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INTRODUCTION

OPTIMIZATION is the use of specific methods to determine the most cost-
effective and efficient solution to a problem or design for a process. This
technique is one of the major quantitative tools in industrial decision
making. A wide variety of problems in the design, construction, operation,
and analysis of chemical plants (as well as many other industrial processes)

can be resolved by optimization.

WHAT OPTIMIZATION IS ALL ABOUT

Optimization pervades the fields of science, engineering, and business. In
physics many different optimal principles have been enunciated, describing
natural phenomena in the fields of optics and classical mechanics. The field
of statistics treats various principles termed "maximum likelihood,"
"minimum loss," and "least squares," and business makes use of "maximum
profit," "minimum cost," "maximum use of resources," "minimum effort," in
its efforts to increase profits. A typical engineering problem can be posed as
follows: A process can be represented by some equations or perhaps solely
by experimental data. You have a single performance criterion in mind such
as minimum cost. The goal of optimization is to find the values of the
variables in the process that yield the best value of the performance criterion.
A trade-off usually exists between capital and operating costs. The described
factors-process or model and the performance criterion-constitute the
optimization "problem."

Typical problems in chemical engineering process design or plant operation
have many (possibly an infinite number) solutions. Optimization is

concerned with selecting the best among the entire set by efficient
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quantitative methods. Computers and associated software make the

necessary computations feasible and cost effective.

WHY OPTIMIZE?

Engineers work to improve the initial design of equipment and strive to
enhance the operation of that equipment once it is installed so as to realize
the largest production, the greatest profit, the improved yields of valuable
products (or reduced yields of contaminants), reduced energy consumption,
higher processing rates, and longer times between shutdowns.

Optimization can also lead to reduced maintenance costs, less equipment
wear, and better staff utilization. In addition, intangible benefits arise from
the interactions among plant operators, engineers, and management. It is
extremely helpful to systematically identify the objective, constraints, and
degrees of freedom in a process or a plant, leading to such benefits as

improved quality of design, faster and more reliable troubleshooting, and

faster decision making.

SCOPE AND HIERARCHY OF OPTIMIZATION

Optimization can take place at many levels in a company, ranging from a
complex combination of plants and distribution facilities down through
individual plants, combinations of units, individual pieces of equipment,
subsystems desirable to manufacture more product from an old, inefficient
plant (at higher cost) than from a new, efficient one because new customers
may be located very close to the old plant. On the other hand, if the old plant

is operated far above its design rate, costs could become exorbitant, forcing
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a reallocation by other plants in spite of high transportation costs. In
addition, no doubt constraints exist on production levels from each plant that

also affect the product distribution plan.

THE ESSENTIAL FEATURES OF OPTIMIZATION PROBLEMS
Because the solution of optimization problems involves various features of
mathematics, the formulation of an optimization problem must use
mathematical expressions. Such expressions do not necessarily need to be
very complex. Not all problems can be stated or analyzed quantitatively, but
we will restrict our coverage to quantitative methods. From a practical
viewpoint, it is important to mesh properly the problem statement with the
anticipated solution technique. A wide variety of optimization problems
have amazingly similar structures. Indeed, it is this similarity that has
enabled the recent progress in optimization techniques.

Chemical engineers, petroleum engineers, physicists, chemists, and traffic
engineers, among others, have a common interest in precisely the same
mathematical problem structures, each with a different application in the real
world. We can make use of this structural similarity to develop a framework
or methodology within which any problem can be studied. This section
describes how any process problem, complex or simple, for which one
desires the optimal solution should be organized. To do so, you must (a)
consider the model representing the process and(b) choose a suitable

objective criterion to guide the decision making.

Every optimization problem contains three essential categories:

L. At least one objective function to be optimized (profit function, cost

function,etc.).
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2. Equality constraints (equations).

3. Inequality constraints (inequalities).

Categories 2 and 3 constitute the model of the process or equipment;
category I is sometimes called the economic model.
By a feasible solution of the optimization problem we mean a set of
variables that satisfy categories 2 and 3 to the desired degree of precision.
Figure illustrates the feasible region or the region of feasible solutions
defined by categories 2 and 3. In this case the feasible region consists of a
line bounded by two inequality constraints.

An optimal solution is a set of values of the
variables that satisfy the components of categories 2 and 3; this solution also
provides an optimal value for the function in category I. In most cases the

optimal solution is a unique one; in some it is not. If you formulate the
optimization problem so that there are no residual degrees of freedom among

the variables in categories 2 and 3, optimization is
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Feasible region for an optimization problem involving two independent
variables. The dashed lines represent the side of the inequality constraints in
the plane that form part of the infeasible region. The heavy line shows the
feasible region. not needed to obtain a solution for a problem. More
specifically, if me equals the number of independent consistent equality
constraints and mi equals the number of independent inequality constraints
that are satisfied as equalities (equal to zero), and if the number of variables
whose values are unknown is equal to me + mi' then at least one solution
exists for the relations in components 2 and 3 regardless of the optimization

criterion. (Multiple solutions may exist when models in categories 2 and 3
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are composed of nonlinear relations.) If a unique solution exists, no
optimization is needed to obtain a solution-one just solves a set of equations
and need not worry about optimization methods because the unique feasible
solution is by definition the optimal one.

On the other hand, if more process variables whose values are unknown
exist in category 2 than there are independent equations, the process model
is called under determined; that is, the model has an infinite number of
feasible solutions so that the objective function in category I is the additional
criterion used to reduce the number of solutions to just one (or a few) by
specifying what is the "best" solution. Finally, if the equations in category 2
contain more independent equations than variables whose values are
unknown, the process model is over determined and no solution satisfies all
the constraints exactly. To resolve the difficulty, we sometimes choose to
relax some or all of the constraints. A typical example of an over determined
model might be the reconciliation of process measurements for a material
balance. One approach to yield the desired material balance would be to
resolve the set of inconsistent equations by minimizing the sum of the errors
of the set of equations (usually by a procedure termed least squares).

In this text the following notation will be used for each category of the

optimization problem:

Minimize: f(x) Objective function
Subject to: h(x)=0 Equality Constraints
g(x)20 Inequality constraints
where x is a vector of n variables (XI' X2' . . . , Xn)' h(x) is a vector of

equations of dimension m]' and g(x) is a vector of inequalities of dimension

my The total number of constraints is m = (m; + m,)
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SINGLE VARAIBLE OPTIMIZATION TECHNIQUES

Some of the numerical optimization techniques used for optimizing a

problem are:
e Quadratic Interpolation
e Fibonacci Search Method
e Golden Section Search Method
e Successive Quadratic Estimation Method

o Finite Difference Approximation Method
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QUADRATIC INTERPOLATION

We start with three points X;, X, and X; in increasing order that might be
equally spaced, but the extreme points must bracket the minimum. we know
that a quadratic function f(x) = a + bx + cx’ can be passed exactly through
the three points, and that the function can be differentiated and the derivative
set equal to 0 to yield the minimum of the approximating function x = - b/2¢
Suppose that f(x) is evaluated at X;, X, and X; yield :

f(x1) =11, f(x2) =2, and f(x3)=13

The coefficients band c can be evaluated from the solution of the three

linear equations:

f(x;))= a+bx;+ cx,’
f(x)) = a+bx, + cxp”
f(x3)= a+bx; + CX32
via determinants or matrix algebra. Introduction of 4 and ¢ expressed in

terms of

x*¥=1[ (ng_ —x5)f1 + (X23 - le)fz + (le_z— Xz_)i}_]
2 [(x2 = x3)f; + 3 —x)F + (x1 — x2)f3]

To illustrate the first stage in the search procedure, examine the four points

in Figure for stage 1.We want to reduce the initial interval [x1, x3] By

examining

The values of f(x) [with the assumptions that f(x) is unimodal and has a
minimum],We can discard the interval from X, to X, and use the region (X,
X3) as the new interval. The new interval contains three points, (X;' X, X3)

that can be introduced into Equation to estimate x*, and so on. In general,
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we evaluate f (x*) and discard From the set { X' X,' X3} the point that

corresponds to the greatest value of fix), unless

f0)
i
s
f :
f
Stage | X x; % Xy X
| |
I |
I |
L I
Stage 2 Xy X X3 X

Two stages of quadratic interpolation
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a bracket on the minimum of f (x) is lost by so doing, in which case you
discard the x so as to maintain the bracket. The specific tests and choices of
x to maintain the Bracket is illustrated in . In Figure, f* == f(x). If x* and
whichever of {x; X2 X3} corresponding to the smallest f(x) differ by less
than the prescribed accuracy in X, or the prescribed accuracy in the
corresponding values of f(x) is achieved, terminate the search. Note that
only function evaluations are used in the search and that only one new

function evaluation (for x) has to be carried out at each new iteration.
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FIBONACCI SEARCH METHOD

In this method, the search interval is reduced according to Fibonacci numbers. The
property of the Fibonacci numbers is that, given two consecutive numbers F,., ,Fp.,

and the third number is calculated as follows:

Fn = Fn-l + I:“n-2
Where n=2,3,4...

The first few Fibonacci numbers are Fo=1,F; =1, F,=2,F3;=3,F;~5,F; =8,
F¢= 13, and so on. The property of the Fibonacci numbers can be used to create a
search algorithm that requires only one function evaluation at each iteration. The
principle of Fibonacci search is that out of two points required for the use of the
region-elimination rule, one is always the previous point and the other point is
new. Thus, only one function evaluation is required at each iteration. At iteration £,
two intermediate points, each L* away from either end of the search space(L =b -
a) are chosen. When the region-elimination rule eliminates a portion of the search
space depending on the function values at these two points, the remaining search
space is Ly
By defining

L'y = (Fnk+1/Fn+1)  and

Lk = (Fnk+2/Fn+1), it can be shown that

Li- L'y =L

which means that one of the two points used in iteration & remains as one point in
iteration (k + 1). This can be seen from Figure. If the region (a,x2) is eliminated in

the k-th iteration, the point X1 is at a distance (L - L) or L'+ from the point X2 in
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the (k + 1)-h iteration. Since, the first two Fibonacci numbers are the same, the

algorithm usually starts with k = 2.

Algorithm

Step 1 : Choose a lower bound a and an upper bound b. Set L =b- a. Assume the

desired number of function evaluations to be n. Set k=2,

Step 2 : Compute L'y = (Fnk+1/ Fot1)L. Set Xi=a+ L', and
Xo= b - L.k
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Step 3 : Compute one of f(X1) or f(X2), which was not evaluated earlier. Use the

fundamental region elimination rule to eliminate a region. Set new a and b.

Step 4 : Isk=n?Ifno, set k=k+ 1 and go to Step 2;

Else Terminate.

In this algorithm, the interval reduces to (2/ Fn+1)L after » function evaluations.
Thus, for a desired accuracy €, the number of required function evaluations » can
be calculated using the following equation:
2(b-a)=€.
Fn+1
As is clear from the algorithm, only one function evaluation is required at each
iteration. At iteration k, a proportion of Fnk/ Fnk+2 of the search space at the
previous iteration is eliminated. However, one difficulty with this algorithm is that

the Fibonacci numbers must be calculated in each iteration.
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GOLDEN SECTION SEARCH METHOD

One difficulty of the Fibonacci search method is that the Fibonacci numbers have
to be calculated and stored. Another problem is that at every iteration the
proportion of the eliminated region is not the same. In order to overcome these two
problems and yet calculate one new function evaluation per iteration, the golden
section search method is used. In this algorithm, the search space (a, b) is first
linearly mapped to a unit interval search space (0,1). Thereafter, two points at I
from either end of the search space are chosen so that at every iteration the
eliminated region is (1 - ') to that in the previous iteration. This can be achieved
by equating 1 - I' with (T X I'). This yields the golden number: I" = 0.618. The
figure can be used to verify that in each iteration one of the two points X1 and X2 is

always a point considered in the previous iteration.

Algorithm:

Step 1: Choose a lower bound a and an upper bound b. Also choose a small
number €. Normalize the variable X by using the equation:
W=(x-a)/(b-a). Thus,aw=0,bw=1,andLw=1.Setk=1.

Step 2: Set Wi=aw+ (0.618)Lw and W2 =bw-(0.618)Lw.
Compute f{ W1) or f{ W2), depending on whichever of the two was not
evaluated earlier. Use the fundamental region-elimination rule to eliminate

a region. Set new aw and bw.
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Step 3: Is | Lw | < € small? Ifno, setk =k + 1, go to Step 2;

Else Terminate.

In this algorithm, the interval reduces to (0.618)™ after » function evaluations.
Thus, the number of function evaluations # required to achieve a desired accuracy

€ is calculated by solving the following equation:
(0.618)"'(b-a)=€.

Like the Fibonacci method, only one function evaluation is required at each
iteration. This quantity is the same as that in the fibonacci search for large n. In

fact, for a large n, the fibonacci search is equivalent to the golden section search.
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SUCCESSIVE QUADRATIC ESTIMATION METHOD

In, this algorithm, the fitted curve is a quadratic polynomial function. Since
any quadratic function can be defined with three points, the algorithm begins
with three initial points. This figure shows the

\ [nterpolated
function, g{x)
\

original function and three initial points Xi, Xz, and X3. The fitted quadratic
curve through these three points is also plotted with a dashed line. The
minimum (x*) of this curve is used as one of the candidate points for the
next iteration. For non quadratic functions, a number of iterations of this
algorithm is necessary, whereas for quadratic objective functions the exact
minimum can be found in iteration only.

A general quadratic function passing through two points X; and X, can be

written as:
Q(x)=ag+ a;(x-x;) Fay(x-x,) +ap(X-X1)(X-X2)
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If (x,fi), (x1.f2), and (x3 f3), are three points on this function, The following

relationships can be obtained:

ap=fi
ar= (= £1)/( X2- x1)
ar= [(- f)/( x3- x1)- a]

in differentiating q(x) with respect to X and setting it to zero, it can be

shown that the minimum of the above function is
X*= [(xrF x2)/2]- [a)/2]

The above point is an estimate of the minimum point provided q"(x) > 0 or
a2 > 0, which depends only on the choice of the three basic points. Among
the four points (X;, X5, X3,) and X*), the best three points are kept and a new
interpolated function q(x) is found again. This procedure continues until two

consecutive estimates are close to each other. Based on these results,

Powell's algorithm (Powell, 1964) is presented
Algorithm:

Step 1:
Let X, be an initial point and A be the step size. Compute X5 =X, + A

Step 2:
Evaluate f(X;) and f(X,)
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Step 3
If f(X])) > f(Xz), let X3 = X] +2A
Else let X5= X;- A Evaluate f(X3)

Step 4

Determine Fmin = min (f; £, f3)and X min is the point Xi that corresponds to
Fmin.

Step 5

Use points X;, X,, and X3 to calculate X* using the above equation.

Step 6
Are 1 Fmin - f(x*)] and 1 Xmin- x1 small? If not, go to

Step 7;

Else the optimum is the best of current four points and terminate. Save the
best point and two bracketing it, if possible; Otherwise, save the best three
points. Re label them according to X; < X, < X3 and go to Step 4. In the
above algorithm, no check is made to satisfy a; > O. The same can be
incorporated in Step 5. If a, is found to be negative, one of the three points
may be replaced by a random point. This process is continued until the

quantity a, becomes nonnegative.
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FINITE DIFFERENCE APPROXIMATION METHOD

If f(x) is not given by a formula, or the formula is so complicated that analytical

derivatives cannot be formulated, we can use a finite difference approximation

ook [ f(x +h)-f(x-h)}/2h
[f(x+ h) - 2f(x) + f(x - h)}/h2

Central differences were used in Equation (5.8), but forward differences or any

other difference scheme would suffice as long as the step size & is selected to
match the difference formula and the computer (machine) precision with which the
calculations are to be executed. The main disadvantage is the error introduced by

the finite differencing,
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DETERMINATION OF THE OPTIMAL REFLUX RATIO
FOR A STAGED-DISTILLATION COLUMN

Once a distillation column is in operation, the number of trays is fixed and
very few degrees of freedom can be manipulated to minimize operating
costs. The reflux ratio frequently is used to control the steady-state operating
point. Figure E12.4a shows typical variable cost patterns as a function of the
reflux ratio. The optimization of reflux ratio is particularly attractive for
columns that operate with

1. High reflux ratio

2. High differential product values (between overhead and bottoms)

3. High utility costs

4. Low relative volatility

5. Feed light key far from 50 percent
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$/1b
feed

Raw material cost

Minimum Reflux ratio Maximumn

Variable cost trade offs for a distillation column

The lighter component (propylene) is more valuable than propane.

For example, propylene and propane in the overhead product were both
valued at $0.20/Ib (a small amount of propane was allowable in the
overhead), but propane in the bottoms was worth $0.12/lb and propylene
$0.091lb. The overhead stream had to be at least 95 percent propylene.
Based on the data in Table

we will determine the optimum reflux ratio for this column
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The Eduljee correlation involves two parameters: Rm. The minimum reflux
raﬁo, and Nm, the equivalent number of stages to accomplish the separation
at total reflux. His operating equations relate N, o , Xp,' Xp, and Xp
(seeTable for notation) all of which have known values except XB as listed
in Table. Once R is specified, you can find XB by sequential solution of the

three following equations:

Rm is calculated by:

R, =1/(a-1) [Xp/ Xp- a(l- Xp)/ (1- XP)] «ereeveresurravesceniacs (a)
After calculating Rm, Nm can be calculated by:

[(N- Ny) / N +1] =0.75 [1-{R- R, /RHLI5Piiiiiinnnennns (b)

Lastly compute XB by:
Num =In { [Xp/(1- Xp)]. [(1- Xg)/ Xg] } /IN G ceeeceerencceoancnnn (c)

Equations (a) — (c) comprise equality constraints relating XB and R
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Distillation Column Flow Chart

Once XB is calculated, the overall material balance for the column shown in
Figure can be computed. The pertinent equations are (the-units are moles)
F=D+B

XrF = XpD + XpB

In addition, if the assumption of constant molal overflow

is made, then the liquid L and vapor flows V are

L=RD

V=R+1)D
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Objective function. Next we develop expressions for the income and

operating costs. The operating profit fis given by

f="Propylene sales + Propane sales - Utility costs - Raw material costs

f=(CpXpD + CgXgB) + [C’p(1 - Xp)D + C’gp(1 -Xp)B] - [C1Qr +
C2Qc] - [CFXFF + C’r(1 - Xp)F]

The brackets [ ] indicate the correspondence between the words in Equation
(h) and the symbols in above Equation. Qg is the reboiler heat requirement
and Qc is the cooling load. Equation can be rearranged by substituting for
DxD in the propylene sales and for BxB in the propane sales using above

Equation and defining - W= Cz— Cpand - U= Cp — Cp- follows

UNIVERSITY OF PETROLEUM & ENERGY STUDIES 26




DATAS

For given staged distillation column

TABLE

Notation and values for the propane-propylene splitter

SYMBOL DESCRIPTION VALUE
B Bottoms flow rate 3.27x 10° Lb/day
C1 Reboiler heat cost $3.00 x 10°Btu
G Condenser cooling cost $0.00 x 10° Btu
Cs Value of propylene in bottoms\
Ce | Cost per pound of propylene
C:
F Cost per pound of propane
Cp
D Value of propylene in overhead
Cp
D Value of propane in overhead
D 5
D Distillate flow rate 8.72 x 10° Lb/day
F Feed rate 1,200,000 Lb/day
x .
L Liquid flow rate function of R
(mol/day)
N o
Number of equilibrium stages 94
\ .
Ny Minimum equilibrium stages function of reflux
ratio, R
Qe Condenser load requirement Qc=AV
Qr Reboiler heat requirement OR=\V
R Reflux ratio (To be optimized)
Ru Minimum reflux ratio 11.17
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U Heavy key differential value $0.08/Lb
\Y Vapor flow rate function of R
(mol/day)
W Light key differential value $0O.1/Lb
Xp Bottom light key mole fraction (To be optimized)
Xb Overhead light key mole fraction | 0.95
Xr Feed light key mole fraction 0.70
Relative volatility 1.105
Latent heat 130 Btu/Lb (avg.
mixture)

f=CpXgF + C’g(1 — Xp)F — CeXygF — C’r(1 — Xp)F —C,Qr - C2Qc

“-WX;zB — U(1 - Xp)D

Note that the first four terms off are fixed values, hence these terms can be

deleted from the expression for f in the optimization. In addition, it is

reasonable to assume QR = Qc = AV. Lastly, the right-hand side of Equation

() can be multiplied by —1 to give the final form of the objective function (to

be minimized):

f1=( C;+ C2 AV + WX;gB + U(1-Xp)D

Note: A must be converted to Btu/mol, and the costs to $/mol.
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QUADRATIC INTERPOLATIONAL SEARCH METHOD

The final form of objective function to be minimized:
fi=(c,+ ¢z JAV + WXgB + U(1-Xp)D

Where, C1= Reboiler heat cost = $3.00 x 10° Btu
= $0.00 x 10° Btu

=130 Btuw/Lb (avg. mixture)

C2=condenser cooling cost

A = Latent heat
V= Vapor flow rate function of R (mol/day)

W= Light key differential value =$0.11/Lb
XB=Bottom light key mole fraction

B= Bottoms flow rate

U= Heavy key differential value =$0.08/Lb
XD= Overhead light key mole fraction =0.95
D = Distillate flow rate

The above equation takes the form as
fi=(ci1tc ARF1)D + WXgB + U(1-Xp)D
Based on the data, we minimize fj, with respect to R using a

Quadratic interpolation one-dimensional search

The value of R,, from Equation was 11.17. The initial bracket was (12<=R
<=20), and R =16, 18, and 20 were selected for the initial three points.
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At, R=16, Minimum Reflux Ratio is calculated from formula
R =1/(a-1) [Xp/ Xp- o(1- Xp)/ (1- Xr)]
=1/.105 [.95/.70—1.105 (0.05/ 0.36]
=1/.105 [1.357-0.184]
=11.17

Ny, Minimum equilibrium stages
[(94- Nyg) / 951 = 0.75 [1-{R- Ry/R+1}
[(94- Nyp) / 951 = 0.75 [1-{16- 11.17/16+1 }0-5668
Num=57.66

0.5668
]

XB=Bottom light key mole fraction is calculated as
Ny =In { [Xp/(1- Xp)]. [(1- Xp)/ Xp] } / In @
=In { [.95/.05). [(1- Xs)/ Xs] } /In 1.105
X = 0.056
B, Bottoms flow rate is calculated as
XgF = XpD + XgB
0.70x1.2x10%=0.95D + 0.056 B
0.70x1.2x10°= 0.95(1.2x10°-B) + 0.056 B
B=3.35x10’
D =8.64x10
Therefore,
fi=(ci+c )MR+1)D + WXgB + U(1-Xp)D
= (3x10° x130x17x 8.64x10° y+ 0.11x0.056x3.35x10° -0.04(1-

0.95) x8.64x10°
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= §$4491.26

Interpolated value of 7, is calculated by the formula

=1 {2 O ) ot (=22 f3}
2 (2-%3) f1+ Q%) 2+ Q%) G

Similarly, At various values of R iterations is done and optimum range of

optimum reflux ratio is calculated

Left bracket Centre bracket Right bracket Interpolated
values
X { X f X { X f

16.00 4491.26 |18.00  4243.87 |20.00 4582.14 |17.85 4232.59

18.00  4243.87 |17.85 423259 |16.00 4491.26 |17.57 4216.75

17.85 423259 |17.57 4216.75 |16.00 4491.26 |17.48 4216.72

Hl W N -

17.57 421675 |17.48 4216.72 |16.00 4491.26 |17.52 4327.93

Optimum range for reflux ratio lies in the range (17.57 to 17.48)
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FIBONACCI SEARCH METHOD

In this method, the search interval is reduced according to Fibonacci numbers. The
property of the Fibonacci numbers is that, given two consecutive numbers F,, ,Fq.i,

and the third number is calculated as follows:

Fp=Fp1+Fna
Where n=234...
The first few Fibonacci numbers are Fo=1,F; =1, F,=2,F;=3,F;~5, F;
=8, Fe= 13, and so on
We calculate the optimum interval of optimum reflux ratio in the

interval between R=16 and R= 18

Algorithm

Step 1:
a=16 and b=18s0, L=b-a=2
Let n=3 and k=2

Step 2 :
Lk# = (Fn-k+1/Fn+1)L.
Xl=a+Lk'=16+0.8=16.80
X2=b-Lk" =18-0.8=17.20

At R=16.8

Nm , Minimum equilibrium stages
[(94-Ny) /951 = 0.75 [1-{R- R, /R+1 }0.5668]
Nm=56.89

UNIVERSITY OF PETROLEUM & ENERGY STUDIES 32




XB=Bottom light key mole fraction is calculated as
Ny =In { [Xp/(1- Xp)]. [(1- Xp)/ Xp] } /Ina
XB =0.060

B, Bottoms flow rate is calculated as
XgF = XpD + XgB
B=3.37x10’
D =8.62x10°
f=(c1+c2 )MR+1)D + WXgB + U(1-Xp)D
=$ 4796.5569

AtR=17.20
N = 60.84
Xp =0.041
B =3.3x10’
D =8.69x10’

f=(c;+ c2 )MR+1)D + WXpB + U(1-Xp)D
=$4216.317

Step 3 :
Since, f( 16.8)> {(17.20)
So, we eliminate the region (16, 16.8).

We set a= 16.8 and b= 18 s0, L=b-a=1.2
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Step 4 :

Xl=a+ Lk =17.20+0.32=17.52

X2=b-Lk" =18-0.32=17.68

At x;= R=17.52

Nm=61.9518
Xg =0.038
B =3.29x10°
D =8.70x10°
f=( 1+ c2 )MR+1)D + WXzB + U(1-Xp)D

=$4210.23

. At x,= R=17.68

Step 2 :

Set k=

Ny =61.9518
Xg =0.0376
B =3.28x10’
D =8.71x10°
f=(c1+ ¢y )MR+1)D + WXgB + U(1-Xp)D

= $ 422095

3 and go to Step 2;
Lk* = (Fn-k+1/Fn+1) L.
L2%= (F3-3+1/F3+1) L. =(F1/F4).L=(1/5)2=0.4

Xl=a+Lk"=16+0.4=1640
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X2= b-Lk" =18-0..4=17.60

Step 3 :

At x;= R=16.40
Nu = 58.7985
Xg =0.050
B =3.33x10°
D =8.66x10°
f=( ¢+ ¢z )MR+1)D + WXpB + U(1-Xp)D
=$4278.01

. At x,= R=17.60
Ny = 61.7128

Xz =0.038
B =3.29x10
D =8.70x10’
f=(c1+ ¢ )MR+1)D + WXgB + U(1-Xp)D
= $ 4224.43

Optimum range for reflux ratio lies in the range (17.52 to 17.60)
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GOLDEN SECTION SEARCH MEHOD

Step 1:

The transformation equation for this methodis: W =(x - a)/(b - a).
Taking a=16, b=18
Transformation equation becomes: W = (x-16)/2

Thus, aw =0, bw=1,and Lw =1

Step 2:
Since, wl=aw + (0.618) LW o
=0+(0.618)x1
= 0.618 &

B Y (W3 ) B . A 2
=1-(0.618)x 1
=0.382

Now f(w)= (C1+C MV + WXgB + U(1-Xp)D.ooovrvnniniiiiiiiiiiin,

Also, Ri=2w1+16
=2x0.618+ 16
=17.236 &

R2=2w2+16

=2x0.382+16
=16.764
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Calculating f(R1) and f(R2) via eqn (3)

f(R1)=4214.9738 & f(R2)=4226.0368

Since, f(R1) < f(R2)

Using fundamental region-elimination rule

New aw= 0.382, bw=1,SoLw=0.618

Step 3:

€.=(0.618)" (D = 8)..veverrrenerereie s

€=0.5
and ILwl >€
So k=1+1

=2
Again calculating w and W, via eqn (1) and (2)
w1=0.382 + (0.618) x 0.618
=(0.764

w2=1-(0.618)x 0.618
=0.618

Atwl =0.764,R1=17.528 &
Atw2=0.618,R2=17.236

Again Calculating f(R1) and f(R2) via eqn (3)
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f(R1)=4217.9382 & f(R2)=4214.9846
Here, fR1y > fR2)

Again by using fundamental region-elimination rule

New aw= 0.382, bw=0.764, So Lw=0.382

and from eqn (4), €=0.381
Since Ilwl = 0.382

So Again ILwl > €

Again repeating same procedure , k = 3
Calculating w, and W2 via eqn (1) and (2)

w1=0.382 + (0.618) x 0.382
=0.618

w2=0.764 — (0.618) x 0.382
~0.582

Atwl =0.618,R1=17236 &
At w2 =0.528, R2 = 17.056

Again Calculating f(R1) and f(R2) viaeqn (3)
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fR1)=4214.9846 & f(R2)=4219.0224
Here, fR) < fR2)

Again by using fundamental region-elimination rule

New aw= 0.528, bw=0.764, So Lw =0.236

and from eqn (4), €=0.236
Since ILwl = 0.236

Here [Lwl =€

So iterating one more time to get optimum solution , k =4
Calculating w1 and w2via eqn (1) and (2)

w1=0.582 + (0.618) x 0.236
=0.6738

w2=0.764 — (0.618) x 0.236
=0.618

Atwl =0.673,R1=1734 &
Atw2=0.618, R2=17.236

Again Calculating f(R1) and f(R2) via eqn (3)

FRH=4210.88 & f (R2)=4214.9846
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Iteration Calculated Ropt Minimum Total cost, F
1 17.236 $4214.9738
2 17.34 $4210.88
3 17.528 $4217.1029

Optimum range for reflux ratio lies in the range (17.52 to 17.23)
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FINITE DIFFERENCE APPROXIMATION METHOD

The formula used for calculating optimum reflux ratio via this method is:

Xk+1 = xk - [ f(x +h)-f(x-h)}/2h
[f(x+ h) - 2f(x) + f(x - h)]/h2

Or

Rii1 =Rk - [ f(R+h)-f(R-h)]/2h (in terms of reflux ratio)
[f(R+ h) - 2f(R) + (R - h)]/h2

Taking interval , h =~ 0.19.
Reflux ratio, R=18

Rk+1 =16 - __ [f(18-0.19)-f( 18 + 0.19)]/2x(-0.19)
[f(18+0.19) - 2€(18) + f(18 + 0.19)}/(-0.19)

~16- [ £(17.81)-f(18.19)/2x0.19 ,
[f(17.81) - 2€(18) + f(18.19))/(0.19)" ..ouvennnnn.., 1

At, R=18, Total cost calculated as in previous case is:

£2 $ 424387 wvvreeerieseree s e 2

At, R=17.81, Minimum Reflux Ratio is calculated from formula:
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R.,=1/(a-1) [Xp/ X¢- a(1- Xp)/ (1- Xp)]
=1/.105 [.95/.70—1.105 (0.05/ 0.36]
=1/.105 [1.357-0.184]
=11.17

Nu, Minimum equilibrium stages
[(94- Niy) / 95] = 0.75 [1-{R- R/R+1}"%%]
[(94- Ny) / 95] =0.75 [1-{17.81- 11.17/17.81+1}>*%]
Ny = 62.23

XB=Bottom light key mole fraction is calculated as
Nwm =In { [Xp/(1- Xp)]. [(1- X5)/ Xp] } /In &
=In { [.95/.05]. [(1- Xg)/ Xg] } / In 1.105
Xg = 0.0366
B, Bottoms flow rate is calculated as
XgF = XpD + XgB
0.70x1.2x10°=0.95D -XpB
0.70x1.2x10%= 0.95(1.2x10°-B) + 0.0366B
B=3.2844x10’
D =8.7155x10°
Therefore,
£(17.81)= (¢ + ¢; J)AR+1)D + WXpB + U(1-Xp)D
= (3x10° x130x18.81x 8.7155x10° )+ 0.11x0.0366x3.2844x10°
0.08(1-0.95)x8.7155x10°)

=84229.7030 ... 0ueeeeeeeiearerrr ettt cenereeseenaesenaresied
Similarly
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At, R=18.91, Minimum Reflux Ratio is calculated from formula:
R, =1/(a-1) [Xp/ Xg- o1- Xp)/ (1- Xg)]
=1/.105 [.95/.70—1.105 (0.05/0.36]
=1/.105 [1.357-0.184]
=11.17
Nu , Minimum equilibrium stages
[(94- Nyp) / 95] = 0.75 [1-{R- Ry/R+13}"5%]
[(94- Nyy) / 95] = 0.75 [1-{18.91- 11.17/18.91+1}*%%%]
Npm = 63.04

XB=Bottom light key mole fraction is calculated as
Nwm =In { [Xp/(1- Xp)]. [(1- Xp)/ Xp] } /In a0
=In { [.95/.05]. [(1- Xg)/ Xg] } / In 1.105
Xg = 0.0339
B, Bottoms flow rate is calculated as
XrF = XpD + X3B
0.70x1.2x10%= 0.95D -XzB
0.70x1.2x10%= 0.95(1.2x10°-B) + 0.0339B

B=3.2747x10’
D =8.7252x10’
Therefore,
£(15.85)= ( ¢1+ ¢ JMR+1)D + WXgB + U(1-Xp)D
= (3x10° x130x19.91x 8.7252x10° }+ 0.11x0.0339x3.2747x10° —
0.08(1-0.95)x8.7252x10”)
I 1 . SR
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Substituting all values of 2,3 and 4 in eqn 1,we get:

R¥! =18- 4229.7030 — 4261.08]/2x(-0.19
[4229.7030 — 2x4243.87 + 4261.08]/(-0. 19)

= 17.02

Again, by same calculations at R = 17.02, our minimum total cost comes out

tobe $4220.412

Similarly. At various values of R iterations is done and optimum range of

optimum reflux ratio is calculated:

Iteration Calculated Ropt Minimum Total cost, F
1 18 $ 4243.87
- 2 17.02 $ 4220.412
3 17.26 $4211.6173
4 17.58 $4210.5645

Optimum range for reflux ratio lies in the range (17.26 to 17.58)

SUCCESSIVE QUADRATIC ESTIMATION METHOD
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We take the interval for optimum reflux ratio between 17 and 18.

Step 1:

Let x,=17 and A=1. Thus, x=18

Calculating equilibrium stages, bottom fraction, bottom and top flow rate

from the formulas

Minimum Reflux Ratio is calculated from formula:

R, =1/(a-1) [Xp/ X¢- a(l- Xp)/ (1- Xr)]

Num, Minimum equilibrium stages
[(94- Nyy) / 951 = 0.75 [1-{R- R./R+1}

XB=Bottom light key mole fraction is calculated as

Ny =In { [Xp/(1- Xp)]. [(1- Xs)/ Xp] } /In @

B, Bottoms flow rate is calculated as

XgF = XpD + XpB

0.5668
]

'R Nm XB B D f
17 60.3577 | 0.043855 331073.1489 | 868926.8511 | § 4221.2932
18 0.035 0.03521 327944.5871 | 872055.4129 | § 4243.87
Since, {(17) < {(18), therefore

Xi=X;-A=17-1=16
f(16)=$ 4491.26
Step 4:
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Fnis=minimum ($4221.2932, $4243.87, $4491.26)

=$4221.2932
Corresponding Xpin=17
Step 5:

We calculate the following parameters from the formula:

a=
ar=({2- £1)/(x2-X1)

a,=[( {3~ {1)/(x3-X1)- a1}/ (X3-X2)

therefore,

ag=17
a;=(4243.87-4221.2932)/(18-17)

=22.5768
a,=[(4491.26-4221.2932)/(16-17)- 17}/(16-18)
=146.2718

Since, a, > 0,the estimated minimum is

X* = (X|+X2)/2 - ay/2a;
= (17+18)/2 — 22.5768/2*146.2718

= 17.42282

Calculating equilibrium stages, bottom fraction, bottom and top flow rate

At R=17.42282

R N XB B D {
17.42282 | 61.36855 |0.03981 329602.72 870397.275 |$4215.61282
Step 6:
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Let us assume that |$ 449126 - $ 4215.61 | and |17.42282 - 16..00| are
not small enough to terminate. Thus, we proceed to step 7.
Step 7:

We compare the values obtained at various values of reflux ratio

Reflux Ratio,R Minimum Total cost,f
17 - $4221.2932
17.42 $4215.6128
18 $ 4243.87

F,..=minimum ($4221.2932, $4215.6128, $ 4243 .87)
=$ 4215.6128
Corresponding
Xmin=17.42
We calculate the following parameters from the formula:
ao=fi
ar=( {2 {1)/(x2-x1)
ay=[( {5~ £1)/(x3-%1)- ar}/(X5-X2)
therefore,
ap=17
a;=-13.5247
a;= 62.24
Since, a, > 0,the estimated minimum is
X# = (X +X2)/2 - a,/2a;
= 17.6086
Calculating equilibrium stages, bottom fraction, bottom and top flow rate

AtR=17.6086
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R Nm XB

B

D t

17.6086 |61.7921 0.03822

329029.9416 | 870970.5522 | $ 4220.6368

Let us assume that | $ 4220.6368 - $ 4215.61 | and |17.6086-17.42| are

not small enough to terminate. Thus, we proceed to next step.

Compare the values obtained at various values of reflux ratio

Reflux Ratio,R Minimum Total cost,f
17 $ 4221.2932
17.42 $4215.6128
17.60 $ 4220.6368

Fnin= minimum ($4221.2932, $4215.6128, $ 4220.6368)

=$4215.6128
Corresponding
Xmi n= 17.42

We calculate the following parameters from the formula:

ao={i

ar=(f2- {1)/(x2-X1)
a,=[( f3- f1)/(xs-x1)- 21}/(x3-X2)

therefore,

ap=17

a;=-13.5247
a;= 69.09583
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Since, a, > 0,the estimated minimum is
Xk = (X|+X2)/2 - a;/2ay
=17.5979

Calculating equilibrium stages, bottom fraction, bottom and top flow rate

At R=17.6086

R Nm Xp B D ‘ f

17.5979 | 61.7681 0.03831 [329061.2712 | 870938.7288 | $ 4220.4149

Optimum range for reflux ratio lies in the range (17.42 to 17.60)
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ANALYSIS OF OPTIMIZATION TECHNIQUES

Optimization Technique Calculated Ropt interval
Quadratic Interpolation 17.57 to 17.48
Fibonacci Search Method 17.52 to 17.60
Golden Section Method 17.52t0 17.23
Finite Difference Approximation Method 17.26t0 17.58
Successive Quadratic Estimation Method 17.42 to 17.60

These are the calculated values Of Optimum Reflux Ratio via different
optimization techniques for a single variable distillation problem. On

evaluating these results the optimum range of reflux ratio comes out to be

between 17.23 to 17.60.

So, Distillation Column operated at this optimum reflux ratio interval would

require minimum operating cost.
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