of high pressure must necessarily assume an elevated positionin the downspouts, as . As the pressure difference is increaseddue to the increased rate of flow of either gas or liquid, the level in thedownspout will rise further to permit the liquid to enter the lower tray. Ultimately the liquid level may reach that on the tray above. Further increase in either flow rate then aggravates the condition rapidly, and the liquid will fill the entire space between the trays. The tower is then flooded, the tray efficiency falls to a low value, the flow of gas is erratic, and liquid may be forced out of the exit pipe at the top of the tower. For liquid-gas combinations which tend to foam excessively, high gas velocities may lead to a condition of priming, which is also an inoperative situation. Here the foam persists throughout the space between trays, and a

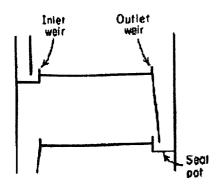
great deal of liquid is carried by the gas from one tray to the tray above. This is an exaggerated condition of entrainment. The liquid so carried recirculates between trays, and the added liquidhandling load increases the gas pressure drop sufficiently to lead to flooding. We can summarize these opposing tendencies as follows. Great depths of liquid on the trays lead to high tray efficiencies through long contact time but also to high pressure drop per tray. High gas velocities, within limits, provide goodvapor-liquid contact through excellence of dispersion but lead to excessive entrainment and high pressure drop. Several other undesirable conditions may occur. If liquid rates are too low, the gas rising through the openings of the tray maypush the liquid away (coning), and contact of the gas and liquid is poor. If thegas rate is too low, much of the liquid may rain down through the openings ofthe tray (weeping), thus failing to obtain the benefit of complete flow over the trays; and at very low gas rates, none of the liquid reaches the downspouts (dumping). The relations between these conditions are shown schematically in Fig.6.9, and all types of trays are subject to these difficulties in some form. The various form The various arrangements, dimensions, and operating conditions chosen for design are those which experience has proved to be reasonably good compromises. The general design procedure involves a somewhat empirical application of them, followed by computational check to ensure that pressure drop and flexibility, i.e., ability of the tower to handle more or less than the immediately expected flow quantities, ~e satisfactory. A great variety of tray designs have been and are being used. .The various form practically all towers were fitted with bubble-cap trays, but new installations now use either sieve trays or one of the proprietary designs whichhave proliferated since 1950.

GeneralCharacteristics

Certain design features common to the most frequently used tray designs will bedealt with first.

Shell and trays The tower may be made of any number of materials, depending upon the corrosion conditions expected. Glass, glass-lined metal, impervious carbon, plastics, even wood but most frequently metals are used. For metal towers, the shells are usually cylindrical for reasons of cost. In order to facilitate

cleaning, small-diameter towers are fitted with hand holes, large towers with manwaysabout every tenth tray. The trays are usuallymade of sheet metals, of special alloys if necessary, the thickness governed by the anticipated corrosion rate. The trays must be stiffened and supported (see, for example, and must be fastened to the shell to prevent movement owing to to surges of gas, with allowance for thermal expansion. This can be arranged by use of tray-support rings with slotted bolt holes to which the trays are bolted. Large trays must be fitted with manways so that a person can climb from one tray to another during repair and cleaning. Trays should be installed level to within 6 mm (~ in) to promote good liquid distribution.


Tray spacing Tray spacing is usually chosen on the basis of expediency in construction, maintenance, and cost and later checked to be certain that adequate insurance against flooding and excessive entrainment is present. For special cases where tower height is an important consideration, spacings of 15 cm (6 in) have been used. For all except the smallest tower diameters, 50 cm(20 in) would seem to be a more workable minimum from the point of view ofcleaning the trays.

Towerdiameter The tower diameter and consequently its cross-sectional area must be sufficiently large to handle the gas and liquid rates within the region of satisfactory operation. For a given type of tray at flooding, the superficial velocity of the gas V_F (volumetric rate of gas flow Q per net crossection for flow An) is related to fluid densities by

$$V_F = C_F \left(\frac{\rho_L - \rho_G}{\rho_G} \right)^{1/2}$$

The net cross section An is the tower cross section At minus the area taken up by the downspouts (Ad in the case of a cross-flow tray as in CF is an empirical constant, the value of which depends on the tray design. Some appropriately smaller value of V is used for actual design; for non foaming liquid this is typically 80 to 85 percent of V_F(75 percent or less for foaming liquids), subject to check for entrainment and pressure-drop characteristics

DownspoutsThe liquid is led from one tray to the next by means of downspouts, or downcomers. These may be circular pipes or preferably portions of the tower cross section set aside for liquid flow by vertical plates, Sincethe liquid is agitated into a froth on the tray, adequate residence time must be allowed in the downspout to permit disengaging the gas from the liquid, so that only clear liquid enters the tray below. The downspout must be brought close enough to the tray below to seal into the liquid on that tray, thus preventing gas from rising up the downspout to short-circuit the tray above. Seal pots and seal-pot dams (inlet weirs) may be used, but they are best avoided (see below), especially if there is a tendency to accumulate sediment. If they are used, weep holes (small holes through the tray) in the seal pot should be used to facilitate draining the tower on shutdown. Weirs The depth of liquid on the tray required for gas contacting is maintained by an overflow (outlet) weir, which mayor may not be a continuation of the downspout plate. Straight weirs are most common; multiple V-notch weirs maintain a liquid depth which is less sensitive to variations in liquid flow rate and consequently also from departure of the tray from levelness; circular weirs, which are extensions of circular pipes used as downspouts, are not recommended. Inlet weirs may result in a hydraulic jump of the liquid and are not generally recommended. In order to ensure reasonably uniform distribution of liquid flow on a single-pass tray, a weir length of from 60 to 80 percent of the tower diameter is used. lists the percentage of the tower cross section taken up by downspouts formed from such weir plates.

Downspout

Sieve (perforated) trays

These trays have been known almost as long as bubble-cap trays, but they fell out of favor during the first half of this century. Their low cost, however, has now made them the most important of tray devices. The principal part of the tray is a horizontal sheet of perforated metal, across which the liquid flows, with the gas passing upward through the perforations. The gas, dispersed by the perforations, expands the liquid into a turbulent froth, characterized by a very large interfacial surface for mass transfer. The trays are subject to flooding because of backup of liquid in the downspouts or excessive entrainment (priming), as described earlier.

DesIgn of Sieve Trays

The diameter of the tower must be chosen to accommodate the flow rates, the details of the tray layout must be selected, estimates must be made of the gas-pressure drop and approach to flooding & and assurance against excessive weeping and entrainment must be established.

Tower diameter The flooding constant C_F of has been correlated for the data available on flooding. The original curves can be represented b

$$C_F = \left[\alpha \log \frac{1}{(L'/G')(\rho_G/\rho_L)^{0.5}} + \beta\right] \left(\frac{\sigma}{0.020}\right)^{0.2}$$

perforation and active area Hole diameters from 3 to 12 mm 0 to ! in) are commonly used, 4.5 mm(k in) most frequently although holes as large as 25 mm have been successful For installations, stainless steel or other alloy perforated sheet is used, rather than carbon steel, even though not necessarily required for corrosion resistance. Sheet thickness is usually less than one half than on the hole diameter for stainless steel, less than one diameter for carbon steel or copper alloys.

Table lists typical values.

The holes are placed in the comers of equilateral triangles at distances between centers (pitch) of from 2.5 to 5 hole diameters. For such an arrangement

$$\frac{A_o}{A_a} = \frac{\text{hole area}}{\text{active area}} = 0.907 \left(\frac{d_0}{p'}\right)^2$$

Typically, the peripheral tray support, 25 to 50 mm (I to 2 in) wide, and the beam supports will occupy up to 15 percent of the cross-sectional area of the tower; the distribution zone for liquid entering the tray and the disengagement zone for disengaging foam (which are sometimes omitted) use 5 percent or more [47, 66]; and downspouts require additional area The remainder is available for active perforations (active area A_d),

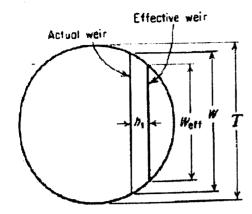
Liquid depths Liquid depths should not ordinarily be less than 50 mm (2 in), to ensure good froth formaton These limits refer to the sum of the weir height h_w plus the crest over the weir h_i calculated as clear liquid although in the perforated area the equivalent clear-liquid depth will be smaller than this.

Weirs The crest of liquid over a straight rectangular weir can be estimated by the well-known Francis formula

$$\frac{q}{W_{\rm eff}} = 1.839 h_1^{3/2}$$

where q - rate of liquid flow, m3Is

Weff - effective length of the weir, m


H₁ - liquid crest over the weir, m

Because the weir action is hampered by the curved sides of the circular tower, it is recommended that W_{eff} be represented as a chord of the circle of diameter T, a distance hI farther from the center than the actual weir, as in can then be rearranged tot

$$h_{1} = 0.666 \left(\frac{q}{W}\right)^{2/3} \left(\frac{W}{W_{\text{eff}}}\right)^{2/3}$$

$$\left(\frac{W_{\text{eff}}}{W}\right)^{2} = \left(\frac{T}{W}\right)^{2} - \left\{ \left[\left(\frac{T}{W}\right)^{2} - 1\right]^{0.5} + \frac{2h_{1}}{T}\frac{T}{W}\right\}^{2}$$

For WIT - 0.7, which is typical, can be used with Well- W for hl/W - 0.055 or less with a maximum error of only 2 percent in hi, which is negligible.

Effective Weir Length

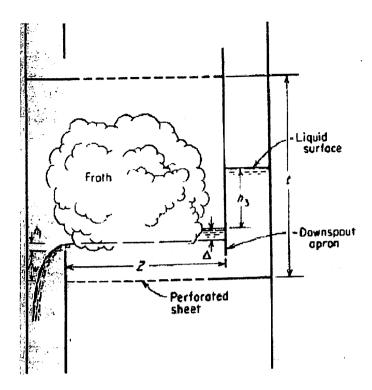
Pressure drop for the gas For convenience, all gas-pressure drops will be expressed as heads of clear

liquid of density PLon the tray. The pressure drop for the gas he; is the sum of the effects for flow of gas through the dry plate and those caused by the presence of liquid:

$$h_G = h_D + h_L + h_R$$

where $h_D = \text{dry-plate pressure drop}$

h_ pressure drop resulting from depth of liquid on tray


h_R = residual pressure drop

Dry pressure drop h_D This is calculated on the basis that it is the result to a loss in pressure on entrance to the perforations, friction within the short tube formed by the perforation owing to plate thickness, and an exit loss

$$\frac{2h_Dg\rho_L}{V_o^2\rho_G} = C_o \left[0.40 \left(1.25 - \frac{A_o}{A_n} \right) + \frac{4lf}{d_o} + \left(1 - \frac{A_o}{A_n} \right)^2 \right]$$

The Fanning friction factor f is taken from a standard chart Co is an orifice coefficient which depends upon the ratio of plate thickness to hole diameter. Over the range 1/do - 0.2 to 2.0

$$C_o = 1.09 \left(\frac{d_o}{l}\right)^{0.25}$$

Scheamitic diagram of sieve tray

Hydraulicbead h_L In the perforated region of the tray, the liquid is in the form of a froth. The equivalent depth of clear liquid hL is an estimate of that which would obtain if the froth collapsed. That is usually less than the height of the outlet weir, decreasing with increased gas rate. Some methods of estimating hL use a specific *aeration factor* to describe this In which is the recommended relationship the effect of the factor is included as a function of the variables which influence it

$$h_L = 6.10 \times 10^{-3} + 0.725 h_W - 0.238 h_W V_a \rho_G^{0.5} + 1.225 \frac{Q}{z}$$

where z is the average flow width. which can he taken as (T + W)/2.

Residual gas pressure drop h_R This is believed to he largely the result of overcoming surface tension as the gas issues from a perforation. A balance of the internal force in a static bubble required to overcome surface tension is

$$\frac{\pi d_p^2}{4} \Delta p_B = \pi d_p \sigma$$
$$\Delta p_B = \frac{4\sigma}{d_p}$$

where Δp_B is the excess pressure in the bubble due to surface tension. But the bubble of gas grows over a finite time when the gas flows. and by averaging over time, it develops that the appropriate value is Δp_B

$$\Delta p_R = \frac{6\sigma}{d_p}$$

Since the bubbles do not really issue singly from the perforations into relatively quiet liquid, we substitute as an approximation the diameter of the perforations d_a which leads to

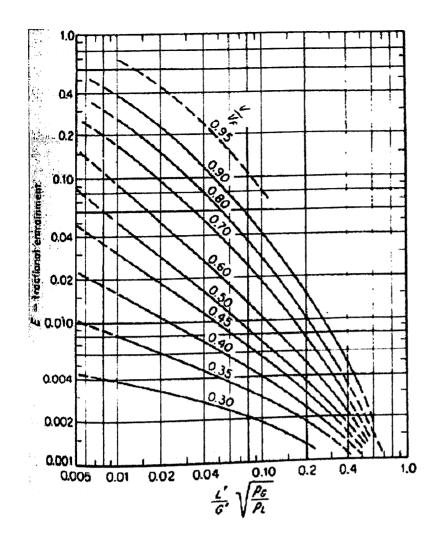
$$h_R = \frac{\Delta p_R \ g_c}{\rho_L g} = \frac{6\sigma g_c}{\rho_L d_o g}$$

Pressure loss at liquid entrance *h2* The flow of liquid under the downspout apron as it entersthe tray results in a pressure loss which can he estimated as equivalent to three velocity heads

$$h_2 = \frac{3}{2g} \left(\frac{q}{A_{da}} \right)^2$$

where A_{da} is the smaller of two areas, the downspout cross section or the free area between the downspout apron and the tray. Friction in the downspout is negligible.

Backup in the downspout The distance h₃. the difference in liquid level inside and immediately outside the downspout, will he the sum of the pressure losses resulting from liquid and gas flow for the tray above Since the mass in the downspout will he partly froth carried over the weir from the tray above, not ye"t disengaged, whose average density can usually he estimated roughly as half that of the clear liquid, safe design requires that the level of equivalent clear liquid in the downspout he no more than half the tray spacing. Neglecting A. the requirement is


$$h_W+h_1+h_3<\frac{t}{2}$$

Weeping if the gas velocity through the holes is too small, liquid will drain through them and contact on the tray for that liquid will be lost. In addition, for cross-flow trays, such liquid does not flow the full length of the tray below. The data on incipient weeping are meager, particularly for large liquid depths, and in all likelihood there will always be *some* weeping.

$$\frac{V_{ow}\mu_{G}}{\sigma g_{c}} = 0.0229 \left(\frac{\mu_{G}^{2}}{\sigma g_{c}\rho_{G}d_{o}} \frac{\rho_{L}}{\rho_{G}}\right)^{0.379} \left(\frac{l}{d_{o}}\right)^{0.293} \left(\frac{2A_{o}d_{o}}{\sqrt{3}\,p^{\prime 3}}\right)^{2.8/(Z/d_{o})^{0.784}}$$

Liquid entrainment When liquid is carried by the gas up to the tray above, the entrained liquid is Caught in the liquid on the upper tray. The effect is cumulative, and liquid loads on the upper trays of a lower can become excessive. A convenient definition of the degree of entrainment is the fraction of the liquid entering a tray which is carried to the tray above

Fractional entrainment = $E = \frac{\text{moles liquid entrained/(area)(time)}}{L + \text{moles liquid entrained/(area)(time)}}$

Entrainment graph

Designing for stripping an aniline water solution with steam

Given:

At the top of the tower:

Temperature =98.5°C Pressure = 745mmHgabs

Liquid:

Composition =7 mass% aniline

Rate

=6.3 Kg/s

Density(

=961Kg/m³

Viscosity $=3*10^{-4} \text{ Kg/m.s}$

Surface tension =0.058 N/m

Aniline diffusivity = $52*10^{-10}$ m2/s

Molecular wt. of $\dot{H}2O = 18$

Molecular wt of aniline = 93

Average molecular wt = 0.07*93+(1-0.07)*18

=23.25 Kg/Kmol

Volume flow rate (q)

= 6.3/961 = 6.55*10-3 m3/s

Vapour:

Composition =3.6 mole%aniline

Rate

=3.15 Kg/s

Aniline diffusivity = $1.261*10^{-5}$ m2/s

Average molecular wt = 0.036*93 + (1-0.036)*18

= 20.7 Kg/Kmol

Gas density

= 20.7*273/22.4*(273+98.5) =0.679 Kg/m3

Gas flow rate (Q)

= 3.15/0.679 = 4.64 m3/s

1. perforation

stainless steel

take do = 4.5 mm

equilateral triangle pitch =12 mm between hole centre

plate thickness/hole diameter =0.43

plate thickness(l) =0.43*4.5 = 2mm

$$\frac{A_o}{A_a} = \frac{\text{hole area}}{\text{active area}} = 0.907 \left(\frac{d_0}{p'}\right)^2$$

$$= 0.907 (4.5/12)^2$$

$$= 0.1275$$

2. tower diameter

take t = 0.50 m tray spacing

$$\frac{L'}{G'} \bigg(\frac{\rho_G}{\rho_L}\bigg)^{0.5}$$

=
$$(6.55*10^{-3}*(961/0.679)^{0.5})/4.64$$

=0.053

$$\alpha = 0.0744(0.50) + 0.01173 = 0.0489$$

$$\beta = 0.0304(0.50) + 0.015 = 0.0302$$

$$C_F = \left[\alpha \log \frac{1}{(L'/G')(\rho_G/\rho_L)^{0.5}} + \beta\right] \left(\frac{\sigma}{0.020}\right)^{0.2}$$

$$=0.1145$$

$$V_F = C_F \left(\frac{\rho_L - \rho_G}{\rho_G}\right)^{1/2}$$

$$= 4.31 \text{ m/s}$$

$$V = 0.75*4.31$$

= 3.23 m/s

$$An = At - Ad$$

Let weir lenth
$$W = 0.75T$$

$$Ad = 11.255\%$$

$$At = 1$$

$$An = 1-(11.255/100)$$

$$= 0.88745$$

$$An = Q/V = 4.64/3.23 = 1.437 \text{ m}^2$$

$$0.88745$$
At = 1.437

$$At = 1.619 \text{ m}2$$

$$T = (At*4/\pi)^{0.5}$$

$$=1.44 \text{ m}$$

Corrected At =
$$\pi T^2/4$$

$$= 1.629 \text{ m}^2$$

$$W = 0.75(1.44) = 1.08 M$$

$$M = 0.75(1.44) = 1.00 \text{ M}$$

Ad = 0.11255 * 1.629 = 0.1833 m²

Area taken by [tray support + disengaging and distribution zone]

40 mm wide support ring

50mm wide disengaging and distribution zone =2*[0.040*1.44]+ 2*[0.050*1.44] =0.2592 m2

Aa =At- 2Ad – area taken by [tray support + disengaging and distribution zone] = 1.629- 2(0.1833)-0.2592 = 1.0032 m2

3. weir crest h₁ and weir height hw

let h1 = 25 mm= 0.025 m h1/T = 0.025/1.44 = 0.02 T/W = 1.44/1.08 = 1.333 $q/W = 6.55* 10^{-3}/1.08 = 6.06*10^{-3} m2/s$

$$\left(\frac{W_{\text{eff}}}{W}\right)^2 = \left(\frac{T}{W}\right)^2 - \left\{ \left[\left(\frac{T}{W}\right)^2 - 1 \right]^{0.5} + \frac{2h_1}{T} \frac{T}{W} \right\}^2$$

$$= 0.918$$

$$h_1 = 0.666 \left(\frac{q}{W}\right)^{2/3} \left(\frac{W}{W_{\rm eff}}\right)^{2/3}$$

= 0.0209 m Let $h_2 = 0.0209 \text{ m}$ $h_2/T = 0.0209/1.44 = 0.015$ Weff/ W = 0.9279 $h_2 = 0.02105$ let $h_3 = 0.02195$ $h_3/T = 0.02105/1.44 = 0.02105/1.44 = 0.0146$ Weff/W = 0.9299 $h_3 = 0.02109$ let $h_4 = 0.02109/1.44 = 0.0146$ Weff/W = 0.929 Taking: Weff/W = 0.9299

 $h_1 = 0.02109 \text{ m}$ let weir height hw = 50 mm = 0.05 m

4. Pressure drop for the gas

a. determination of h_D

$$C_o = 1.09 \left(\frac{d_o}{l}\right)^{0.25}$$

= 1.09(4.5/2)^{0.25}
= 1.335
Ao = 0.1275 Aa
= 0.1275(1.0032)
= 0.128 m2
Vo=Q/Ao = 4.64/0.128 = 36.25 m/s
Re = 0.0045*36.25*0.679/1.25*10⁻⁵ =8860
f = 0.009

$$\frac{2h_{D}g\rho_{L}}{V_{o}^{2}\rho_{G}} = C_{o} \left[0.40 \left(1.25 - \frac{A_{o}}{A_{n}} \right) + \frac{4lf}{d_{o}} + \left(1 - \frac{A_{o}}{A_{n}} \right)^{2} \right]$$

$$h_d = 0.0828 \text{ m}$$

b. determination of h_1 Va = Q/Aa = 4.64/1.0032 = 4.625 m/s Z = T+W/2 = 1.44 + 1.08/2 = 1.26m

$$h_L = 6.10 \times 10^{-3} + 0.725 h_W - 0.238 h_W V_a \rho_G^{0.5} + 1.225 \frac{q}{z}$$

= 0.0033 m

c. determination of h_R

$$h_R = \frac{\Delta p_R g_c}{\rho_L g} = \frac{6\sigma g_c}{\rho_L d_o g}$$
$$= 6*0.058/961*0.0045*9.807$$
$$= 8.2*10^{-3}$$

$$h_G = h_d + h_L + h_R = 0.0828 + 0.0033 + 8.2*10^{-3} = 0.0943 \text{ m}$$

Pressure loss at liquid entrance: h₂

The down spout aprox. will be set out at =hw -0.025 = 0.025

The area for liquid flow under approx.

= 0.025*W

= 0.025*1.08

 $= 0.027 \text{ m}^2$

 $Ada = 0.027 \text{ m}^2$

$$h_2 = \frac{3}{2g} \left(\frac{q}{A_{da}} \right)^2$$

= 9.001 * 10⁻³ m

Back up in the down spout

$$h_3 = h_G + h_2$$

$$=9.001*10^{-3}+0.0943$$

$$= 0.1033 \text{ m}$$

Check on flooding:

$$h_W + h_1 + h_3 < t/2$$

$$h_W + h_1 + h_3 = 0.05 + 0.02109 + 0.1033 = 0.17439$$

 $t/2 = 0.50/2 = 0.25$

hence chosen t is satisfactory

4. Weeping velocity:

For W/T = 0.75

Distance from the centre of the tower = 0.3296*T

$$= 0.3296*1.44$$

= 0.475

$$Z = 2*0.475$$

= 0.95

$$\frac{V_{ow}\mu_G}{\sigma g_c} = 0.0229 \left(\frac{\mu_G^2}{\sigma g_c \rho_G d_o} \frac{\rho_L}{\rho_G}\right)^{0.379} \left(\frac{l}{d_o}\right)^{0.293} \left(\frac{2A_a d_o}{\sqrt{3} \ p'^3}\right)^{2.8/(Z/4_o)^{0.724}}$$

$$Vow = 5.14 \text{ m/s}$$

5. Entrainment:

$$V/V_F = 3.23/4.31 = 0.7$$

$$\frac{L'}{G'} \left(\frac{\rho_G}{\rho_L}\right)^{0.5}$$

$$= 0.053$$

$$E = 0.038$$

6. Determination efficiency of sieve tray

$$\begin{split} Y_{n+1} &= 3.6 \text{ mole \% aniline} \\ \mu_{1g} &= \Pi \; \mu_{1gi} \; y_i \; Mi^{0.5} \; / \; \Pi y_i \; Mi^{0.5} \\ &= (\; 0.82*0.036*93^{0.5} \; + 0.27*0.964*18^{0.5}) \; / (0.036*\; 93^{0.5} \; + 0.964*18^{0.5}) \\ &= 0.313 \; cp \\ Sc &= \; \mu_{g} \; / \; D_{G} \; \; \rho_{g} \\ &= \; 0.313*10^{-3} \; / \; 0.679*1.261*10^{-5} \\ &= \; 36.55 \end{split}$$

$$\theta_L = \frac{\text{vol liquid on tray}}{\text{vol liquid rate}} = \frac{h_L z Z}{q}$$

$$= 0.0033*1.26*0.95 / 6.55*10^{-3}$$

=0.603

$$D_E = \left(3.93 \times 10^{-3} + 0.0171 V_a + \frac{3.67q}{Z} + 0.1800 h_W\right)^2$$

$$= 0.0137 \text{ m}2/\text{ s}$$

$$N_{IL} = 40\ 000 D_L^{0.5} (0.213 V_a \rho_G^{0.5} + 0.15) \theta_L$$
$$= 1.67$$

$$N_{rG} = \frac{0.776 + 4.57h_W - 0.238V_a\rho_G^{0.5} + 104.6q/Z}{Sc_G^{0.5}}$$

```
For 7% aniline
 X_{Local} = (7/93)/(7/93+93/18)
       =0.0143
Plotting of equilibrium curve aniline -water
Antonie constant for aniline
A = 6.4450
B = 1731.50
C = -67.0500
Log_{10}P_A = A - B/(T + C)
        =6.4450 -1731.50 /(371.5-67.0500)
        =0.7576
     P_A = 5.72 kpas
Antonie constant for water
A = 7.0733
B=1686.40
C = -46.2500
Log_{10}P_{w} = A - B/(T + C)
         = 1.888
      P_{w} = 77.26 \text{kpas}
Bubble point calculation:
P = P_w + [P_A - P_w]Xi
Yi = Xi P_A /P
1. X_1
        =0
   P = 77.26
  Y_1 = 0
2. X_1 = 0.1
  P = 70.106
  Y_1 = 0.0163
3. X_1 = 0.2
  P = 62.952
  Y_1 = 0.0181
4 X_1 = 0.3
  P = 55.798
  Y_1 = 0.0308
5..X_1 = 0.5
  P = 48.64
  Y_1 = 0.047
6. X_1 = 0.5
```

P = 41.49 $Y_1 = 0.0689$

7.
$$X_1 = 0.6$$

$$P = 34.336$$

$$Y_1 = 0.0689$$

$$8. X_1 = 0.7$$

$$P = 27$$

$$Y_1 = 0.1473$$

$$9. X_1 = 0.8$$

$$P = 20.028$$

$$Y_1 = 0.228$$

10.
$$X_1 = 0.9$$

$$P = 12.874$$

$$Y_1 = 0.399$$

11
$$X_1 = 1$$

$$P = 5.72$$

$$Y_1 = 1$$

Line AC is drawn with slope:

$$N_{tL} *L/N_{tG} *G = -1.67 *0.271 /0.135 *0.152$$

$$\Theta = (-22.05) \tan^{-1}$$

$$= -87.40$$

$$L = 6.3 \text{ Kg/s}$$

$$= 6.3/23.23 \text{ Kmol/s}$$

$$= 0.271 \text{ Kmol/s}$$

$$G = 3.15/20.7 \text{ Kmol/s}$$

$$= 0.152$$
 Kmol/s

Slope =
$$\tan 17^{\circ} = 0.306$$

$$\frac{1}{N_{tOG}} = \frac{1}{N_{tG}} + \frac{mG}{L} \frac{1}{N_{tL}}$$

$$1/N_{toG} = 0.1332$$

$$N_{toG} = 0.1332$$

Point efficiency (
$$E_{OG}$$
) = 1-e NtoG

$$= 1 - e^{0.1332}$$

$$= 0.414$$

· production of the second •

Notation:

volumetric flowrate Q volumetric liquid flowrate q perforation diameter do plate thickness 1 area of perforation Ao Aa active area t tray spacing L' superficial liquid mass velocity superficial gas mass velocity G' flooding constant C_{F} flooding velocity V_{F} net tower cross-sectional area for gas flow An downspout cross-sectional area Ad At tower cross-sectional area T tower diameter \mathbf{W} weir length h_1 weir crest effective weir length Weff weir height hw orifce coefficient Co Ao area of perforation V_0 velocity through an orifice

Re reynold number

f frictional factor

h_D dry plate gas pressure drop as head

 h_L gas pressure drop due to liquid hold up

h_R residual gas pressure drop

h_G gas pressrure drop as head

Ada smaller of two area

Vow weeping velocity

E entrainment

h₃ back up of liquid in downspout

h₂ head loss owing to liquidflow under down spout

 Y_{n+1} mass fraction in gas phase

Sc schimdt number

 θ_L time of residence of liquid on tray

D_E eddy diffsivity

X_{Local} mass fraction in liquid phase

P_w vapour pressure of water

P_A vapour pressure of aniline

 N_{tL} number of liquid phase transfer unit

N_{tG} number of gas phase transfer unit

 N_{toG} number of overall gas phase transfer unit

 X_{Local} mass fraction in liquid phase

A,B,C antonie constant

References

- 1. Donald .Q.Kern , Process Heat Transfer , Tata McGraw Hill, Edition 1997
- 2. Robert E Treybal , Mass Transfer Operation , Mc Graw Hill international Edition, Third Edition
- 3. SM Vora, BI Bhatt, Stoichiometry, Tata McGraw Hill, Fourth Edition
- 4. Perry. R.H.Green, D.W., Perry Chemical Engg. Hand book, Seventh Edition © 1997 McGraw-Hill