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ABSTRACT 

 
Depletion of fossil fuel and increase in environmental pollution at an alarming rate has 

motivated the researchers to look for the environmentally friendly as well as cost effective 

alternative sources of energy. Biomass is a renewable energy source developed from living or 

recently living plant and animal materials, which can be used as fuel. The main components 

present in biomass are polymers such as carbohydrate, protein, cellulose, lignin and fat. 

Biogas is produced when the biomass is anaerobically degraded by microorganisms. The 

process of anaerobic digestion (AD) takes place in four steps: hydrolysis, acidogenesis, 

acetogenesis, and methanogens. Biogas production from biomass is getting a lot of attention 

due to its easy availability and relatively simple biomass to energy conversion technology. 

Co-digestion of biomass with cattle dung is another promising method of converting biomass 

to energy through anaerobic digestion. 

In most developing countries like India, China etc. The principal occupation of the people is 

crop production and the crop residues remaining after harvesting is a major challenge to deal 

with. These biomasses are lignocellulosic in nature as they contain cellulose, hemicellulose 

and lignin. They are not economically used; rather they are disposed off in the open 

environment or burnt, causing serious health problems and environmental pollution. 

Lignocellulosic biomasses are assessed for the use of anaerobic digestion with the objective of 

generating biogas from it and performing kinetic study on the produced biogas. The aim of the 

present study is to investigate the optimum pretreatment method and performance 

characteristics of anaerobic digestion of lignocellulosic biomass for biogas production in 

batch mode. 

To assess the potentiality towards biogas production, three different types of biomasses were 

collected and characterized. Based on the results obtained from the characterization, three 

different lignocellulosic biomasses viz sugarcane bagasse, wheat straw and rice husk were 

selected, upon which small scale anaerobic digestion was performed. In this research, 

therefore, an optimal achievement of the lignocelluloses plant has been evaluated in the 

pretreatment impact (physical, chemical and biological) and multiple biogas manufacturing 

parameters. The pretreatment method focused on removal of lignin content by applying 

different alkaline and acid condition and then anaerobic digestion of pretreated biomass (WS, 

RH, and SB). The parameters considered for the analysis TS of biomass, temperature of 

substrate, C:N ratio and pH. 
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Biologically, Lignocellulose biomass gave maximum biogas yield followed by acid and 

alkaline treatment. Among thermal treatments, best results in the increase of methane 

formation were observed with the treatment of wheat straw followed by sugar cane bagasse 

and rice husk at 121°C & 120 minutes (19,8%,18%, and 13%, respectively). Acid 

pretreatment at optimized condition (30%, (60 minutes) and % increase in methane content is 

found maximum with anaerobic digestion of wheat straw (25%), sugarcane bagasse (20%) 

followed by rice husk (17%). Acid pretreatment has maximum impact on biomethanation of 

wheat straw biomass at optimized condition. Biological pretreatments performed with a 

fungal strain, improves methane production. The percentage increase in methane content after 

pretreatment with fungal strain is found maximum for wheat straw (34%), followed by 

sugarcane bagasse (30.2%) and rice husk (27.7%) respectively. 

Findings also show that these biomasses have high volatile matter content (above 60%) and 

high fixed carbon content (above 10%) which make them potent for biogas production. Effect 

of total solid and particle size of biomass on biogas production was studied and it was found 

that with 8-9% of total solid and 0.355 mm of particle size, maximum amount of biogas can be 

produced. Effect of temperature on biogas production from lignocellulosic biomass was also 

studied at five different temperatures from 35°C to 55°C at a step of 5°C and it was found that 

with increase in temperature of the digestate from 40°C to 55°C, biogas production from 

substrates can be increased. It is also observed that in mesophilic condition, biogas generation 

is the highest at 35°C followed by 40°C. 

Alongside the biogas delivered, AD additionally changes the additional feedstock into 

digestate that can be utilized as a compost which is high in nitrogen, potassium and 

phosphorus substance. The N (%) from spent slurry from anaerobic assimilation of biomass 

(WS, RH, SB) was in the scope of 0.93 to 0.98, most noteworthy P(%) and K(%) found from 

slurry of anaerobic processing of rice husk. 
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CHAPTER - 1 
 

INTRODUCTION 

 
1.1 BACKGROUND 

 
Energy is an essential input for economic growth, social development and human development. In 

recent years, global energy demand has grown rapidly due to rising world populations and affluence, 

industrialization and improvement in the quality of life(Surendra et al., 2014; Perin et al., .2019). 

Worldwide, energy consumption has reached 524 QBtu in 2010, and is estimated to peak at 800 QBtu 

by 2040; corresponding to an average growth of 1.5% per year (EIA, 2013). Significantly, a large 

fraction of the world’s total energy demands (more than 84%) is supported by non-renewable fossil 

resources such as coal, oil, and natural gas. These resources are not only limited in supply but also 

have adverse effects on the environment due to the emission of greenhouse gases (GHGs) into the 

atmosphere (EIA, 2013). Fossil fuels are the dominant source of primary energy because of their easy 

availability. Apart from their indigenous production, the majority of developing countries import 

crude oil to cope up with their increasing energy demand. Thus, a significant portion of their hard- 

earned export earnings is spent on the purchase of petroleum products. India is also a net energy 

importer and around 80% of the country’s export earnings are directly spent on the purchase of 

petroleum products(Correa et al.,2019). There has been a sharp increase in the consumption pattern of 

petroleum products in India. The limited reserve of fossil fuel has been a matter of global concern as 

these are under threat of loss due to overexploitation. According to the World Energy Forum 

prediction, reserves of fossil fuels will exhaust in less than another ten decades. 

The limited reserve of fossil fuel has been a matter of global concern as these are under threat of 

depletion due to overexploitation. Coal and natural gas are the two primary sources of power 

generation. Worsening environmental conditions have become an issue of ever-increasing worldwide 

public concern in present times. Currently, the combustion of fossil fuels is a significant source of 

emission of Carbon Dioxide (CO2). There are efforts all around the globe to protect the environmental 

condition from further deterioration. Therefore, it is a need of today’s world to concentrate on the 

renewable energy source to satisfy the demand, conserve our finite natural resources for the 

generations to come. 

In India, there are various sources of renewable energy but the practice of traditional biomass is 

decades old(Patinvoh et al., 2017). However, traditional biomass is used mainly for cooking and 

heating and is characterized by the low efficiency of use and drudgery. The unsustainable extraction and 

use of traditional biomass 
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energy lead to degradation of the local environment and forests, deforestation, and the consequent loss 

of forest products, soil erosion and loss of biodiversity, domestic air pollution affecting human health, 

etc. But the modern forms of biomass energy provide numerous environmental benefits. Of all 

theirenewable  energy  sources,  biomass  (ligneous,  herbaceous  crops,  agricultural  and  municipal 

wastes) is the largest, most diverse and most readily exploitable resource. Bio-energy technologies 

provide opportunities for the conversion of biomass into liquid and gaseous fuels as well as 

electricity. Use of biodegradable resources to produce biogas and thereafter use of that biogas for 

generating power and thermal applications has multiple benefits on environmental, social, economic 

aspects, etc. 

Biomass energy could help to reduce the world’s dependence on oil and fossil fuels. Bioenergy can 

play a significant role in mitigating global warming. This is because CO2 released during combustion 

is used by the plant for photosynthesis and thus does not increase the net CO2 in the atmosphere. 

Therefore, the use of renewable biomass (including energy crops and organic wastes) as an energy 

resource is not the only greener concering most pollutants, but its use represents a closing balance of 

carbon cycle with respect to atmospheric carbon dioxide. 

Considering the importance of renewable energy,the Indian government has put Biogas as a renewable 

energy source, under the subject of The Ministry of New and Renewable Energy. It has implemented 

National Biogas Programmes for the dissemination and deployment of family/ small biogas plants in 

the remote, rural, semi-urban areas of the country. It helps in many ways by converting the biomass 

wastes into useful gains to the beneficiaries by providing clean power for various applications, thermal 

and cooking fuel, reductions in health hazards and mitigating emissions of Green House Gases 

(GHGs), combating climate change and simultaneously producing biogas slurry as nutrient- enriched 

organic fertilizer/manure as a by-product of the biogas generation/ production. The organic bio- 

manure/ fertilizer when applied in farming, contributes to higher crop production and yield and help in 

conserving the soil health and water. The Chhattisgarh government has decided to set up at least six 

biofuel plants to produce ethanol in the state. It will be the first state in India to use rice and paddy husk 

to producethe biofuel (Sharma, 2019). 

Several possible technologies in the area of solar, wind and biomass have been discovered and 

popularized. Although the majority of renewable energy technologies are better eco-friendly as 

compared to conventional energy options, their adoption is very slow because of various reasons such 

as economic constraints, lack of supply and not user's friendly techniques, etc. Further, the uses of 

these technologies are still limited to the majority of the stable operations mainly due to technological 

limitations and pooreconomics. 
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Additionally, biofuels production along with byproducts, can not only provide new income but also 

employment opportunities in rural areas. Therefore 21st Century is looking for a shift to alternate 

industrial feedstock and green processes to produce these chemicals from renewable biomass 

resources. Lignocellulosic biomass conversion is the best alternative for bioenergy fuel. 

Lignocellulosic biomass is one of the largest renewable energy resource (Azevedo et al.,2019) It is an 

essential component of the primary food crops; it is the non-palatable segment of the plant, which is 

undertow and can be utilized for biogas production Transformation of these lignocellulosic residues 

into renewable fuel offers a prominent possibility in decreasing the use of nonrenewable fossil sources 

(oil, coal, and flammable gas) (Zhe et al., 2017). Biogas produced from waste substances is a 

promising sustainable power source utilized for generating electricity and heat. It is also used as 

vehicle fuel in numerous countries. In short, lignocellulosic biomass holds the way to supplying 

society's essential liquid transportation fuel without affecting the country's food supply. It is the best 

solution for cooking gas, bio CNG for the transportation sector, and power generation. Its practice will 

demotivate the use of fossil fuels and reduce the dependence of imported crude oil which will 

ultimately check the rapid exhaustion of fossil fuels and also will protect the environment save the 

cost of importing the petroleum product. 

Lignocellulosic biomass comprises cellulose, hemicelluloses and lignin and can be utilized as raw 

material for biogas production (Hayn et al., 1993). Lignin protects cellulose and hemicellulose, make 

them more resistant to anaerobic digestion. A reasonable pretreatment technique is needed to 

strengthen the biodegradability of lignocelluloses materials. The pretreatment aims is to build up 

enzyme accessibility by improving the digestibility of cellulose(Surendra et al., 2018). The available 

lignocellulosic raw materials in India are cellulose-containing wastes, for instance, wheat husk, wheat 

straw, rice husk, rice straw, sugarcane bagasse, vegetable waste, and municipal waste. The major 

deposits amount to around 39.0 million metric tons or roughly 18-20 million metric loads of 

biodegradable cellulose (Paudel et al., 2017). Fuels acquired from cellulosic biomass for example the 

woody, and normally unpalatable pieces of plant give an option in contrast to conventional power 

sources that support national economic development and environmental goals (Petersson et al., 2007). 

Besides, biogas from lignocelluloses may provide new job opportunities for local people in rural 

territories, which can make a great socio-economic impact (Wyman, 2005). Biomass sources utilized 

for power generation include rural and forest waste, municipal waste, and aquatic waste utilized for 

energy purposes (Surendra et al., 2018). Reasons behind the production of energy from crop and agro- 

waste is because bioenergy is a renewable type of energy form, which can be produced from 

lignocellulose upon need. This energy can be seen as more effectively accessible than fuel 
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sources and may be produced using significantly involving low capital cost. In various cases, usage of 

biomass can add to handle environmental issues, for example, use of biomass produced due to 

eutroplication as raw material for producing biogas. Its use lead to the decrease of dependence upon 

petroleum- based energysources. 

1.2 COMPOSITION AND PROPERTIES OFBIOGAS 

 
Biogas is produced by anaerobic digestion of waste in anaerobic reactor. The most important 

fundamentals of biogas is methane and carbon dioxide. Apart from that, a trace amount of hydrogen 

sulfide, nitrogen, and hydrogen are there depending upon the variety of substrates used for 

producing the biogas. Table 1.1 suggest a general component of biogas. 

Table 1.1General composition of biogas( Deublein and Steinhauser, 2008) 
 
 

Compound Chemical Composition (%) 

Methane CH4 55-70 

Carbon dioxide CO2 44-28 

Hydrogen sulfide H2S 1-2 

Other gases Water vapors Traces 

The most important part of the energy of biogas is the calorific value of its CH4 content. This property 

of biogas makes it fit to be used as fuel for industry and domestic purposes. 

Table 1.2 indicates the general propertied of biogas. 

 
Table 1.2 General properties of biogas (Deublein and Steinhauser, 2008) 

 

Properties Values 

Critical strain 75-89 bar 

Critical heat -82.5°C 

Calorific value by CO2 18.7 MJ/ m3 

Calorific value not including CO2 26 MJ/ m3 
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Density 1.0994 kg/m3 

Specific gravity 0.94 

Viscosity 1.297x 10-5 kg/sec/m 

Ignition temperature 700°C 

Energy substance 6.0-6.5 kWhm-3 

 

1.3 APPLICATIONS OFBIOGAS 

 
Major constituents of biogas are methane with carbon dioxide. Methane is a prime constituent of 

natural gas. So, if somehow carbon dioxide can be removed from the biogas, it will be a source of 

immense energy that can be used effectively for different purposes like cooking, lighting, vehicle fuel, 

generation of electricity(Jeoh et al, 2017). After scrubbing the biogas it can be compressed and used as 

vehicle fuel like CNG and also it can be stored in cylinders and transported to other places. 

1.4 ANAEROBIC DIGESTION PROCESS 

 
Biogas can be synthesized by the method of anaerobic breakdown of organic matter for example 

biomass, manure, agricultural waste, industrial waste, etc. Anaerobic processing is a strategy where 

microorganisms decompose the biodegradable mass of the organic matter in the absence of oxygen to 

produce biogas (Curto et al 2019). The biomass breaks down to simpler substances during hydrolysis 

which is then acted by acidogenic bacteria, acetogenic bacteria followed by methanogenic bacteria. 

The reaction takes place through a significant number of steps with the help of the methanogens 

(Mahanta et al., 2006). The entire method of anaerobic digestion is partitioned into four noteworthy 

steps to perceive the framework appropriately. They are recognized as 

• Hydrolysis of lignocellulosic biomass to solubleicompound 

• Acidogenesis ofsoluble compound & degrading to volatile fattyacids. 

• Acetogenesis producing hydrogen, carbon dioxide and acetic acid derivation 

• Methanogenesis creating biogas 

 
As shown in Fig. 1.1, the digestion process starts with the hydrolysis of the biomass taken as input 

and breaks them down to insoluble simpler substances, which can be digested by bacteria. With 

the acidogenic bacteria, sugars and amino acids are converted into carbon dioxide, hydrogen, 
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ammonia and organic acid. Then the acetogenic bacteria convert these organic acids into acetic 

acid along with additional ammonia, hydrogen, andcarbon dioxide. Finally, methanogen bacteria 

convert these products to methane and carbon dioxide. Anaerobic digestion produces biogas and 

prevent the production of foul smell and additionally produces manures with high nitrogen content 

(Mittal, 1996). The reaction that takes place in the process of methanogenesis is expressed in fig 1.1 

(Mata-alvarez et al., 2000). 

 

 
Fig. 1.1 Stages of an anaerobic digestion (Mata-alvarez et al., 2000) 

 

 

1.5 TYPES OF BIOMETHANATIONPROCESS 

 
Anaerobic digestion can be executed as a batch system or a continuous system. In a batch reactor 

biomass is added to the reactor at the start of the process. The reactor is then sealed for a period of the 

process. Since the batch processing is simple and requires fewer devices and lower levels of plan work, 

it is ordinarily a less expensive state of digestion as opposed to the continuous kind digesters. In 

continuous digestion the biomass slurry input is added at regular intervals of time with the continuous 

removal ofwaste from theother side. The continuous digestion is better for production of biogas. 

 

 
1.6 COMMONLY USED FEED MATERIALS FORIBIOGAS PRODUCTION 

 
Biogas producing from all different feed material is never equivalent. It shifts from substrate to 

substrate. Aside from that, there are numerous different parameter which affects the production of 

biogas. Some ofthemare C:N ofsubstrate utilized, temperature, pH value ofthe slurry, loading rate of 
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input, hydraulic retention time, the toxicity of slurry, dilution and consistency of input feed and so 

on.The impact of agitation and added substances on biogas assembling is furthermore quite critical. 

Diverse types of material utilized as feed for bio-methanation can be classified as animal waste, plant 

waste, and domestic waste. Table1.3 

Table 1.3 Various kind of feed material used for bio-methanation processes 

 

Animal Wastes Plant wastes Domestic waste 

[Budiyono et al., 2010; Trujillo [Mahnert et al., 2006; [Viswanath et al., 1992; 

et al., 1991; Yusuf et al., 2011; Das Ghatak and Knol et al., 1978] 

Patil et al., 2011; Wong and Mahanta, 2014]  

Cheung, 1989]   

Cattle dung Grass clipping Raw garbage 

Rabbit wastes Beanstalks Bread 

Horse manure Bagasse Potato tops 

Pig manure Cut Straw Paper 

Poultry manure Peanut stalk and 

leaves 

Kitchen vegetable scraps 

Night soil Wheat straw Cabbage 

Human urine Rice straw Tomato 

Mixed slaughterhouse waste Corn stalks Fruit and vegetable waste 

 
1.7 PRETREATMENT OFBIOMASS 

 
1.7.1 Lignocellulose 

 
Lignocellulose biomass comprises cellulose; hemicellulose and lignin (Jiang et al 2018). The plant cell 

wall is made up of cellulose which provides toughness and elasticity. The protective coat present 

outside the cell wall is lignin. A strengthening material which is available among cellulose and lignin 

is alluded to as hemicellulose. The diagram structure of cellulose is exhibited in Figure 1.2 however 

building block of lignin is showed up in Figure 1.3. In this figure (1.2), straight bundles appeared 

associated with lignin. The structure of lignin is then bound by particular hemicelluloses like 

xyloglucan, gelatin. Agricultural items, paper mash or tree industries alongside various agro 

essentially based exercises are sources of lignocellulosic biomass. 
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Fig. 1.2 Course of actionof cellulosic microfibrilsin plant cell dividers (Murphy and McCarthy, 2005) 
 

 

 

 

 
 

Fig. 1.3 Building blocks of lignin (Wyman, 2003) 

 
1.7.2 Pretreatment of lignocellulosicbiomass 

 
Lignocellulosic biomass has more opposition to hydrolysis(Rajendran et al 2018). This is because of 

its remarkably well-ordered structure. This is the significant reason for its applications for the 

generationofvarious value presented stock i.e., ethanol, lactic acid, bio-oil, biogas are limited to some 
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extent. In lignocellulose, sugar polymers are bounded with lignin with the help of hydrogen and 

covalent holding, which transforms into an unmanageable structure for hydrolysis and generation of 

value--added  products  such  as  biogas, etc  (Kumari,  et  al  2018).  In  this  manner,  this  structure  of 

lignocellulosic biomass contains cellulose; hemicellulose and gelatin polymers join together and 

produce tough three- dimensional structure because of which hydrolysis is difficult (Perin et 

al.2019).The effect of pretreatment on the lignocellulosic biomass is shown in Figure 1.4. 

 

 

Fig. 1.4 Result of pretreatment on lignocellulosic biomass (Fernandes et al., 2007) 

 
1.7.3 Utilization of lignocellulosic biomass for importance-additionalproducts 

 
Lignocellulosic biomass is an inexhaustible valuable asset which is present in plant cell and can be 

utilized for energy production, to be utilized for various purposes (Veluchamy et al,2017). The effect of 

hydrolysis of lignocellulosic biomass is shown in Figure 1.5 
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Fig. 1.5 Effect of hydrolysis of lignocellulosic biomass(Das et al., 2010) 

 
But, it is essential to break the three- dimensional structure of polymer which is available in biomass 

into the less difficult composites for producing different types of significant items. The various types of 

significant worthincluded items fromlignocellulosic biomass are shown in Figure 1.6. 

 

 

 

Fig. 1.6 Different value added products from lignocellulosic biomass(Huang et al., 2008) 

 
Anaerobic processing is well- developed technology and is used worldwide for the production of 

bioenergy from different feedstock. These different sorts of substrate have high organic material of 

biodegradable nature which makes them a perfect biomass for anaerobic digestion process. Huge 

waste in farming and industrial level, can be used for producing biogas and manures. 

1.8 MANURES 

 
Bioslurry is a good fertilizer for crops and improves the soil fertility, soil structure and yields of crops. 

It is better than ordinary Farmyard manure (FYM) and may likewise lessen the utilization of 

chemical fertilizers. Bio slurry can be utilized to manufacture solid prolific soils for yield generation. 

Surely, bioslurry structure and substance settle with two- fold nitrogen content, which is not the same 

as Farmyard Manure (FYM). Likewise, the amount of the bio- slurry is additionally higher than 

normal FYM. Bioslurry contains helpful plant nutrients and more prominent measures of 

supplements, micronutrients than FYM. The results of bioslurry utility are similar to the results 
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of the product of chemical fertilizers. In that capacity, bioslurry can be a genuine option in contrast to 

chemical fertilizers. 

1.9 OBJECTIVES OF THE PRESENTSTUDY 

 
The broad objective of the proposed study is the conversion of lignocellulosic biomass into biogas and 

its value-added products as an exercise to protect the environment. As per the literature survey, it was 

found that three lignocellulosic biomass named wheat straw, rice husk and sugarcane bagasse are in 

abundance in our country and can be a profitable step to increase energy generation in a developing 

country. The utilization of biomass for energy also decreases the gap generated due to energy demand 

and supply. The specific targets of the studyare: 

• Optimizing the pretreatment prerequisites of agricultural biomass (wheat straw, rice husk and 

sugarcane bagasse) to causeIdelignification. 

• To study the impact of reaction conditions (temp, pH, concentration, Nitrogenous substance) 

on biogasgeneration. 

• Analysis ofoutlet slurry for fertilizer value. 

 
1.10 ORGANIZATION OFTHESIS 

 
Chapter 1 discusses the brief introduction about the biogas production and the feedstocks for biogas 

production. Chapter 2 discusses the various techniques for pretreatment of lignocellulose waste, 

selection of suitable pretreatment methods to our research and Anaerobic digestion of treated waste to 

biogas. Chapter 3 addresses the material and methodology to achieve the research objectives, namely 

designing conditions for our experiments. This involves culturing of Pretreatment of lignocellulose 

waste and the effect of different factors on biomethanation. The achieved targets are discussed in 

Chapter 4 wherein it will be explained how the researcher has implemented conditions in the 

pretreated biomass for bio methane production and manure production. The results will also be 

discussed the optimum for different levels of pretreated biomass which were studied and then will 

finalize the best optimum condition for specific biomass. Chapter 5, includes the summary of the final 

conclusion and findings for the research questions and problem statement, as well as give 

recommendations for future research. 
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CHAPTER -2 

REVIEW OF LITERATURE 

 

2.0 INTRODUCTON 

 
The majority of fuels are derived from fossilized biomass but socioeconomic and environmental 

concerns are pushing towards an increasing contribution of recent biomass which is capable of closing 

the fixation/emission loop of CO2 within ecological cycles. The potential of biomass is virtually 

enormous. It is because of this reason that the terrestrial net primary production corresponds 

approximately to 2000 EJ Y-1 (Krausmann et al., 2013). However, the effective potential of bioenergy 

is not easily quantifiable. It is dependent on many crucial assumptions such as the degree of 

sustainability, land availability, dietary habits that explain the wide range (Slade, Bauen, & Gross, 

2014). The energetic reservoir built up by plants as net primary productivity serves to sustain the 

higher trophic levels of ecosystems, therefore diverting part of this energy flow out into human uses 

and has a profound impact on the environment and the distribution of resources (the estimated human 

appropriation is one- quarter of the theoretical net primary productivity). To circumvent or minimize 

the competition with other destinations, the production of bioenergy from wastes and residues is 

encouraged considering that its potential is deemed to be significant. At present, anaerobic digestion 

(AD) is one of the main technologies capable of transforming biodegradable substrates into a fuel, 

methane which is formed along with carbon dioxide in biogas (a mixture of about 60–65% CH4 and 

35–40% CO2) through a community of prokaryotic organisms. The complexity of the metabolic 

pathways leading to biogas from biopolymers is classically divided into four sequential steps: 

degradation of biopolymers into smaller molecules like monomers (hydrolysis), which are fermented 

principally into volatile fatty acids VFAs (acidogenesis), further digested into CH3COOH, CO2 and H2 

(acetogenesis) that are eventually converted in the ultimate products CH4 and CO2 (methanogenesis) 

(Fabbri & Torri,2016). 

The hydrolysis step is rate- limiting due to the presence of complex polymers in biomass. Pretreatment 

is a  process  in  which  the  biomass  is  made  ready  for  microbial  attack.  This   pretreatment can 

be physical operations such as mechanical commmunition, irradiation etc.; chemical treatment with 

alkali, acids, wet oxidation etc.; biological pretreatment, by fungi or enzymes; or a combination of 

these processes (Karuppiah & Azariah,2019). 

Micro-anaerobic pretreatment is an efficient & cost-effective pretreatment method to meet the 

requirements for the industrial applications. Amin et al. (2017) concluded that the formation of 

cellulosic fiber for enzymatic attack, the prevention of the formation of inhibitors to the fermenting 
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microorganisms and hydrolytic enzymes, reduced energy demand which finally reduced the cost of the 

feedstock. A recent update concerning developments in the field of pretreatment was developed. The 

improvement of the efficiency and cost limitations by combining both chemical and physical methods 

was found to be more beneficial as compared to both methods in individuals. Additionally, the 

chemical pretreatment can provide many disadvantages related to the extensive waste production and 

corrosion ofthe reactors (Marcin et al.,2019). 

Considering different bioenergy resources, lignocellulosic has been recognized as the prime source of 

biofuels and other value-added products (Kumar, Singh, & Singh, 2008).This biomass is an abundant 

organic material that can be used for sustainable production of bioenergy and biofuels such as biogas 

(about 50-75% CH4 and 25-50% CO2) (Zheng, Zhao, Xu, & Li, 2014). Lignocellulosic wastes 

obtained from energy crops, wood and agricultural residues represent the most significant sources of 

sustainable biomass (Lin et al 2006; Kumar et al., 2008). It has been found that the plant 

photosynthesis accumulated around one hundred fifty billion stores of dry fabric every year with 

which about half is cellulose (Persson et al 1991). The lignocellulosic biomass from plants and 

residues of agricultural activities amounts to the biggest inexhaustible supply of fermentable sugars on 

earth, which is otherwise considered as agricultural waste(Azevedo et al,2019). Because of their easy 

availability, huge amount and sustainability, there has been an emerging interest of the scientific 

community in utilizing lignocellulosic wastes for the rebuilding of a lot of valuable stock and 

biomaterials (Pandey et al., 2000b; Howard et al., 2003; Das et al., 2010; Saha et al., 2005; Foyle et al., 

2006; Tomas-Pejo et al., 2011; Mtui, 2008; Huang et al., 2008). 

Agricultural residues, such as straws, nutshells, fruit shells, fruit seeds, plant stovers, green leaves, and 

molasses, are potential renewable energy resources. Many developing countries have a wide variety 

of agricultural residues in ample quantities. Large quantities of agricultural plant residues are 

produced annually worldwide but are vastly under-utilized (Demirbaş, 2001). Rice straw is an 

abundant and largely unused agricultural residue. Ninety percent of the world’s rice production is in 

the developing countries of East and Southeast Asia where rice straw is utilized as a main feed for 

ruminants (Zhong et al., 2011). About 731 million tons of rice straw is produced annually, which is 

distributed in Africa (20.9 million tons), Asia (667.6 million tons), Europe (3.9 million tons), America 

(37.2 million tons), and Oceania (1.7 million tons). This amount of rice straw can potentially produce 

205 billion liters of bioethanol per year, which is the largest amount recorded so far from a single 

biomass feedstock.But in general, half of the crop residues remain unused even though these are being 

used for purposes like animal feed, fuel for cooking, and house-heating energy for rural families. 

Underdeveloped conversion technologies prevent crop residues from becoming a practical 
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option in energy production, and most agricultural residues are burnt in the field. This kind of disposal 

method has caused widespread environmental concerns as it contributes to air pollution( As in the case 

of Punjab, Haryana, UP,etc). It can’t be denied that one of the reasons for the air pollution in Delhi 

since mid-October is thestubble burning ofcrops in Punjab and Haryana (Nirmal, 2019). 

Dumping agricultural residues back into the field may reduce crop yields, increase foliar diseases, and 

degrade soil conditions (Siddique et al. 2017). Therefore, cost-effective technologies for corn straw, 

wheat straw, rice husk and sugarcane bagasse disposal and utilization must be developed. 

Anaerobic digestion of organic waste and residues combines both sustainable treatment and renewable 

energy production. Lignocellulosic materials, are resistant to anaerobic digestion and can be converted 

into biogas, although only to low extents. The low susceptibility of these materials to conversion into 

biogas is attributed to their composition and structure. Lignocellulose is the complex and rigid matrix 

of plant cells; it is resistant to enzymatic attack because of the tight association between lignin, 

cellulose, and hemicellulose. Cellulose and hemicellulose can be degraded in biogas processes. 

However, lignin cannot be degraded under anaerobic conditions. Therefore, pretreatments, including 

the solubilization and biodegradation of the hemicellulosic and lignin components of the substrates, 

are necessary to facilitate biogas production by overcoming hydrolysis limitations (Nizami, Korres, & 

Murphy, 2009). Treatments facilitating the accessibility of holocellulose are necessary to increase the 

biogas potential of fibers such as corn stalks and wheat straw. Many treatments for increasing the 

biodegradability of lignocellulosic material have been reported.One of the objectives of this study 

also focuses onIthis. (Sawatdeenarunat, Surendra, Takara, Oechsner, & Khanal, 2015). 

The application of elected emerging technologies like ionizing & non-ionizing radiation; pulsed 

electrical field; ultrasound & high pressure; as a promising tool in the degradation of lignocellulosic 

biomass was studied and discussed in below table (Shady et al.,2018). 
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Table 2.1: Advantages and disadvantages of selected green chemistry pretreatmentmethods 

(Shady etal.,2018) 

Bioenergy, especially biogas produced through the anaerobic digestion (AD) of renewable feedstocks, 

is considered to be one of the highly promising alternatives to fossil-derived energy due to several 

inherent and significant merits (Kaparaju, Serrano, Thomsen, Kongjan, & Angelidaki, 2009); Cheng 

et al., 2011). Because of its advantages over conventional fossil-derived resources, AD has been 

adopted and integrated into society over the last century, with thousands of full-scale plants currently 

in operation worldwide. AD is suitable for converting non-sterile, diverse, complex feedstocks into 

energy-rich biogas. 

Many biodegradable feedstocks such as industrial wastewater, food wastes, animal manure, agri- 

wastes, sewage sludge, organic fraction of municipal solid waste, among others,  have been  

employed as substrates for commercial biogas production. Such facilities illustrate the 
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unique potential for bioremediation and waste stabilization with concurrent  bioenergy 

production. More recently, lignocellulosic biomass, namely agri-residues and energy crops, have 

gained   much attention  as candidate  feedstocks for producing  bioenergy and  biobased 

products. Unlike  conventional  bio-renewable   feedstocks (i.e.,  sugar- and  starch-based 

crops),  lignocellulosic   biomass does not directly compete with food or feed production. 

Moreover, high biomass yields even under low inputs of energy, water, fertilizers, and pesticides, 

make these crops ideal for biogas (and bioenergy) production (Azman, Khadem, Van Lier, Zeeman, & 

Plugge,2015). 

As already discussed, the hydrolysis of lignocellulose often becomes the rate-limiting step during 

traditional AD. Several studies have focused on enhancing the digestibility of lignocellulosic biomass 

through physical, chemical, biological and hybrid pretreatments in the production of liquid fuels 

(primarily ethanol) via biochemical  pathways  (FitzPatrick  et  al.,  2010;  Takara  and Khanal,  

2011). Mechanical milling, steam explosion, hot water washing, acid and alkali pretreatments and 

ammonia fiber expansion, among others, have  been  employed  as upstream unit operations to  

disrupt the complex structure of biomass, thereby increasing its porosity, removing lignin and/or 

hemicellulose, and reducing the overall crystallinity of the biomass structure to facilitate the 

biological conversion of biomass into  bioenergy  and biobased products  (Monlau et al., 2013;  

Agbor  et  al.,  2011). Many of  these pretreatments, however, are economically and 

environmentally  unfavorable  due  to  the  high  cost  of enzymes and  the  production  of 

solid/liquid waste streams  (Monlau  et al.,2013). AD is the naturally occurring, biological 

pretreatment of organic substrates carried out by robust, mixed culture microbial communities in the 

absence of oxygen (Petersson, Thomsen, Hauggaard-Nielsen, & Thomsen, 2007). The consortium of 

microbes works synergistically to deconstruct recalcitrant biomass structures (like lignocellulose) into 

their respective fundamental components. In conventional bioprocessing strategies, the whole 

lignocellulosic feedstock is ground and fed into an anaerobic bioreactor to convert complex 

carbohydrates and organic matter into energy- rich biogas (Kratky & Jirout, 2011). Though effective, 

this approach is time - consuming and energy- intensive, consequently limiting its application for 

large-scale bioenergy production from dedicated energy crops. An insightful study conducted by 

Yuan et al. (2016) suggested that certain microorganisms present in the AD slurry may  prefer 

specific biomass constituents over others (Sawatdeenarunat et al.,2015). 

Biomass is a natural material made out of polymers that have enormous chains of carbon molecules 

connected to different macromolecules. The polymer backbone comprises of bonds connecting 
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carbon with carbon or carbon with oxygen or once in a while with various components, for example, 

nitrogen or sulfur. It tends to be seen as congregations of some enormous atomic units. 

Lignocellulosic material comprises of the fundamental three abundant polymers namely cellulose (40- 

50%), hemicellulose (25-35%) and lignin (15-20%) which are interrelated. In the case of cellulose, the 

repeating unit is the glucan moiety, extremely an atom of glucose using one molecule of water, the 

unit is dependably a 5-carbon sugar, the xylose. Regardless, hemicellulose polymers are not straight 

chains as in the cellulose polymer. Some are extended and other monomer units have a point of view 

chains, withacetyl parties being extremely normal. 

The lignin polymers are made out of phenyl propane subunits, a complex made up of different 

monomer through C•C and C•O bonds with the methoxy groups(Kumara et al., 2018). These bonds 

and complexes can be biotransformed by whole microbes or their enzymes by selectively degrading 

either of cellulose, hemicellulose or lignin. These three biopolymers are the main overall plant assets 

that can be successfully changed over to animal feed, bio stocks, biofuels, biochemicals, biomaterials, 

and biopower ( Fernandes et al., 2007; Kaparaju and Felby, 2010; Cherubini and Stromman, 2011) 

2.1 STRUCTURE AND PROPERTIES OF LIGNOCELLULOSESBIOMASS: 

 
2.1.1 CELLULOSE 

 
Cellulose is the β-1,4-polyacetal of cellobiose (4-O-β-D-glucopyranosyl-D-glucose) (Jiang, et al 

2018). However, cellulose is normally considered as a polymer of glucose since cellobiose comprises 

of two molecules of glucose (Figure 2.1) 

 

 
Fig. 2.1 Constitution of cellulose (R et al 2007). 

 
The cellulose from wood has around 10,000 glycosyl units in chains that form the structure of fibrils, 

broad bundles of monomer, which are stabilized with the help of several strong intermolecular 

hydrogen bonds between hydroxyl molecules of bonded particles (Bon and Ferrara, 2008). Due to β-1, 
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4 linkage, cellulose is especially crystalline and quite resistant to degradation by microbes and/or their 

enzymes (Wyman, 2003; Gray et al., 2006). Cellulose is a remarkably hygroscopic material 

connecting with 8-14% water underneath regular atmospheric conditions (20°C, 60% relative wetness). 

Further, cellulose is insoluble in different solvents (including water) at low temperatures. The 

dissolvability of the polymer is directly related to the extent of hydrolysis accomplished. At higher 

temperatures, it will dissolve, as the bond dissociation energy is sufficient to break the hydrogen bonds 

that protected the crystalline structure of the atom. Cellulose,also,is dissolvable in mineral acids, 

accompanied by hydrolysis(Yuan,et al 2016). Higher cellulose degradation is achieved when this 

polymer swells due to the deterioration of the low atomic mass subunits (Krassig and Schurz, 2002). 

Solvents of cellulose that have been used in the present day or research center practice include cupri 

ethylene diamine (cuen) hydroxide or the cadmium tangled Cadoxen. Moreover, watery salt solution, 

for example, zinc chloride, degrades the structure of cellulose (Kirk-Otmer, 2001). Cellulose does not 

separate with temperature, yet its decomposition begins at 180°C (Thermowood Handbook, 2003). 

2.1.2 LIGNIN 

 
The lignin biopolymer is an amorphous, cross-connected and amazingly complex 3-D polymer of 

various phenylpropanoid subunits, polymerized with the help of the carbon–oxygen (C-O) and 

carbon-carbon (C-C) bonds (Figure 2.3). Lignin present between the external layers of the strands, 

leading to structural rigidity and holding the filaments of polysaccharides together (Davin and Lewis, 

2005). Lignin is connected to hemicelluloses and cellulose, thus always resisting enzymatic attack of 

different fungi (Wood rotting white-root and brown-rot) and bacteria (Thomas et al., 2019). 

Generally, softwoods fuse additional lignin than hardwoods. Lignins have been classified into two 

classes, guaiacyl lignins and guaiacyl-syringyl lignins (Ahring et al., 2015). Even though that the 

fundamental basic factors in lignin have been for the most part explained, numerous variables of their 

science still remain to be discovered. 

Lignin building subunits include p-coumaryl liquor, coniferyl liquor and sinapyl liquor (Howard et al., 

2003; O'Connor et al., 2007Tomas-Pejo et al., 2008; Sanchez, 2009). Softwood lignin is made of 

coniferyl liquor units, while hardwood lignin is of coniferyl and sinapyl alcohol units (Pu Y et al., 

2007). The main function of the lignin is to offer the plant basic help, impermeability, and opposition 

towards microbial attack and oxidative assistance (Fengel and Wegener, 1984; Hendriks and Zeeman, 

2009). In lignocellulosic biomass, lignin is bonded closely to cellulose and hemicellulose and this 

strong affiliation impacts enzymatic degradation (Tomas-Pejoet al., 2008; Hendriks and Zeeman, 

2009). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694284/#B1


19 
 

 

Fig. 2.2 Model structure of spruce lignin(Sanchez, 2009) 

 
2.1.3 HEMICELLULOSE 

 
Hemicellulose  is   a  not well   characterized and heterogeneous  group of polysaccharides 

(copolymer of any of the monomers of glucose, galactose, mannose, xylose, arabinose and glucuronic 

damaging) (Figure 2.3). Hemicellulose incorporates the cellulose strands and is a hyperlink among 

cellulose and lignin (Siddique et al. 2017). Hemicelluloses are heterogeneous polymers of pentoses 

(xylose and arabinose), hexoses (for example mannose, glucose and galactose) and sugar acids 

(Hendriks and Zeeman, 2009; Girioet al., 2010). It includes an extraordinary chain xylan spine  (β- 

1, 4 linkages)  with anumber pieces of mannose, arabinose,  galactose,  glucuronic  destructive  and 

so  on.  Disparate  cellulose,  hemicelluloses are  presently not artificially homogeneous.  The  level 

of  branching  and  nature   of  the monomeric  sugars in hemicellulose depend upon plant type 

(Laine, 2005; Gray et al., 2006; Albertsson et al., 2010). Depending upon sugar type, the 

hemicelluloses  are  alluded   to   as  mannans,  xylans   or  galactans. The  C5  and  C6 sugars, 

connected  by  means  of  1-3,  1- 6, and 1-4 glycosidic bonds and in numerous events acetylated, 

structure a free, particularly hydrophilic structure that goes about as  glue  among  cellulose  and 

lignin (Bon and Ferrara, 2008). Hemicellulose differ from cellulose by different sugar units, by 

presenc of shorter chains and by branching the main chain which made structure less easier to 

hydrolyzein  comparison to cellulose  (Tomas-Pejoet al., 2008). The breakage results in their 

monomeric components containing glucose, mannose, galactose, xylose, arabinose and little 

proportions of rhamnose,  glucuronic destructive,methylglucuroni destructive& galacturonic 

derivative. 



20 
 

 
 

 

Fig. 2.3 Schematic portrayal of the hemicellulose back bone of arborescent plants(Bon and 

Ferrara, 2008) 

Hardwood hemicelluloses  mainly comprises of  xylans however, softwood hemicelluloses 

contain glucomannans  (Cao  et al., 2017). Xylans are  the most plenteous or abundant 

hemicelluloses. Xylans of many plant  materials  are  heteropolysaccharides with 

homopolymeric back chain of 1, 4-related β-D-xylopyranose units. Xylanscan be derived from 

various plant sources, for example, grasses, grains, softwood and, hardwood. Other than xylose, 

xylans can in addition blend arabinose, glucuronic ruinous and acidic, ferulic and p-coumaric acids. 

The extent of polymerization of hardwood xylans (150-200) is higher than that of softwoods 

(Dahlmanet al., 2003; Tomas-Pejoet al., 2008; Alonso-Sandeet al., 2009; Scheller and Ulvskov, 

2010). Further, of all the three segments: (Figure 2.6) cellulose, hemicellulose and lignin, the 

hemicelluloses are the most thermo-chemically sensitive.  (Sweet  and Winandy, 1999; Hendriks 

and Zeeman, 2009) 

2.1.4 PRETREATMENT TECHNOLOGIES 

 
Pretreatment refers to the disruption of outer protective lignin covering to fasten the cellulose 

hydrolysis by enzymes. The  most important step in the formation of biofuel is pretreatment 

of the lignocellulosic biomass( Li et al. 2018). Pretreatment indicates the solubilization of 

cellulosic biomass. It makes the treated solid biomass more available for physical, chemical and 

biological treatment (Mosier et al., 2005b; Wyman et al., 2005; Demirbas A., 2005; Grayet al., 

2006).The lignocellulosic complex is comprised cellulose and lignin connected through 

hemicellulose chains. Upgrades in pretreatment productivity and advancement of 
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new enzymes require better comprehension of the components that decide the rate of enzymatic 

hydrolysis. Variables that are generally demonstrated to affect the enzymatic hydrolysis are 

cellulose crystallinity and level of polymerization. 

The pretreatment is done to crush the  lattice  so as  to diminish  the  confirmation  of  crystallinity  

of the cellulose and to increase the content of  amorphous  cellulose,  for  enzymatic  attack 

(Sanchez &amp; Cardona 2008). Objectives of a magnificent pretreatment system are: 

(I) Formation of sugars immediately throughhydrolysis. 
 

(II) Avoid loss and/ or degradation ofsugars formed 
 

(III) To restrict development of inhibitoryitems. 
 

(IV) To limit energy demand and to limit costs. 
 

Physical, chemical, Physico-chemical and biological are the four fundamental sorts of pretreatment 

procedures utilized.Mix of these techniques are utilized in the pretreatment step. Pretreatment 

additionally influences the expense of the  unique  operational  advances  that is downstream 

expense , enzymatic hydrolysis rate and fermentation process variables factors (Carvalheiro et al., 

2008; Taherzadeh and Karimi, 2008; Yang and Wyman, 2008; Hendriks and Zeeman, 2009 Alvira 

et al., 2010; Girio et al., 2010) 

Table 2.2 Key factors for an effective pretreatment method for lignocellulosic biomass. 

 
S.iNo Key ifeatures ifor ipretreatment iof ilignocellulosic ibiomass i 

1. High yield from several crops, site, ages with harvesting times. 

2. Develop the nature of sugars or the ability to afterward form sugars by hydrolysis. 

3. Solid division highly digestible. 

4. Keep away from the degradation or loss of carbohydrates. 

5. Avoid the formation of byproducts that are inhibitory to the successive hydrolysis and 

fermentation processes. 

6. No necessity of size decrease. 

7. Process in normal size and modest price reactors. 

8. No production of solid-waste residue. 

9. Efficiency at low moisture content. 

10. Obtaining high sugar concentration. 
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11. Fermentation compatibility of the pretreated substance. 

12. Cost-effectiveness. 

 

During the   most recent   decade, countless assorted  pretreatment innovations   have been 

proposed, typically characterized into natural, physical, chemical, and Physico-chemical. 

2.1.4.1 PHYSICAL PRETREATMENT 

 
Mechanical pretreatment is used to reduce the particle size and crystallinity of lignocellulose to 

broaden   the   surface  area   and   decrease   the   confirmation   of   polymerizationr             (Palmowski and 

Muller, 1999 and Hendriks and Zeeman, 2009). Mechanical pretreatment advancements amplifies the 

digestibility of cellulose and hemicellulose in the lignocellulosic biomass. Decrease of 

biomassunderneath 20mm sizedemonstrates themagnificent  mechanical    exhibition 

(Sausaet al., 2004; Mtui, 2009). Physical treatment result in an expanded ethanol yield, low 

hydrolysis cost and no inhibitors were created (Hendriks and Zeeman, 2009; Hidenoet al., 2009). 

Mechanical  pretreatments  (chipping,  crushing   and  processing) decrease cellulose crystallinity 

anyway require extreme energy and capital charges (Sun and Cheng, 2002; Sanchez and Cardona, 

2008;  Tomas-Pejoet  al.,  2008).  Considering   the high power necessities of processing and the 

constant ascent of  the  power  costs,  it is plausible that processing  is  by the by  not 

financially achievable (Hendriks  and Zeeman, 2009). Mechanical  pretreatment 

decreases cellulosecrystallinity and improves the viability of   downstream 

processing. Wet handling, dry preparing, vibratory ball preparing and weight handling are regularly 

done.The quality commitment for mechanical treatment of  agricultural  waste relies on the starter 

and remaining particle sizes, moisture content material and  on  waste  (hardwood,  softwood,  

stringy, etc) being overseen . Size reduction may similarly supply higher outcomes but some time it 

may impact problem to pretreatment and enzymatic hydrolysis. Size reduction can be one of the most 

operative means for increasing the enzymatic accessibility to lignocellulose. However, many of the 

physical methods for size reduction (milling, grinding, etc.) are not economically feasible because a 

veryhigh-energy input is required. 

2.1.4.2 PHYSICOCHEMICAL PRETREATMENT 

 
Combined Physical and chemical treatment structures are of significance in dissolving hemicellulose 

and modify of lignin formation, presenting a comprehensive accessibility of the cellulose for 

hydrolytic enzymes (Kumari, et al., 2018). The most advantageous physiochemical pretreatments 

join thermochemical prescriptions, for instance, steam impact, liquid warm water (lhw), smelling 

salts fiber impact (afex) and CO2 impact. In these 
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techniques, chipped biomass is made do with high pressure splashed steam, liquid smelling salts or 

CO2r4     and   a  short  time  later  the   strain  is  all   of   a  sudden   decreased,  making  the biomass to 

undergo decompression (Hendriks and Zeeman, 2009; Mtui, 2009). 

Steam impact is the most extensively used physico-chemical pretreatment for lignocellulosic biomass. 

In   the process of steam   pretreatment, the  biomass is   put in vessel and steamed at a high 

temperature (upto 240°C) for two to three minutes. After a set time, the steam is released and the 

biomass is   immediately chilled off  (Hendriks and Zeeman, 2009). The structure causes 

hemicellulose breakdown or separation and lignin change as a result of high temperature causing 

possible of cellulose hydrolysis  (Mtui,   2009).   Steam   impact   instead of various pretreatments, 

presents  potential  for lessening capital potential, altogether lower environmental impact, 

dynamically possible for energy efficiency, less formation of inhibitor and complete sugar recovery 

(Avellar  and  Glasser,  1998;  Sun  and  Cheng,  2002;  Tomas-Pejo et al., 2008). Steam explosion is 

a physicochemical pretreatment for deconstructing biomass (Ballesterosetal.,2002; Hamelinck etal., 

2005). Nowadays, it is   a best among pretreatment method for production of biogasi. 

The mechanical impacts are provoked on the grounds that the strain is at the same time diminished 

and  strands  are isolated since of the unstable decompression. In total with  the halfway 

hemicelluloses hydrolysis and solubilization,  the  lignin  is  redistributed  and somewhat disposed 

of from   the   fibre.   Hemicellulose   end   will   build   compound   openness   to the cellulose 

microfibrils by utilizing uncovering the cellulose outside. Vapor blast fractionates the biomass in 

two divisions: 

(I) A fluid portion rich in monomeric and oligomeric sugars regularly from hemicellulose 

solubilization. 

(II) A solid element of absorbable cellulose and lignin. Steam blast mechanical ability has been 

accurately affirmed for biogas producing from a huge scope of uncooked materials. 

Its fundamental disadvantages are strategy gear necessities (Oloffson  et al., 2008), 

incomplete hemicellulose debasement and age of some harmful mixes got from sugar 

corruption over the span of pretreatment that might need to affect following hydrolysis and aging 

advances (Zaldivaret al., 2001; Olivaet al., 2003). The fundamental inhibitors are furan 

subordinates, vulnerable acids and phenolic mixes. The real  furan  subsidiaries  are furfural and 

hmf got from debasement of pentoses and hexoses separately. Frail acids 
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created for the term of pretreatment are generally acidic corrosive shaped from the acidic 

organizations existing in the hemicellulosic division and  formic and  levulinic  acids . Wide scope 

of phenolic mixes are produced because of the lignin breakdown shifting broadly between select 

crude materials. 

Other physic-synthetic pretreatment methodologies incorporate fluid high temp water 

pretreatment (Sun and Cheng, 2002; Mtui, 2009), smelling salts fiber/solidify blast (afex) (Dale  

and Moreira., 1982; Holtzapple et. Al., 1991 and Olofssonet al., 2008), ultrasound pretreatment 

(Mielenz, 2001; Nikolic et al., 2010), microwave pretreatment (Keshwani and Cheng, 2010), wet 

oxidation (Olsson et al., 2005; Kaparaju and Felby, 2010), and  the utilization of supercritical 

liquids (Gao et al., 2010; Luterbacheret al., 2012). 

2.1.4.3 CHEMICAL PRETREATMENT 

 
Synthetic compounds going from oxidizing specialists, soluble base, acids and salts can be utilized to 

debase lignin, hemicellulose and cellulose from lignocellulosic structure (Mtui, 2009). Ground- 

breaking oxidizing venders, for example, ozone and hydrogen peroxide viably expel lignin and the 

reaction is done at room temperature (Sun and Cheng, 2002 and Mtui, 2009). 

2.1.4.3.1 ALKALINE PRETREATMENT 

 
Liquid lime or NaOH pretreatment is highly effective for sugarcane bagasse with lower temperatures 

than destructive pretreatments, regardless, in such cases the treatment times are hours long. For 

instance Chang et al., used lime with at 85°C for 3 h (Chang et al., 1998 and Pu et al., 2007). The 

solvent frameworks will by and large have increasingly unmistakable of degrading lignin and leaving 

cellulose and hemicellulose intact (Kim and Holtzapple, 2005; Kim and Lee, 2005; Teymouriet al., 

2005; Gray et al., 2006 and Carvalheiro et al., 2008). The transfer of hemicellulose fabulously 

influences the degradability of cellulose. It is depicted to reason less sugar defilement than destructive 

pretreatment and it was shown to be more imperative charming on rustic stores than on woody 

substances (Kumar et al., 2009). The possible loss of fermentable sugars and some amassing of 

inhibitory blends ought to be taken as an idea to improve the pretreatment conditions. NaOH, KOH, 

Ca(OH)2, and NH4OH are the best additives for dissolvable pretreatments. NaOH causes swelling, 

extending the inside surface of cellulose and lessening the dimension of polymerization and 

crystallinity, which also prompts lignin shape unsettling influence (Taherzadeh and Karimi, 2008). 

NaOH has been proposed to make more noteworthy hardwood absorbability from 14% to 55% by 

using decreasing lignin content from 24-55% to 20% (Kumar et al., 2009). Moreover, pretreated 
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switchgrass revealed a 
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course of action of pore advancement in the NaOH pretreatment growing the open floor an area to the 

proteins similarly as cutting down lignin content material (Nlewem and Thrash, 2010). Addition of an 

oxidant administrator (oxygen/ H2O2) to acid neutralizer pretreatment (NaOH/Ca(OH)2) can improve 

the show by strategies for favoring lignin end (Carvalheiro et al., 2008). Upgrades for enzymatic 

hydrolysis have been in like manner reflected in extreme biogas delivering from pretreated with acid 

pretreatment method (Kumari,et al2018). 

2.1.4.3.2 ACID PRETREATMENT 

 
The acid treatment process is one of the most seasoned, simplest and most condition cordial procedures 

of producing biogas from biomass. The dilute acid is utilized to hydrolyze the biomass to sugars. The 

Liquid hydrolyzates are then neutralized and poisonous inhibitor for digestion are removed before 

anaerobic digestion of acid- treated biomass to biogas (Brennan et al., 1986).The hydrolysis is 

finished with weaken or vigorous acids. The goal is to solubilize the hemicellulose, and hence making 

cellulose higher available (Liu and Wyman, 2003; Hendriks and Zeeman, 2009). Itwill hydrolyze the 

hemicellulose part while leaving the cellulose and lignin unblemished in the leftover solids. The most 

well-known strategies utilize sulfuric corrosive, albeit other powerful acids have also been attempted 

(Liu et al., 2005; Lloyd andWyman, 2005; Mosier et al., 2005b; Gray et al., 2006). Weaken corrosive 

hydrolysis for the most part utilizes 0.4-2% H2SO4 at a temperature of 160-220°C to put off 

hemicelluloses and enrich cellulase assimilation of cellulose (Willforet al., 2005; Pu et al., 2007). 

Among all, weaken corrosive hydrolysis has been proficiently created, upgrading eminently the 

resulting arrangement of enzymatic hydrolysis (Esteghlalianet al., 1997; Ballesteros et al., 2007; 

Tomas-Pejoet al., 2008; Hsu et al., 2010; Parawira and Tekere, 2011; Kasthuriet al., 2012; Meinitaet 

al., 2012) because of the reality of their adequacy and reasonableness. These procedures have been 

connected in pilot pants and subsequently are near commercialization (Roparset al., 1992; Schell and 

Duff, 1996; Olofsson et al., 2008). Different research work on acid pretreatment (Campo et al., 2006 

and Karimiet al., 2006) has found that 0.5% H2SO4 is most dependable for the restoration of wastes 

from vegetation and rice straw (Mtui,2009). 

The increase of acid hydrolysis is the solubilization of hemicellulose and via this, making the cellulose 

more available for breakdown by enzymes in the digestion process. There is, on the different hand a 

danger on the association of flimsy corruption product where this carbon is lost for the transformation 

to ethanol. The buildup and precipitation of solubilized lignin is an unlucky response, as it diminishes 

digestibility (Cara et al., 2008; Hendriks and Zeeman, 2009; Rocha et al., 2009; Ferreira et al., 2010). 

Strong acid hydrolysis for biogas production is presently not alluring,since there is 
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probability of the development of inhibitory products. Weaken corrosive hydrolysis, anyway is 

regarded as one of the promising pretreatment techniques; for the reason that auxiliary responses all 

via the pretreatment can be disallowed in weaken corrosive pretreatment (Hendriks and Zeeman, 

2009; Alviraet al., 2010). 

Natural acids, for example, maleic, fumaric or even acidic corrosive have been prescribed as 

determinations to inorganic acids. Natural acids don't increase debasement responses that have been 

depicted in corrosive hydrolysis, bringing about lower grouping of harmful mixes. Both maleic and 

fumaric acids have been contrasted and H2SO4 in enzymatic hydrolysis yields from wheat straw. 

Results affirmed that herbal acids can hydrolyze with inordinate yields in spite of the fact that fumaric 

corrosive used to be as soon as less high caliber than maleic corrosive. Moreover, notably less measure 

of furfural used to be once formed in the maleic and fumaric corrosive pre-treatment than H2SO4 in 

hydrolysis (Kootstraet al.,2009). 

Organosolv pretreatment (Park et al., 2010; Obama et al., 2012), ozonolysis (Silverstein et al., 2007; 

Shatalov and Pereira, 2008 and Kumar et al., 2009), Ionic refreshments (as unpracticed solvents) 

(Olivier-Bourbigouet al., 2010; Fu and Mazza, 2011), and sulfite pretreatment (Zhu et al., 2009) are a 

variety of techniques utilized for synthetic pretreatment of lignocellulosic waste. 

2.1.4.4 BIOLOGICAL PRETREATMENT 

 
The biological lignocellulose treatment involves microbes or their microbial enzymes in the 

pretreatment of lignocellulosic/agricultural wastes (Li et al. 2018). Both bacteria and different species 

of fungus are utilized for biotreatment of lignocellulosic squander (Brémond et al,2018). Natural 

pretreatments utilize microorganisms much of the time dark colored, white and delicate decay fungus 

which debase lignin and hemicelluloses and next to no of cellulose, additional safe than the various 

methods (Sanchez, 2009). Fungal pretreatment of agricultural biomass is another strategy for the 

enhancement of biomethane content of biomass (Singhania et al., 2006). White, dark colored fungus 

have been utilized to debase lignin and hemicellulose in waste materials. The different white- rot 

fungi can be used to degrade lignin selectively (Siddique and Wahid, 2018). Such selective lignin- 

degrading fungi can be efficaciously used in microbial pretreatments. A few white- rot fungi, for 

example, Phanerochaete chrysosporium, Ceriporia lacerata, Cyathuss tercolerus, Ceriporiopsis 

subvermispora, Pycnoporus cinnarbarius and Pleurotus ostreatus have been studied for their 

exceptional high delignification effectiveness of different agro residues (Sun and Cheng,2002; Keller 

et al., 2003; Arora et al., 2005; Kumar et al., 2009; Mtui, 2009 and Shi et al., 2009; Tianet al., 2012; 

Wan and Li,2012). 
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Brown rot fungi as often as possible degrade cellulose while white and delicate rot strike both 

cellulose and lignin (Rudakiya et al, 2017). Dark colored contagious pretreatment has been as of now 

brought up as an exact methodology for enhancing the enzymatic hydrolysis yields of P. radiate and 

Pinus sylvestris attaining saccharification yields around 70% (Ray et al., 2010). For this situation, it 

was proposed that some natural acids discharged by way of potential of the utilized growths 

Caniophora puteana diminished the pH and depolymerized it to some extent. In general, such 

methods provide advantages, for example, low capital cost, low vitality, no artificial substances 

prerequisite, slight ecological stipulations, and no inhibitory enzyme mixes(Hosseini et al, 2019). The 

massive drawback to enhance natural approaches is the low chemical- based hydrolysis price by 

organic acid and bases (Sunand Cheng, 2002; Tomas-Pejoet al., 2008; Dashtban et al., 2009). 

Bacterial pretreatment of lignocellulosic waste involves anaerobic and aerobic micro-organism(Kong 

et al, 2018). Anaerobic debasement makes use of familiar mesophillic, rumen derived microorganism 

(Han and Shin, 2002; Hu and Yu, 2005; Neveset al., 2006; Hu et al., 2008 and Mtui, 2009). In aerobic 

framework, Actinomycetes namely, Streptomyces griseus is the best- studied for the production of 

extracellular hydrolytic enzymes that degrade lignocellulose (Arora et al., 2005 and Mtui, 2009). 

Escherichia coli and Klebsiella oxytoca lines have been hereditarily designed to create microbial 

biocatalysts that produce bioethanol from lignocellulosic materials (Peterson et al., 2008 and Mtui, 

2009). To go ahead, for cost-aggressive natural pretreatment of lignocellulose to improve the 

hydrolysis, and, in the end, improve biogas yields, it is vital to proceed to peruse and looking at 

additional growths for their abilityto delignifythe plant fabric hastily and effectively (Figure 2.4). 
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Fig. 2.4 A rundown ofdifferent strategies utilizedinthe pretreatment of lignocellulosic 

squanders (Mtui, 2009). 

2.2 FACTORS AFFECTING BIO-METHANATIONPROCESSES 

 
2.2.1 EFFECT OF TEMPERATURE ON BIOGAS PRODUCTION 

 
The bacterial metabolism to produce biogas mainly relies on anaerobic fermentation condition. 

Consequently, it becomes necessary to control the growth parameters to optimize bacterial growth 

and metabolism (Martin et al, 2008). Temperature is recognized to be one of the significant 

components for proficient anaerobic processing of biomass (Rodriguez et al,2018). The authors have 

identified the anaerobic microscopic organisms and the prerequisites that increase methane 

generation at some stage in the Thirties (Mahanta et al., 2004). Lusk, 1998 focused on several 

varieties of digesters with inner warming and observed that biogas technology was best working in 

mesophilic temperature conditions (30°C-45°C). Another study also suggested that thermophilic 

situation (45°C-60°C) improves the metabolic rates and explicit development rate of microscopic 

organisms in comparison to the mesophilic condition (Lier, 1995). Additionally, Mackie and Bryant, 

(1990) observed four times higher biogas generation with steers fertilizer when contrasted with that 

of in the mesophilic conditions. Thermophilic adjustment of biogas digesters at 55°C temperature is 

genuinely conservative as it delivers higher production of biogas (Vindis et al., 2009). In any 

.i 
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case, 
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anaerobic assimilation in the mesophilic conditions is progressively basic when contrasted with that 

in thermophilic conditions because of the decrease in- process stability, dewatering properties and 

prerequisites of enormous measure of energy for warming the substrate inside the digester. Vindis et 

al., (2009) distinguished the methane framing smaller scale life forms and announced that 

methanogenic microscopic organisms are better and diverse at both in mesophilic and thermophilic 

temperature regime. Varel et al., (1976) studied thermophilic methane production from steers waste 

and found that the methane generation was the highest at 60°C. The procedure was started easily and 

biogas generation was quick without any lag or delay. The test perceptions demonstrate that 

methanogenesis was fast with a higher stacking rate and shorter maintenance time. 

Vindis et al., (2009) examined both the thermophilic and mesophilic anaerobic absorption of three 

distinct kinds of assortments for biogas creation and its quality in the two methodologies and found 

that methane content of biogas acquired from thermophilic assimilation was higher than that of the 

mesophilic processing by 2%. They revealed that the thermophilic anaerobic digestion was two 

times quicker than mesophilic degradation (Maj et al, 2018). 

 

 

 

 

Fig. 2.5 Growth price of methanogens under psychrophilic, mesophilic and thermophilic 

conditions [Liar et al., 1995] 
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Lier et al., (1995) observed the growth rate of methanogenic microscopic organisms in thermophilic, 

mesophilic and psychrophilic stipulations as demonstrated in Fig. 2.5. It is evident from Fig. 2.5 that 

the growth rate of methanogenic microscopic organisms is highest for thermophilic circumstances 

pursued by mesophilic and psychrophilic conditions, respectively. 

Sambo et al., (1995) demonstrated the result of temperature on biogas generation and showed that 

biogas production maximum at 50°C than 60°C and 40°C, separately. Mahanta et al., (2004) probed 

the impact of temperature variation on anaerobic absorption of steers waste and biogas production was 

once best at 35°C followedby 45°C, 40°C and 30°C, separately. 

2.2.2 EFFECT OF FEED MATERIAL ON BIOGAS PRODUCTION 

 
Diverse feed materials have different carbon content, cellulose content material or C:N proportion 

because of which biogas yield contrasts widely with feed material. Busch et al., 2009, Kalra and 

Panwar, 1986, Somayaji and Khanna, 1994 have utilized crop residues like maize, grass, sugar stick, 

husk and straw, rice and wheat straw for creation of biogas. It used to be seen that biogas produced 

from maize, grass and sugarcane has high methane (>72%) and low H2S production (<100 ppm). It 

was further observed that the biogas producing with straw is 456% more noteworthy than that with the 

husk without anyone else and 167% additional than the mix of straw and husk. The husk has little gas 

potential. 

 

 
A few studies show the impact of one of a kind foods grown from the ground as feed texture on biogas 

creation at extraordinary HRT and saw that with these kinds of feedstock have a higher rate of gas 

production rate even at low retention time (Prema Viswanath et al., 1992, Bardiya et al., 1996, Kalia et 

al., 1992). 

Mähnert et al, 2005 investigated three fresh and ensiled grass species in lab-scale batch tests at 35°C 

and articulated the production of the right amount of biogas. Methane content in the biogas was found 

to be in the range of 50-58%. Table 2.1 presents the primary discoveries of a portion of the researcher 

on biogas yield with feedmaterials. 

 

 

Table 2.3 Literature on various feed material and their results 

 

Authors Feed Materials 

used 

Results 



33 
 

Busch et al., 

2009 

maize, grass, 

sugar cane 

The process was extraordinarily stable and no 

malfunction had been detected so far. The biogas got 

has high methane (72%) and low H2S concentration 

(100 ppm). 

Kalra et al., 

1986 

husk and straw The straw aloneproduced 45.6% greater fuel than the 

husk alone and 16.7% extra than the mixture. The 

husk has very small gasoline practicable. 

Mähnert et al., 

2005 

fresh and ensiled 

grass species 

Biogas was in the range of 0.65-0.86 m3/kg VS 

 

 

2.2.3 EFFECT OF CO-DIGESTION OF BIOMASS ON BIOGAS PRODUCTION 

 
Different analysts have worked on co-digestion of biomass with cow dung and with other kinds of feed 

substances (Li et al., 2009; Hills and Roberts, 1981). Jingqing et al., 2013 revealed that when kitchen 

waste: pig excrement: rice straw was in the extent of 0.4:1.6:1, biogas production was resolved to be 

the most astounding. Somayaji and Khanna, 1994 dealt with rice and wheat straw one by one blended 

with dairy cattle manure in an elite offer and saw that biogas production was highest when rice straw 

was 100% and wheat straw was once 40% with cows compost as substrate. Additionally Kalia and 

Kanwar, 1990 worked on blends of new and incompletely disintegrated ageratum and found that 

somewhat decayed ageratum and cattle dung in 3:2 proportions yielded about 9% more biogas than 

that of unadulterated cattle dung. It is found that when biomass is co-processed with various feed 

material in fitting rate biogas production can be broadened fundamentally. 

Table 2.3 exhibits a portion ofthe takes a shot at co-processing of biomass with various feed material in 

batch mode gain fromiliterature. 

 

 

 

 
 

Table 2.4 Literature on effect of co-digestion of biomass on biogas production 

 

Author Feed Materials used Results 
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Hills and 

Roberts,1981 

Fresh dairy manure and 

chopped field crop 

residues 

The methane generation per unit COD from 

new dairy fertilizer was upgraded by 

expansion of hacked field crop deposits, up 

to a point of confinement of non-lignin 

carbon to nitrogen proportion of 30:1. 

Li et al., 2010 Food   waste   with dairy 

manure 

The gas fabrication rate was enhanced by 

0.8-0.5 times as compared to the absorption 

with dairy fertilizer by yourself. 

Jingqing et 

al.,2013 

Rice straw with kitchen 

waste and pig manure 

When kitchen squander: pig dung: rice 

straw was 0.4:1.6:1, biogas production was 

the highest 

Somayaji and 

Khanna, 1994 

Rice and wheat straw in 

cattle dung 

Maximum gas production at 100% rice 

straw and 40% wheat straw substitution in 

cattle dung 

Kalia and 

Kanwar,1990 

Mixtures of fresh and 

partially-decomposed 

Ageratum 

New ageratum blended with cows manure 

in a proportion of 3:2 did not create anygas 

but rather comparable blends of somewhat 

decayed Ageratum and steers compost 

yielded about 9% more biogas than that of 

unadulterated steers excrement. 

 

 

2.2.4 EFFECT OF CARBON AND NITROGEN RATIO ON BIOGAS YIELD 

 
Carbon is the principal chemical matter in natural wastes digested through microorganism to produce 

methane and carbondioxide in the process(Konstantinis et al,2018). Microorganisms additionally 

require a sure amount of nitrogen in feed to function their characteristic (Mittal, 1996). The 

fermentative bacteria makes use of carbon 25 to 30 times as speedy as nitrogen, as a result 

necessitating the finest C:N of 25 to 30:1. Deviation from this ratio slows down the system 

(Nijaguna, 2002). An excessive C:N skill that the nitrogen will be exhausted earlier than carbon is 

digested and conversely, a low C:N ratio means to an awful lot nitrogen in relation to carbon, which 

consequences in high ammonium concentrations tending to end up toxic to anaerobic micro 

organism (Mittal, 1996). Therefore the most efficient mix of the input is vital to get the optimal C:N 

of 25:1 to30:1. Hilland Roberts (1981) mentioned the activity of digesters is most when the C:N 
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ratio 
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of the input feed was as soon as between 25:1 to 30:1. Table 2.4 indicates the C:N current in more 

than a few feed material. 

Table 2.5 C: N ratios in various organic wastes (Nijaguna, 2002) 

 
Animal Wastes C:N Plant wastes C:N Domestic waste 

 

and refuse 

C:N 

Cow-dung 25:1 Grass clipping 19:1 Raw garbage 25:1 

Sheep manure 20.1:1 Hay 18:1 Bread 20:1 

Horse 
 

manure/mule 

25:1 Corn stalks 60:1 Potato tops 25:1 

Pig manure 14.4:1 Cut straw 48:1 Kitchen 
 

vegetable scraps 

16:1 

Poultry 

manure/pigeo 

n 

waste 

5.2:1 Sea weeds 19:1 Rags 12:1 

Night soil 8:1 Peanut stalk and 
 

Leaves 

19:1 Household dirt 41:1 

Farmyard 
 

manure (average) 

14:1 Rice straw 67:1 Cabbage 12:1 

Human urine 0.8:1 Bean stalks 32:1 Tomato 128:1 

 

 
2.2.5 EFFECT OF LOADING RATE (LR) ON BIOGAS PRODUCTION 

 
The rate at which biomass is supplied to the digester is termed as loading rate (LR) and is expressed 

in of kg of volatilesolids per m³of digester potential every day. The formation of gas depends on LR. 

The span of the digester also thus depends upon the loading, which in turn depends upon dilution, 

retention time, and temperature of processing.The diverse loading rate can be obtained by means of 

both changing the concentration of the solids in the influent or by varying the flow of inlet slurry in a 

digester. As studied by Mohanrao, 1975 loading rate of biomass dependent on night soil should be 

1.04 to 2.23 kg VS per m³ of digester limit. He prescribed more loading rate for ambient 

temperatures. Cara et al., 2000 concentrated the impacts of adaptation of loading rate on biogas 
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generation and saw that a hundred kg of interchange day loading delivered higher biogas as opposed 

to 50 kg of consistently loading. They furthermore presumed that for exact size of the plant, the 

choicest expense of loading rate will create most fuel and past that change in loading rate will now 

not make greater the fuel productionproportionately 

2.2.6 ROLE OF pH ON BIOGASPRODUCTION 

 
pH is a very significant variable in anaerobic digestion. The pH value has a strong influence on the 

degradation process. It impacts the growth fee of acetogen and methanogen microorganisms. 

Ammonia inhibition phenomena rely on pH and increases with amplification in it (Campos and 

Flotats, 2003).pH is the proportion of sharpness or alkalinity of the reactor system. Amid anaerobic 

aging, microorganisms require a fair-minded or somewhat antacid surroundings for effective fuel 

generation. A pH somewhere in the range of 7 and 8.5 is an ideal range for extended fuel yield 

(Mittal, 1996). 

Fig. 2.6 suggests that when substrate concentration is much less than 20 mM/L, specific boom rate is 

the best possible with pH=6.0 followed by way of pH=6.5 and pH=7.0. With amplification in 

substrate concentration,the precise boom charge of microorganisms come to be greater with make 

bigger in pH from pH 6.0 to pH 7.0. 

 

 

 

Fig. 2.6 Maximum specific growth rate for different pH values (Andrews and Graef, 1971) 

 
2.2.7 EFFECT OF HYDRAULIC RETENTION TIME (HRT) ON BIOGAS PRODUCTION 

 
HRT is characterized as the fundamental time spent with the aid of the records slurry inner the 

digester before it leaves it. HRT shifts between 20-120 days relying on the outline and running 

circumstance of the digester (Koszel et al, 2015). HRT taken in tropical territories like India is 



38 
 

typically 40-50 days. HRT in bloodless climatic countries like the U.K., Canada, and China is taken to 

be one hundred days (Mittal, 1996). 

Linke, 2006 presented that gas production varies with HRT as per the following relationship 

 

P =
HRT.k 

HRT .k1 

 
Where 

 
p = y/ym= biogas yield concerning maximum yield 

y= gas production at anyHRT 

ym= maximum gasproduction 

 

k = the first- order kinetic constant 

 
Figure. 2.7 present the biogas production with HRT for different kinetic constants. Biogas yield 

increases with HRT for all the values of kinetic constant. Moreover, increase in kinetic constant 

increases biogas yield for a specific HRT 

 

 
Figure. 2.7 Present the biogas production with HRT for different kinetic constants 

 

 

2.2.8 EFFECT OF MECHANICAL STIRRING AND AGITATION ON BIOGAS YIELD 
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A mechanical stirrer helps the diffusion of the microorganism throughout the slurry, for this reason 

exposing them homogenously to the undigested material (Karim and Hoffmann, 2005). Further, it 

helps in mixing the clean organic material and nutrients with the slurry already retained in the digester. 

Stirring also helps in better temperature distribution enabling the microbial communities to thrive 

(Burton and Turner, 2003; Ward et al., 2008). Agitation helps in the launch of gas foam spellbound in 

the intermediate and prevents sludge of denser organic material on the bottom of the reactors nicely as 

stopping the formation of scum layers (Mahanta et al., 2005). Raheman et al., (2012) observed that 

mixing enhances the overall digestion charge through enhancing the mass switch fluxes. The stirring 

improves the particle suspension and will increase the solubility of the solid natural count number in 

suspension in the digestate (Pinho et al.,2004). 

2.2.9 EFFECT OFADDITIVES ON BIOGAS PRODUCTION 

 
Kumar et al., 1987 experimented to observe the effect of additive components on biogas 

manufacturing and showed that 5% of commercial charcoal addition to cattle dung on dry weight 

foundation improved the production of biogas by using capability of 17% and 35% in batch and non- 

stop processes, respectively. Geeta et al., (1986) studied the result of components on biogas 

production. They used vermiculite, charcoal, and lignin to bovine excreta as feed fabric and 

determined the expand in gasoline production by 15-30%. 

2.2.10 EFFECT OF TOXICITY ON BIOGASPRODUCTION 

 
A little volume of mineral particles (for example sodium, potassium, calcium, magnesium, 

ammonium, and sulfur) are expected to decrease the rate of growth and development of microbes, 

However, a similar mineral particles in overwhelming focuses produce harmful impact restraining the 

expansion of microorganisms. Some metals (for example copper, nickel, chromium, zinc, lead, and so 

forth.) in lower or micro concentrations increase the ordinary rate of growth and development of 

microorganisms (Youngsukkasem et al.,i2013). 

2.2.11 INFLUENCE OF TOTAL SOLID (TS) ONBIOGAS PRODUCTION 

 
Many researchers had stated that TS of the feedstock performs a necessary position in the production 

of biogas. Fresh cattle wastes consist of 20% TS and 80% water. TS again incorporates 70% unstable 

solids and 30% constant solids. Since, 8 to 10% TS in feed is required to yield the most desirable 

amount of gasoline via anaerobic digestion, new dairy cattle compost is diluted with water in 1:1 

proportion. Whenever required this proportion can contrast from 1:1.25 to 1:2 proportions [TERI, 

1987]. Smith, 
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2009 expressed that the presentation of digesters containing dairy compost and order crop deposits is the 

most when the TS of the slurry was 8% 
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2.2.12 BIOSLURRY ASMANURES 

 
Bioslurry can be used as fertilizer directly or added to the composting of other organic materials 

(Koszel et al,2015). Bioslurry is an already digested source of animal waste, and if urine (animal 

and/or human) is added, more nitrogen is added to the bioslurry, which can speed up the compost- 

making process. The bioslurry may contain 93% water and 7% of dry matter, of which 4.5% is 

organic matter and 2.5% is non-organic matter. Furthermore, bioslurry contains phosphorus, 

potassium, zinc, iron, manganese and copper, of which the latter has become a limiting factor in 

many soils. Bioslurry can be used to build healthy fertile soils for crop production. Indeed, bioslurry 

form and content stabilizes with double nitrogen content, which is different from Farmyard Manure 

(FYM). Furthermore, the quantity of the bioslurry is also higher than regular FYM. Bioslurry 

contains readily available plant nutrients and higher amounts of nutrients, micronutrients than FYM, 

and composted manure. The effects of bioslurry application are comparable to the effects of the 

application of chemical fertilizers. As such, bioslurry can be a serious alternative to chemical 

fertilisers (Warnars, 2013). The bioslurry can be applied: 

(1) as a foliar fertilizer, being sprayed onto the crops; 
 

(2) in liquid form(diluted) onto the rootsor; 
 

(3) in dry and composted form (combined with irrigation techniques so that crops have 

sufficient water). 

Bioslurry is an easily available form of compost compared to traditional compost. It is also 

attractive to mix with vegetative waste compost. Bio-slurry increases crop revenues by an average 

of 25% (Warnars, 2012). Seeds treated with bioslurry have given better germination rates (Gurung, 

1998). With regards to tillage, note that the immediate incorporation of pig bioslurry through 

tillage would increase the N value and favor greater N/P fertilizer value. From experience, it is 

generally suggested to apply the bioslurry at a rate of 10 to 20 tons/ha in irrigated areas and 5 

tons/ha in dry farming to have a significant increase in yields (Warnars, 2012). Bioslurry can be 

used for the following: 

(1) as a basal manure and as a foliar application or spray; 
 

(2) as a plagueirepellent; 
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(3) to increase soil fertility (cation exchange capacity), and improve the soil structure and 

water retaining capacity; 

(4) to prevent soilerosion; 
 

(5) to treat seeds for higher germination, disease resistance, better yields, improved coloration 

of fruits and vegetables, and tenderness and taste ofleafy vegetables; 

(6) to increase the feed value of fodder with low proteincontent; 
 

(7) for concentrated feed for cattle, pig, and fish and the productionofearthworms and algae; 

 
(8) for the production of vitamin B12 and amino acids for animal growth. Also, it contains 

enzymes which stimulate hunger for more food intake and better nourishment of animals; 

(9) as a means to increase the quality and quantity of organic fertilizer production at the farm 

levels; 

(10) as manure for pot grown flowers andvegetables; 
 

(11) to increase the availability of nutrients for soil micro-flora like nitrogen- fixing and 

phosphor solubilizingorganisms; 

(12) to reduce and recycle the use of phosphate, a non-renewable source which is being 

depleted globally; 

(13) to reduce wastewater, water pollution, greenhouse gas emissions and noxious odor; 

(14) to reduce weed growth and to reduce attractiveness to insects or flies; 
 

(15) bioslurry reduces the number of pathogens through sanitation and as such, it is almost 

pathogen free. 

 

 

 

 

 

 

 

2.3 SUMMARY 

 
Different methods such as physical, thermal, chemical, and biological were studied. Alkaline and 

biological treatment has shown more impact on delignification . It has been shown that most of the 
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experiments were carried out on cattle dung whereas there are plenty of lignocellulosic bio-wastes 

with high cellulose content material. A very few studies have been done on biogas production from 

lignocellulosic biomasses. These studies are preliminary in nature and development. Based on 

literature it is found that wheat straw, rice husk and sugarcane bagasse show good potential for 

biomethantion as per their characteristic studies. Anaerobic digestion can be a useful process for the 

conversion of lignocellulose to biogas and manure .The parameters affecting biogas yield were 

studied . 



44 
 

CHAPTER - 3 

CHARACTERIZATION OF BIOMASS 

3.0 INTRODUCTION 

 
Lignocellulosic biomass is recognized to be important feed material for the production of biogas. They 

are available in plenty throughout the world. Cellulose, hemicellulose, and lignin are the three most 

important elements of lignocellulosic biomass(Raven et al., 1992), crystallinity being due to the 

presence of cellulose. Hemicellulose is located between the micro-and macro fibrils of cellulose.. Fig. 

3.1 shows the fiber content material present in theibiomass. 

 

 
Fig. 3.1 Fiber constituents in biomass [Faulon and Carlson, 1994] 

 
Lignin is responsible for the structure of the matrix in which cellulose & hemicellulose is present 

(Faulon and Carlson, 1994). Approximately 44% of the fermentable materials are shielded by lignin 

(Robbins et al., 1979). Due to poor degradation of lignin in anaerobic conditions, the velocity and 

degree of digestion of lignocellulosic material become incomplete (Fan et al., 1988). The 

lignocellulose is used for the generation of biogas, If lignocellulose is exposed in open environment, 

its breakdown will cause pollution and also have an effect on health. Proper identification and 

characterization of the specific biomass is essential to estimate the biogas production. Hence, 

identification and characterization of biomass plays a very important role to determine the biogas 

production potential. In the present study, a total of five biomass available in the Dehradun district of 

Uttarakhand,India, are collected and characterized. Based on the characterization and supporting 

literature, three different biomasses are identified from the group, for subsequent study. 
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3.1 SAMPLE PREPARATION 

 

The agro residues (Rice husk, Wheat Straw, Sugarcane Bagasse) were collected from the Dehradun 

Region of India and the samples were washed. For proximate analysis sugarcane bagasse, rice husk, 

wheat straw, were chopped. All the samples of the biomasses were dried in a hot air oven for 24 hours 

and ground by ball milling and passing through the sieve and used for estimation of COD and 

calorific value 

3.2 CHARACTERIZATION OF BIOMASSFEEDSTOCK 

 
Three different biomasses used for characterization were (1) rice husk (2) sugarcane bagasse (3) 

Wheat Straw. These biomasses were identified based on the supporting data from the literature as well 

as their abundance in and around the Dehradun city (Uttarakhand) India. The characterization of the 

above mentioned lignocellulosic biomass was carried out by performing proximate as well as ultimate 

analysis. Determination of chemical oxygen demand,the calorific value of the biomass was also 

performed on the biomass to check their potentiality for biogas production. Limited scientific 

literature is available on this lignocellulosic biomass. The present work of biogas production from 

agro wastes was consolidated by studying the following parameters during an experiment in 

feedstock and fresh cattle dung(used as inoculum). 

1. Moisture content 

 
2. Volatile Mattercontent 

 
3. Ashcontent 

 
4. Total Solidcontent 

 
5. Lignin 

 
6. Cellulose 

 
7. Hemicellulose 

 
8. pH 

 
9. Elementalanalysis 

 
10. Chemical OxygenDemand 
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The details of the method are given below: 

 
3.2.1 PROXIMATE ANALYSIS 

 
Moisture content , Volatile matter content and, ash content were determined by proximate analysis. 

 

3.2.1.1 MOISTURE CONTENT 

 
For determination of moisture content, 2gmof biomass samples was taken in a porcelain crucible, using 

an electronic balance.It was then dried in an oven at 105±3°Cfor 3 hours and cooled in desiccators to 

room temperature.The final weight of the dried sample was noted after cooling to room temperature. 

The moisture content of biomass is characterized because the amount of water per unit mass of dry 

biomass affects its heating value. High moisture indicates low heating value since heat is necessary to 

evaporate the moisture. The % of the moisture content present in samples was calculated by using the 

following formula: 

%M =W2-W3 /W2-WW1 ×100 ................................................................................3.1 

Where: %M= moisture content (in percentage) 

W1 = weight of the empty crucible 

W2 = weight of the crucible and sample 

 
W3 = Finalweight ofthe crucible and sample(after heating in ovenand cooling) 

The details ofexperiment are given in Appendix -1 

3.2.1.2 VOLATILE MATTERCONTENT 

 
The determination of Volatile substance content was done by methods E872-82(REF). 

Approximately 1 g of the oven- dried sample was used for the volatile matter determination. 

This sample was heated at 950±20°C and allowed to ignite in a muffle furnace for seven minutes 

in pre-weighed porcelain crucible with lid. The sample was cooled at room temperature using 

desiccator. The final weight was recorded. 

Volatile matter %= W2-W4/ W2-W1×100 .................................................. (3.2) 

 
Here 

 
W1 = weight of the empty crucible 

W2 = weight of the crucible and sample 
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W3 = final weight of the crucible and sample(after heating in oven and cooling) 

 
W4 = weight of crucible and sample(after heating in muffle furnace at 975°C & cooling) 

The details of experiment are given in Appendix -1 

3.2.1.3 ASH CONTENT 

 
This sample was heated in a muffle furnace at 575±25°C, for 3 hours in a pre-weighed porcelain 

crucible. After this, the sample was cooled to room temperature in desiccator. The crucible was finally 

weighed after cooling to roomtemperature by using the equation 3.3 givenbelow: 

Percentage ofashcontent(%ash) = (W5 - W1) × 100 ............................................................ (3.3) 
( W2 - W1) 

 
Here: 

 
W1 = weight of the empty crucible 

W2 = weight of the crucible and sample 

W5 = final weight of crucible and sample(after heating in muffle furnace at 575°C & cooling) 

The details of the experiment are given in Appendix -1 

3.2.1.4 FIXED CARBONCONTENT 

 
The fixed carbon in the sample is a measure of its combustible part responsible for energy production . 

The fixed carbon content in the sample was determined by equation(3.4) : 

Percentages of Fixed carbon= 100 – (Moisture content + ashpercentage + Percentages of 

volatile matter) ................................................................................ (3.4) 

The details of the experiment are given in Appendix -1 

 

 
3.2.1.5 TOTAL SOLID (TS)CONTENT 

 
Total solid content was determined by ASTM E1756-08(Hamelinck et al., 2005) method. 2 grams of 

biomass sample was weighed in a porcelain crucible using and dried in a hot air oven that is drying 

oven at 105±3°C for 3 hours. After cooling the final weight was noted. The total solid content present 

in sample biomass was calculated by using the equation given below: eq 3.5. 

Where 



48 
 

Equation  

Total solid = (mf1 - mt)× 100....................................................... (3.5) 

(mi1 - mt) 
 

%T = mass percent of TS based on 105°C dry mass 

mt= tare mass of dried container 

mi1 = initial mass of container and biomass 

mf1 = final mass of container and biomass after drying at 105 

The details of the experiment are given in Appendix -1 

3.2.1.6 ULTIMATE ANALYSIS 

 
This ultimate analysis determines the weight percentage of basic elements present in biomass 

including C, H, N, O, and S.These analyses were done to determine the elemental composition of 

biomass using the CHNS Analyzer. 

3.2.1.7 CALORIFIC VALUE OF FEEDMATERIALS 

 
The calorific value of samples is the quantity of heat liberated on burning its unit mass completely in 

thepresence of oxygen. It is expressed in MJ/kg,or MJ/g or another appropriate unit similarly. It was 

determined using isothermal bomb calorimeter. The bimass sample was placed in a enclosed vessel 

and burnt at a constant volume in the presence of excess oxygen by igniting electrically.The water 

equivalent of the bomb calorimeter was determined by burning the known amount of benzoic acid in a 

calorimeter and the amount of heat liberated by the combustion process by a known amount of water. 

After that the calorific value were determined by using the equation: Eq. (3.6) 

C = 
Wc× ΔT ......................................................... (3.6) 

Ms 

where 
 

Cv = Heat of burning of the biomass sample, MJ/kg (3.6) 

Wc= equivalent of water the bomb Calorimeter, MJ/°C 

Wc =10.74×10
-3 

MJ/°C 

=2568.293 cal/°C 

 
ΔT = Rise in temperature, °C 
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Ms = Mass of the biomass sample burnt, kg 

The details of experiment are given in Appendix -1 

3.2.1.8 FIBRE ANALYSES OFBIOMASS 

 
The fiber content of lignocellulosic biomass like hemicellulose, lignin and cellulose were analysed by 

determining NDF (neutral detergent fibre), ADF (acid detergent fiber) and ADL (acid detergent 

lignin). This analysis was done by using the reflux condenser apparatus (Goering, et al. 1970). Neutral 

detergent was used for the determination of the total lignocellulosic material, whereas acid detergent 

fibre was used for the separating fiber and lignin. On the other hand hemicellulose was calculated as 

different percentages of neutral detergent fiber and acid detergent fiber. The content of the cellulose 

was determined by the percentage difference between neutral detergent fiber & acid detergent lignin. 

3.3 PROXIMATE ANALYSIS 

 
The biogas production was carried out using three different lignocellulosic materials that is sugarcane 

bagasse, wheat straw, and rice husk. Characterization of fresh cattle dung was also carried out. Fresh 

material of the samples was used present in triplicates and analyzed for the volatile matter content, 

moisture content, ash, and total solid. These parameters are the main indicator of potentiality for biogas 

production. The physiochemical properties of the feed material obtained from the analysis have been 

discussed in the comingsection. 

Fig. 3.2 showsthe results ofthis moisture content in different biomass. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.2 Moisture content of biomass 
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It was observed that for rice husk and wheat straw, sugarcane bagasse, moisture content ranged from 

10-14%. For fresh cattle dung, moisture percentage varied from 65–82%. 

 

 
 

 

Fig. 3.3 Volatile matter content of biomass 

 
Fig. 3.3 shows the volatile matter content in the lignocellulosic biomasses. It was observed that 

volatile matter contents of the biomasses were quite good and ranged from 63-83% which is in 

agreement with early literature (Miskam et al., 2009). High volatile matter content indicates good 

potential for biogas production. The importance of the VM (Volatile matter) and carbon lies in the 

fact that they are responsible for how easily the biomass can be dissolved.The ash content of biomass 

is the non-volatile inorganic matter which remains after subjecting it to a high decomposition 

temperature 500°C-550°C. Lower the ash content better is the biomass fuel production. It is observed 

from the data in Fig. 3.4 that rice husk has got very high ash content (14.10%), followed by wheat 

straw (5.46%). Elephant grass and banana leaves (dry as well as green) contain ash content 

approximately 13-14%. Sugarcane bagasse contains less than 5% ash content. Ash content of 

sundried cattle dung is found to be 12%.The ash content of biomass is shown in fig 3.4 
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Fig. 3.4 Ash content of biomass 

 
The fixed carbon content of biomass is shown in Fig. 3.5. It is observed that the fixed carbon content 

of rice husk, sugarcane bagasse, wheat straw, fall in the range of 10-15%, whereas in case of cattle 

dung, fixed carbon varies ranges from 19-26%. High fixed carbon indicates good potential for biogas 

production. 

 

 

 

 
Fig. 3.5 Fixed carbon content of biomass 
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Fig. 3.6 Total solid content of biomass 

 
Total solid(TS) is an important parameter for biogas production. Roberts, & Hills,1981 studied that in 

the case of cattle dung,the best biogas yield was obtained when the total solid is 8%. Budiyono et al., 

2010 evaluated that TS content in cattle dung is 7.4 and 9.2% give the best result for digestibility. TS 

mainly consist of organic and inorganic matter present in biogas. Fig. 3.6 shows the TS content of the 

biomasses. From the analysis, it was found that TS of rice husk, sugarcane bagasse, wheat straw, 

ranges from 85-90%. 

Table 3.1 shows the evaluation of proximate analysis data that mentioned the material and literature 

data. It is observed that the data obtained from the proximate analysis of the feed material in this work is 

approximately similar to the most ofthe available review/literature. 
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Table 3.1 Comparison of results of proximate analysis of the feed material and literature 
 
 

 

Biomass 

type 

Present work  

(MJ/kg) 

Literature data 
(MJ/k 

g) 

 

Literature  

FC 

 

ASH 

 

VM 

 

FC 

 

ASH 

 

VM 

 

M 

Cattle 

Dung 
21.45 
±0.40 

12.3 
5±0.21 

66.2± 

0.43 

14.676 
±0.01 

19.3 19.3 46.4 15 11.4 
Roy et al., 

2010 

 
 

Sugar. 

Bagasse 

 
 

12.10 
±0.15 

 
 

3.60± 

0.10 

 
 

82.17 
±0.02 

 
 

18.26± 

0.24 

12.4 2.1 85.5 -- -- 
(Jiang et al 

2018) 

15.8 2.9 84.2 -- -- 
(Jiang et al 
2018) 

13.1 
5 

3.2 83.6 
6 

  Yin C.Y., 
2011 

 

 

Rice 

Husk 

 

 

 
14.13 
±0.30 

 

 

 
14.10 
±30 

 

 

 
68.96 
±0.36 

 

 

 
14.01±0. 

01 

19.2 18 62.8 -- -- 
Miles et 
al., 1995 

13.1 0.8 73.8 12.3 13.3 
6 

Vijay et 

al., 2009 

18.4 23.5 81.6 -- -- 
(Rudakiya 
et al, 2017) 

 

16.9 
5 

 

21.24 

 

61.8 
1 

  Channiwala 

and Parikh, 

2002 

 
 

Wheat 
Straw 

 

 

12.03 
±0.25 

 

 

5.46± 

0.24 

 

 

63.15 
±0.27 

 

 

12.73± 

0.31 

15.6 20.1 64.3 -- -- 
Miles et 
al., 1995 

16.5 
5 

12.64 65.2 
3 

5.58 14.4 
0 

Li et al., 

2009 

 

13.9 
1 

 

20.38 

 

65.7 

  Channiwala 

and Parikh, 

2002 

3.4 ULTIMATE ANALYSIS(UA) 

 
The UA of biomass was done for studying the chemical composition of the biomass. Table 3.2 shows 

the comparison of the ultimate analysis of the lignocellulosic biomass obtained from the present work 

and the literature. The data analysis was done by ASTM and elements analysis (CHNSO) was determined 

by a Flash 2000. 
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Table 3.2 Comparison of results of ultimate analysis of the feed material and literature 
 
 

Substrate Present study Literature value 

Feed 

Materia 

l 

 

C (%) 
 

N (%) 
 

O (%) 
 

Si (%) 
 

C (% 
 

H (% 
 

N (% 
 

O (% 
Literature 

 

Cattle Dung 

 
32.5 
±0.20 

 
1.7± 

0.10 

 
50.42 
±0.17 

 
0.01± 

0.005 

33.33 -- 1.68 -- 
Raheman and Mondal, 2012 

31.6 5.18 6.12 37.8 
Roy et al., 2010 

 

S. Bagasse 

 
47.39 
±0.16 

 
0.63 
±0.14 

 
44.78 
±0.05 

 
-- 

43.8 5.8 0.4 47.1 
Kirubakara n et al., 2009 

49.8 6.0 0.2 43.9 
Miles et al., 1995 

 

Rice Husk 

 
42.19 
±0.23 

 
0.455 
±0.11 

 
38.75 
±0. 18 

 
-- 

38.9 5.1 0.6 32.0 
Kirubakara n et al., 2009 

49.3 6.1 0.8 43.7 
Veluchamy et al,2017). 

 

Wheat Straw 

 

40.17 
±0.26 

 

0.984 
±0.00 
6 

 

34.58 
±0.36 

 
-- 

36.9 5.0 0.4 37.9 
Kirubakara n et al., 2009 

50.1 5.7 1.0 43 
Miles et al., 1995 

3.4.1 CALORIFIC VALUE OFBIOMASS 

 
The data (Fig. 3.7) shows that the calorific values of the lignocellulosic biomass are quite 

good, which ranges from 12 to 19 MJ/kg. It is the highest in the case of sugarcane bagasse 

(18.26 MJ/kg) followed by rice husk (14.01 MJ/kg), wheat straw (12.73 MJ/kg).Calorific 

value of cow dung 14.676 MJ/kg.( (Dhungana et al., 2012) 

 

 

Fig. 3.7 Calorific value of biomass 
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3.4.2 FIBRE ANALYSIS 

 
Figure 3.8-3.11 elaborate on the outcomes of fiber evaluation cellulose content (%),hemicellulose 

content (%),Lignin content (%) and lignin to cellulose ratio. 

 

 

 

Fig. 3.8 Cellulose content (%) of biomass 

 
Figure 3.8 shows the cellulose content of the above- mentioned biomass. Higher cellulose content 

indicates good potential for biomethanation (Veluchamy et al, 2017). Sugarcane bagasse has the 

highest cellulose content (41.5%) followed by wheat straw (35%)and Rice husk (32%)cellulose 

content .Fig.3.9 shows the hemicellulose content of lignocellulosic biomass. It is seen that all of the 

biomass has got a high value of hemicellulose content. 

 

 
 

 
 

Fig. 3.9 Hemicellulose content (%) of biomass 

 
Sugarcane bagasse has hemicellulose content in the range of 24.5%. Rice husk and wheat straw 

present 23.2%, 27% hemicellulose content respectively. Fig. 3.10 shows the lignin content (%) of the 
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above- mentioned biomass. It indicates that the superior the lignin content lower is the digestibility of 

the biomass in anaerobic conditions. It binds the cellulose and hemicellulose content in an intense 

cross- link. Therefore it is required to break the lignin before using the biomass for fermentation or 

biomethanation. 

 

 
 

 
 

Fig. 3.10 Lignin content (%) of biomass 

 
Rice husk is having a considerable amount of lignin (18%). whereas for sugarcane bagasse lignin 

content is 20% and for wheat straw is 17%(Fig 3.10) . Cattle dung has got very little lignin content in 

the range of 3-8%. Lignocellulosic biomass gives a unique and sustainable beneficial aid for 

environmentally invulnerable natural fuels and chemicals. However, the digestibility of 

lignocellulosic biomass is low owing to structural elements such as lignin content, crystallinity etc. In 

case of lignocellulosic biomass the lignin to cellulose ratio is typically used to outline the degree of 

digestibility of the biomasses(Sharma, 1988). 

From the Fig. 3.11 it is clear that lignin to cellulose ratio is the highest in the case of rice husk (0.562) 

followed by wheat straw (0.491), sugarcane bagasse (0.481) respectively. The estimate for the 

characterization of biomass is given in Appendix I. 
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Fig. 3.11 Lignin to cellulose ratio (%) of biomass 

 
3.5 SELECTION OF LIGNOCELLULOSIC BIOMASS FOR PRESENT STUDY 

 
Based on the results of characterization, feed materials were selected for carrying out the 

biomethanation process. The selection criteria were based on the fact that the chosen feed material 

should have good volatile substance and carbon content, high calorific value, less ash content, and an 

acceptable percentage of cellulose content. The three feed materials selected for carrying out 

biomethanation were sugarcane bagasse, rice straw and rice husk. All of them have more than 60% 

volatile matter content, more than 10% fixed carbon content, more than 14 MJ/kg calorific value and 

good cellulose content which makes them good potential for biogas production. Ash content of 

sugarcane bagasse are less than 5%, whereas rice husk and wheat straw and, rice husk have 

approximately 15% and 20% ash content. Since the lignin content of this biomass is high, 

pretreatment of these biomasses was carried out using physical, chemical, and biological which 

eventually helps in increasing their digestibility. 

3.6 SUMMARY 

 
Analysis of the lignocellulosic biomass was carried out by performing proximate analysis, ultimate 

analysis, determining the calorific value, and estimating the fiber composition of the biomass. It is 

observed from the results that lignocellulosic biomass have a very high amount of volatile substance 

content, carbon content, and high calorific value which make them a potential sources of renewable 
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energy. Furthermost of the biomass have a very high amount of lignin content too that resist the 

decomposition of cellulose content of the biomass. As a result, the fermentation of lignocellulosic 

biomass takes a long period as compared to other non-lignocellulosic biomass. To avoid the delay in 

the hydrolysis process of fermentation, the pretreatment of biomass is done. Pretreatment of biomass 

breaks the lignin of the biomass beforehand thus exposing the cellulose of the biomass which makes it 

easier for the bacteria to decompose the biomass effectively thus avoiding delay in the hydrolysis 

process. Subsequently, chapter 4 presents the pretreatment of biomass and anaerobic digestion for the 

production ofbiogas. 
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CHAPTER - 4 

RESEARCH METHODOLOGY 

 

4.0 INTRODUCTION 

 
The bioconversion of lignocellulose based agricultural waste includes three significant stages that at 

last lead to the creation of biofuel. The stages incorporate 

1. Pretreatment 

 
2. Hydrolysis of cellulose to fermentable sugars 

3.Anaerobic digestionofsugars to yield the purified biogas 

Pretreatment is required to experience perfection of hydrolysis of lignocellulose biomass to discharge 

high  concentration fermentable sugars (Veluchamy et al, 2017). Real sorts of 

pretreatment incorporate physical, chemical, physicochemical and enzymatic procedures and after 

pretreatment, the cellulose is broken down to glucose by microbial hydrolysis, which is digested to 

yield biogas with the help ofmicroorganisms. 

Methane production from organic waste is always a better way of utilizing biomass as compared to 

produce ethanol worldwide(Chandra 2012). In terms of yield/input proportion, it is an effective 

process as all components (carbohydrates, Protein) of biomass can be converted to biogas as compare 

to bioethanol production in which only sugar unit breakdowns to ethanol by a microorganism 

(Gerardi, 2003). In this process, most of the biomass substances (starches, fats, and proteins) in 

anaerobic assimilation are changed into products, which then changes to biogas (CH4, CO2) with the 

assistance of various sortsofanaerobic smaller scale life forms (Mtui, 2009). 

Horticulture isn't just significant from the financial perspective. Even farming waste, for example, 

wheat straw, rice straw, can assume a significant job. Specifically, lignocellulosic biomass harvests 

waste has immense unutilized energy generation potential. A gauge demonstrates that the worldwide 

yearly generation of wheat straw biomass remained at 681.92 million heaps from 225.437 million 

hectares of all-out developed areas in 12 months 2009 (Duke, 1983). A large amount of this wheat 

straw has been used as animal feed, some of the above stay unutilized or is singed in open condition, 

which is an unsustainable and non-recommendable practice. The grasp elicitation has confirmed that 

cellulosic biofuel innovation is very needful and considerable for the biofuel’s advent to succeed over 

the long haul reasonably. Further, it has been discovered that biogas-to-power is among innovations 

having expanding creation potential on criteria-based assessment of low carbon control 
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advances. Consequently, biogas can contribute to carbon impartial power. Kaparaju (2010) suggested 

that the use of wheat straw for biogas creation or multi-fuel generation is the most effectiveprocedure 

when compared to the generation of mono fuel, for example, bio-ethanol. Hence, numerous biofuels 

generation from wheat straw can increment the effectiveness in material and vitality and can be a 

progressively affordable procedure for biomassiuse. 

Contemporary mechanical advancement and fast pace of urbanization have created a need for different 

renewable sources of energy which can be A sustainable root to meet the energy demand of the world. 

Biogas produced from biomass is an important ecological financial enhancer advantage and can be 

considered as a safe and cleanest gaseous fuel option in contrast to non-renewable energy sources. 

Noteworthy, advances have been made at lab scale towards the biogas formation from cellulosic 

biomass. Many hurdles make the vaporous fuel program fruitless. At industrial scale the (enzymatic) 

hydrolysis of lignocellulose is restricted by a few elements. The lignin shapes a defensive covering, 

which shields cellulose and hemicelluloses from degradation by microscopic organisms. To utilize 

biomass effectively, pretreatment is required for depolymerization of lignin before the conversion of 

cellulose, and hemicellulose into simple sugars. Pretreatment advances based on various physical, 

chemical and biological techniques have been designed, which modify the structure of lignocelluloses 

and expel lignin. Pre-treatment will in general upgrade the biodegradability of most substrates and in 

this way increment the quality and amount of biogas which can be utilized for developing energy 

need. The uncovered complex starches, for example, cellulose and hemicelluloses are then hydrolyzed 

to fermentable sugars. A successful pretreatment procedure must have the following preferences: 

• It should protect and decrystallize the celluloses. 

• It should depolymerize hemicelluloses. 

• It should limit the formation of inhibitors whichoppose the hydrolysis ofstarches. 

• It should have low energyinput. 

• It should be cost- effective. 

 
Many physical, chemical and microbial pretreatment techniques have been accounted for improving 

bioconversion of lignocellulosic materials (Sun S. et al., 2016). The lower hydrolysis rates during the 

traditional AD process results in higher hydraulic retention time (HRT) in the digester and bigger 

digester volume, comprise the prime downsides of the customary AD (Sakuragi; et al. (2018). 

Pretreatment of biomass upgrades the AD, with lower retention time and with causing higher biogas 

creation (Oladi; et al. 2017) 
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Acid pretreatment of biomass requires its minimum amount, but the process is operated at very high 

temperatures, requires high energy input (Liu and Wyman, 2003; Hendriks and Zeeman, 2009). The 

presence of acids at high temperatures can be destructive, and hence, the procedure requires explicit 

response vessel which have to be impervious to these conditions. Corrosive treatment creates 

inhibitors that must be expelled and thus downstream handling expenses are high. 

The alkaline pretreatment includes the use of calcium, sodium, and potassium hydroxides giving 

higher yields of diminishing sugars with biomass having low lignin content (Singhania et al., 

2006).Although lime and different hydroxides are economical, downstream processing expenses are 

high. The immense use of water for washing salts of calcium and sodium, which are joined into the 

biomass are hard to expel. Likewise, the procedure additionally creates inhibitors during the 

depolymerization of lignin which must be expelled before the hydrolysis step. 

The advancements in different pretreatment methods viz thermal, chemical, mechanical, biological & 

and their combination efficiently enhance the biodegradability of biomass. Broad research has been 

conveyed all through the world to set up the best monetarily feasible pretreatment innovation to 

upgrade the absorbability of biomass (Nair et al., 2015). 

4.1 MATERIAL & METHODOLOGY 

 
4.1.1 GLASSWARE 

 
Glassware used in the experimental work included shown below: 

Sr. No. Glassware 

1. Conical Flask 

 
2. 2 LBeaker 

 
3. Spatula 

 
4. Test tube 

 
5. Crucible 

 
 

4.1.2 EQUIPMENT 

 
The equipment used in the experiment is given below in table 4.1. 
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Table 4.1 Inventory of Equipment 
 
 

Sr. No.  
Equipment Name 

 

 
Make 

 

 
Specification 

 

1. 

 

Weighing Balance 

Shimadzu analytical balance  

 
0.0.1 gm to 200gm 

 

2. 

 

Muffle Furnace 

 

 
Bionics 

Room temp to 1200 

 
3. 

 
Hot air oven 

 

 
Bionics 

Room temp to 300 

4. UV-Visible Spectrophotometer Shimadzu 200nm to 700nm 

5. CHNS Analyzer Nucon Heavy metal 

6 Gas Analyser Thermo Porapac Q 

 
4.1.3 CHEMICALS AND STANDARDSOLUTION: 

 

The chemical used during different pretreatment method are as follow in table 4.2. 
 

Table 4.2 List of Chemical: 

 
Chemical Manufacture Country 

Hydrochloric acid and 

Sulphuric acid 
Himedia 

 

India 

Sodium Hydroxide Oxford lab. Chem. 

Urea  
Sigma 

 
USA 

Calcium Hydroxide 

Lignin Sigma USA 
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Standard solution: 

 
Standard lignin tests of 1 and 10 ppm were set up by dissolving the required amount of pure lignin 

(Rankem) in a suitable volume of distilled water. 

 
4.1.4 INOCULUM 

 
The inoculum stands for microbial culture used for biomethanation. The inoculum used in this 

research was taken from the mesophilic anaerobic digester plant situated at the University of 

Petroleum and Energy Studies, Dehradun, Uttrakhand. The pretreated biomass mixed with cow dung 

as inoculum for anaerobic digestion in ratio biomass to cow dung(1:2) The inoculum was kept in an oven 

at 35°C (mesophilic temperature) in different storage containers. The inoculum that was used after a 

few days is defined in this studyas fresh inoculum. 

4.1.5 BIOMASS (RICEHUSK, SUGARCANE BAGASSE, WHEAT STRAW) 

 
Sugarcane bagasse Rice Husk, Wheat Straw as waste was gathered from nearby market of Dehradun, 

Uttarakhand. This was then mechanically broken down using physical treatment methods and 

separated using sieve shaker to get particles with size across under 0.35 mm. or equivalent to 1 mm 

was gathered for further use. The molecule size of 1 to 2 mm has been prescribed for the hydrolysis of 

lignocellulosic biomass. The samples were packed in sealed packets kept at room temperature. 

4.1.6 DESIGNING LAB SCALE REACTOR FORBIO-PROCESSING 

 
A 10L-Batch bioreactor furnished with pH probe, stirrer, sampling port, and temperature controller was 

designed in the present study. The working volume of the bioreactor was 8L. The fermenters were 

mounted on stage shakers at 140 rpm. The fermenters were maintained at stable temperature (set at 

30ºC), and temperatures were kept up utilizing warming tapes folded over the fermenters. Biogas 

creation was gathered in gas - impermeable Tedlar packs. Biogas volume was estimated by the 

solution displacement method . 

I. The setup for the gathering the gas over water consisted of a digestor where the anaerobic 

digestion(where anaerobic digestion takes place) takes place and a gas accumulation 

compartment loaded up with water and a calibrated volumetric cylindrical tube. The gas 

produced was gathered by connecting one end of a hose to the response holder .The quantity of 

gas formed was measured withrespect to water displaced. 
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Fig. 4.1 REACTOR DESIGN 

 
4.2 EXPERIMENTAL PROCEDURE &METHODOLOGY 

 
The experimental sequence comprised of three phases: 

 
• The first phase focused onthe pre-treatment of lignocellulose biomass (WS, RH, SB). 

 
• The second phase included batch anaerobic digestion tests carried out according to the 

Biomethane potential protocol (Tomas-Pejoet r4 al., r4 2008) . 

1. Anaerobic digestion of untreated biomass (WS, RH, SB) with cow dung as a source of 

microbial inoculum. 

2. Anaerobic digestion ofpretreated biomass (WS, RH, SB) with cow dung. 

 
3. Optimization of treated biomass for various parameter affecting biogas production 

 
• The third phase involved the analysis ofslurry as manure. 

 
4.2.1 BIOGAS PRODUCTION POTENTIAL OF BIOMASS (WS, RH, SB) 

 
Biochemical methane potential (BMP) test is broadly used as a test for assessing the production of 

biogas creation from a given substrate by the use of anaerobic digestion. The BMP test is typically 

operated for 20 to 30 days or until biogas production turns into steady at a low rate.The BMP test was 
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used out to resolve the methane potential of Biomass (WS, RH, and SB). Reactors of 1000 ml 

capacities and Duran bottles were used. All reactors preposition with nitrogen gas for 3 minutes, and 

then sealed with rubber stoppers and kept in a shaker incubator. All BMP assay has been conducted in 

the replica at 37˚C for 30 days. The substrates to the inoculum had been mixed at 1:2 on a VS basis. 

Each bottle had a working quantity of 500 mL. The biogas extent produced from each digester was 

once measured once daily. Furthermore, some reactors acquired only cow dung as a control. 

• In the first phase of experimental set-up I was carried out using biomass (WS, RH, SB),in 

which proximate and ultimate analysis was done to assess the impact onthe biogas yield. 

• The second phase of alkali acid and thermal pre-treatment of biomass samples (Experimental 

set-up II) was carried out using different percentages of NaOH solutions (w/w) and sulphuric 

acid at a temperature of 121°C and time of30 to 180 minutes. 

• The third phase was employed to optimize pre-treatment condition for NaOH concentration 

(1–3.0%), temperature (121°C) and reaction time (60−180 minutes), Sulphuric acid 

concentration (1%, 30%, 40%, 60%, 72%), temperature (121°C ), and reaction time (60−180 

minutes); thermal pretreatment also carried under period. All pre- treatment conditions are 

reported in Table4.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 4.3 Pretreatment variables for Biomass 
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Biological 

Chemicalpretreatment pretreatment 
 

 
   Acid     Alkali    

  
1% 

 
30% 

 
40% 

 
60% 

 
72% 

  
1% 

 
2% 

 
3% 

Neutral 

Mediu 

m 

 
Fungi 

Variabl 

e 

 
30 

 
30 

 
30 

 
30 

 
30 

  
30 

 
30 

 
30 

 
30 

P. 

chrysosporiu 

minute minute minute minute minute  minute minute minute minute m 

 60 60 60 60 60  60 60 60 60  

minute minute minute minute minute  minute minute minute minute A. niger 

 120 120 120 120 120  120 120 120 120  

minute minute minute minute minute  minute minute minute minute A. flavus 

 180 180 180 180 180  180 180 180 180  

minuet minute minute minute minute  minute minute minute minute C. contiment 

          H. solani 
 

 
 

 

 

 

 

 

4.2.2 PRETREATMENT OFBIOMASS 

 
Pretreatment of lignocellulose biomass was done by: 

 
➢ Physico-chemical method 

 
➢ Chemical method 

 
➢ Biological Method 

 

 

 
4.2.3 BIO-DIGESTION OF PRETREATEDBIOMASS 
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Experiments was carried out with digestion of treated wheat straw, rice husk with sugarcane bagasse at 

mesophilic temperature of 35-40oC and mixing was aided by a mechanical stirrer. Quality & quantity 

of biogas produced was studied at different reactor operational conditions (Temp; pH; solid to liquid 

ratio,C:N ratio) Quantitative and qualitative analysis of biogas produced was done by water 

displacement method and GCrespectively. 

4.2.4 ANALYSIS OFMANURE 

 
The slurrycollected from the bioreactor was recycled back to the reactor and leftover slurrywas 

examined for its N: P: Kiratio. 

4.2.5 PRETREATMENT OFBIOMASS 

 
4.2.5.1 PREPARATION OF STANDARD LIGNINSOLUTION 

 
Standard lignin tests of 1 and 10 ppm were set up by a dissolving small amount of lignin (Rankem) in a 

suitable volume of distilled water. 

4.2.5.2 PHYSICAL PRE-TREATMENT 

 
All the straw samples were grounded to acquire a 1 mm and stored at room temperature. This sample 

was characterized as untreated biomass. 

4.2.5.3 ACID TREATMENT OFBIOMASS 

 
Pretreatment of biomass(WS, RH, SB) for the removal of lignin content in lignocellulose was done by 

acidic treatment (variable groupings of H2SO4. (Alizadeh et al., 2005) in an autoclave for various time 

at 121°C and 15 psi), biomass was treated with H2SO4 for different time frame at 121°C and 15 psi. 

The sample was separated and the filtrate was analyzed using a UV-Visible spectrophotometer. The 

residue was treated similarly for the second crop of the filtrate, which further was studied similarly 

under UV Vis. Allthe setups were completed as per the first one up to a similar level ofsuccessive steps 

4.2.5.4 THERMAL HYDROLYSIS 

 
Biomass (WS, RH, SB) was treated in the presence of water for various time in an autoclave at 121°C 

and 15 psi. The biomass blend was separated and absorbance of the filtrate was noted at 205 nm.The 

same methodology was repeated sequentially multiple times with residues from the first, second, and 

third stages. Similar treatments were done at varioustimeframes. 

4.2.5.5 ALKALINE HYDROLYSIS 
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Biomass (WS, RH, SB) was treated with sodium hydroxide in the presence of water for various time 

frames in an autoclave at 121°C and 15 psi. Soluble pre-treatment was connected utilizing NaOH going 

in focus from 1.0% to 3% (w/v). Biomass(WS, RH &SB) was blended with NaOH arrangements at a 

proportion of 1:10 (1g of biomass in 10 mL NaOH arrangement), and put into an autoclave. The 

treated biomass was washed with deionized water, maintained to pH 7, and packed in a plastic holder 

at 4˚C. 

The reaction blend was separated and absorbance of the filtrate was noted at 205nm.The same method 

was repeated multiple times with residues from the first, second, and third stages. Residue from the 

third stage was treated in the presence of the basic condition in an autoclave for a time of 2hr at 121°C 

and 15 psi and the absorbance of the filtrate was noted. 

4.2.6 PRODUCTION OFBIOGAS 

 
Treated biomass (WS, RH, SB) after pretreatment (with both of the above techniques) was exposed to 

batch type bio-reactor at various procedure parameters, for example, temperature, pH, total solid 

conc,C:N proportion for biogas generation independently. Gas was gathered in biogas expansion 

using gas spout of digester and examined on gas chromatograph sampler injector with infusion. The 

various blends of gases (STD1-60% CH4, 35% CO2 and 5% H2; STD 2-30% CH4, 60% CO2 and 10% 

H2; STD 3-90% CH4, 9% CO2, 1% H2)( Busch et al., 2009) were served to decide the standard curve. 

 

Fig. 4.2 Batch stirred tank reactor with water displacement 

 
4.2.7 YIELD OFBIOGAS 

 
The totalproductionof biogas in mlwas resolute byusing the water dislocation method. This is used for 

the calculation of% yield in each experiment. % yield is calculated as: 
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𝐓𝐨𝐭𝐚𝐥 𝐁𝐢𝐨𝐠𝐚𝐬 𝐏𝐫𝐨𝐝𝐮𝐜𝐞𝐝 
% 𝐁𝐢𝐨𝐠𝐚𝐬 𝐲𝐢𝐞𝐥𝐝(Tiehm et al 2001) = i

𝐓𝐨𝐭𝐚𝐥 𝐚𝐦𝐨𝐮𝐧𝐭 𝐨𝐟 𝐟𝐞𝐞𝐝𝐬𝐭𝐨𝐜𝐤
 

4.2.8 PRETREATMENT OF WHEAT STRAW, RICE HUSK AND SUGARCANE BAGASSE 

 
Delignification of the biomass (WS, RH, SB) was done by chemical and biological strategies. 

Substrate treatment was done in the presence of acid, soluble base, or thermal (Table 4.4-4.9).The 

Substrate was treated in the presence both of acid in an autoclave for 1 h at 121º C and 15 psi weight) 

or base (1%, 2%, and 3% arrangements of sodium hydroxide in an autoclave or the neutral medium at 

various times spans in an autoclave. Biological treatment of the biomass was completed within the 

sight of five distinct growths, viz., Aspergillus niger, Aspergillus flavus, Cladosporium contiment, 

Helminthosporium solani, and Phaenerochate chrysosporium. The solutions were filtered and the 

filtrates were contemplated under UV-Visible spectrophotometer at 205 nm. 

 

Table 4.4 Delignification of Wheat straw under chemical treatment. 

 

Pretreatment agent 
 

 
  1% 30% 40% 60% 72% 1% 2% 3%  

          Neutr 

  acid acid acid Acid Acid alkali alkali alkali al 

Absorban 30 
         

ce Minute 1.045 3.205 3 4.065 5.56 1.543 1.765 1.826 0.845 

 60          

 Minute 3.42 6.308 6.02 5.879 3.038 1.983 2.112 2.245 1.453 

 120          

 Minute 2.205 4.97 4.58 4.894 2.816 2.745 3.123 3.024 2.212 

 180          

 Minute 1.564 3.657 3.256 3.294 1.536 1.564 2.768 2.897 1.879 
 

 

 

Table 4.5 Delignification of wheat straw under biological treatment. 

 

Fungi 
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Helminutethospori Phaeneroch 

 Aspergillus Aspergillus Cladosporium um ate 

     chrysospori 

 niger flavus contiment solani um 

Absorbanc      

e 10 9 8 7 10 
 

 

 

 

 

Table 4.6 Delignification of Rice Husk under chemical treatment 

 

Pretreatment 

agent 

 
 

  1% 30% 40% 60% 72% 1% 2% 3%  

       Alkal   Neutr 

  acid acid Acid acid Acid i alkali alkali al 

Absorban 30          

ce minute 0.923 2.325 2.987 3.254 4.524 1.452 1.632 1.754 0.698 

 60  4..12        

 minute 2.012 5 4.568 4.984 3.012 1.874 2.658 2.984 1.235 

 120          

 minute 2.231 4.145 4.301 4.452 1.985 2.789 2.969 3.210 1.963 

 180          

 minute 1.925 3.487 3.846 2.984 1.489 1.021 2.857 2.967 1.725 
 

 

 

Table 4.7 Delignification of Rice husk under biologicaltreatment 

 

Fungi 
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Aspergillus Aspergillus Cladosporium 

Helminutethospo 

rium 

Phaeneroc 

hate 

chrysospo 

Niger flavus contiment solani rium 
 

 

Absorban 

ce 9 8 7 6 9 
 

 

 

 

Table 4.8 Delignification of Sugarcane Bagasse under chemical treatment. 

 

Pretreatment 

agent 

 
 

 1% 30% 40% 60% 72% 1% 2% 3%  

      alka alkal alkal Neutr 

 acid acid acid acid Acid li i i al 

Absorba 30 1.45 2.45 2.67 
 

3.10 1.65 
   

nce minute 2 2 8 3.564 2 4 1.985 1.854 0.754 

60 1.95 3.25 3.56  3.21 1.98    

minute 4 4 8 4.784 4 5 2.735 2.845 1.324 

120 2.23 3.94 4.10  1.85 2.65    

minute 1 5 1 4.265 4 4 2.986 3.145 1.987 

180 1.89 3.38 3.44  1.63 1.42    

minute 5 6 6 2.845 2 1 2.800 2.984 1.884 
 

 

 

 

 

Table 4.9 Delignification of Sugarcane Bagasse below biological treatment. 
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Fungi 
 

 

AspergillusAspergillus Cladosporium Helminutethosporium Phaenerochate 
 

 Niger flavus Contiment solani chrysosporium 

Absorbance 10 8 7 9 10 
 

 

4.2.9 BIO-METHANATION 

 
Substrate was subjected to lab scales Stirred Tank Reactor in batch mode (BSTR) for the 

biomethanation under mesophilic prerequisites (Fig. 4.2). The methane content estimated after 

anaerobic digestion of pretreated (chemical and biological) biomass in the batch reactor is shown in 

tables 4.10-4.15. The optimized conditions for biomethane generation from biomass (WS, RH & SB) 

is shown in table 4.21. Pretreatment impact on the delignification of biomass is cited below fig 4.3.The 

GC Chromatogram shown in Appendixv. 

Table 4.10 Methane content in biogas after chemical treatment of WS 
 
 

  1% 30% 40% 60% 72% 1% 2% 3%  

  Aci   Aci Aci alkal alkal alkal Neutr 

  d acid acid d d i i i al 

Methane 30          

content (%) minute 22 58 55 63 70 28 30 30 12 

 60          

 minute 59 80 75 72 55 32 56 57 48 

 120          

 minute 40 65 64 65 53 60 75 72 72 

 180          

 minute 31 62 58 58 31 23 60 63 53 
 

 

 

 
 

Table 4.11 Methane content in biogas after biological treatment of WS 
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Fungi 
 

 
 

 

 

A.niger A.flavus C.contiment H.solani 

P. 

chrysosporiu 

m 

 
 

 

Methane content 

(%) 90 88 85 81 92 
 

 

 

 

Table 4.12 Methane content in biogas after chemical treatment of RH 
 
 

  1% 30% 40% 60% 72% 1% 2% 3%  

  Aci   Aci Aci alkal alkal alkal Neutr 

  d acid acid d d i i i al 

Methane 30          

content (%) minute 24 60 48 58 68 30 34 35 15 

 60          

 minute 57 73 71 70 58 31 64 59 55 

 120          

 minute 51 63 68 67 54 62 72 71 69 

 180          

 minute 30 59 58 56 29 28 61 62 53 
 

 

 

 

 

 

 

 

 

 
 

Table 4.13 Methane content in biogas after biological treatment of RH 
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Fungi 
 

 
 

 

 

A.niger A.flavus C.contiment H.solani 

P. 

chrysosporiu 

m 

 
 

 

Methane content 

(%) 84 81 82 79 83 
 

 

Table 4.14 Methane content in biogas after chemical treatment of SB 
 
 

  1% 30% 40% 60% 72% 1% 2% 3%  

  Aci   Aci Aci alkal alkal alkal Neutr 

  d acid acid d d i i i al 

Methane 30          

content (%) minute 30 68 50 55 62 32 37 39 24 

 60          

 minute 62 75 73 72 61 38 71 66 60 

 120          

 minute 55 65 69 70 60 64 76 70 71 

 180          

 minute 31 62 63 59 40 29 63 60 62 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.15 Methane content in biogas after biological treatment of SB 
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Fungi 
 

 
 

 

 

A.niger A.flavus C.contiment H.solani 

P. 

chrysosporiu 

m 

 
 

 

Methane content 

(%) 86 83 81 80 84 
 

 

 

 
 

 

Fig. 4.3 Effect of chemical Treatment 

 
 

4.2.9.1 EFFECT OF TOTAL SOLID CONCENTRATION ON METHANE CONTENT (ml) OF 

BIOMASS 

 

From table 4.16 below it is found that a total solid concentration of 8% gave maximum biogas 

production in three different biomass substrates. At optimum total solid concentration of slurry, the 

sugarcane bagasse produces maximum biogas (340 ml ) followed by wheat straw(335 ml) and rice 

husk (320ml) respectively. The effect of total solid concentration is shown in fig 4.4 & 4.5. 

 

Table 4.16 EFFECT OF TOTAL SOLID CONC ON METHANE 
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Solid iConc i(%) 

Biogas i(ml) 

iRICE iHUSK 

Biogas i(ml) 

iWHEAT iSTRAW 

Biogas i(ml) 

iSUGARCANE iBAGASSE 

6 240±1.6 270±1.8 290±3.1 

8 320±1.4 335±2.8 340±2.4 

10 260±2.5 280±2.1 285±2.7 

 
 

Fig. 4.4 Effect of total solid on biogas (ml/day) production from pretreated and untreated 
 

 

 
Fig. 4.5 Biogas yield on feed to water dilution ratio 

 
4.2.9.2 EFFECT OF NITROGENOUS SUBSTANCE ON BIOGAS YEILD 



77 
 

It is important to maintain the proper ratio of feedstock for proficient plant activity so the C:N 

proportion in feed stays in optimum range. It is commonly observed that during anaerobic digestion. 

Microorganisms use carbon 25–30 times quicker than nitrogen(Busch et al., 2009). Subsequently to 

this ,a standard C:N ratio of 30:1 is achieved by mixing nitrogen rich sources with feed stock.The 

impact of C:N ratio is shown in table 4.17 and fig 4.6. 

Table 4.17 Impact of C: N ratio on Biogas yield 
 
 

CarbonitoiNitrogen 

iiRatio 

WS 

Biogas i(iml) 

RH 

Biogas i(ml) 

SB 

Biogas i(ml) 

20 250±1.8 210±1.6 270±2.6 

25 300±2.4 280±1.9 298±2.7 

30 325±3.1 301±3.4 340±2.3 

35 290±2.1 270±1.5 293±1.6 

 

 

Fig. 4.6 Nitrogen content on biogas yield 
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Fig. 4.7 Effect of temperature on biogas production 

 

 

 
4.2.9.3 EFFECT OF pH ON BIOMETHANATION OF BIOMASS 

 
The pH is defined as the negative logarithm of its H+ion . It is a measure of the substrate's acidity or 

alkalinity. A digester works well at a pH of 7.0 or above, marginally under alkaline conditions (Mittal, 

1996). The methanogenic microorganisms are extremely sensitive to pH changes and are dynamic just 

in the limited pH run (between 6.8 to 8.5) though the acidogenic microscopic organisms can make due 

in as low a pH as 5.5 (Nijaguna, 2002). An automated pH meter was utilized to study the pH of the 

digestion slurry. The pH meter was standardized utilizing solution of pH 4.0, 7.0 and 10.0. An 

appropriate pH between 6.8–7.2 was maintained using buffer solutiton to increase the methane 

production rate. The quantity of carbon dioxide and volatile fatty acids affect the pH of the digester 

substance. For an anaerobic digestion to go faster than normal,the Concentration of volatile fatty acid 

needs to be below 2000 mg/l. It can be seen from table 4.18 that a pH of 7 is favorable for maximum 

biogas generation from different pretreatedbiomass. 

 

 

 

 
 

Table 4.18 EFFECT OF pH ON BIOMETHANATION OF BIOMASS 
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pH Biogas i(ml) 

iRICE iHUSK 

Biogas i(ml) 

iWHEAT iSTRAW 

Biogas i(ml) 

iSUGARCANE iBAGASSE 

4 120±1.9 200±1.9 126±3.1 

7 180±2.0 310±2.8 290±3.4 

9 160±2.1 180±2.4 166±2.9 

 

4.2.9.4 EFFECT OF TEMPERATURE ON BIOMETHANATION OF BIOMASS 

The biogas production is highest at the optimum temperature(35ºC). An ideal temperature for the 

survival of thermophilic and mesophilic microscopic organisms are 55ºC and 35ºC, respectively This, 

thus, renders different natural material biodegradability levels that impact the biogas creation sum and 

quality, accomplishing the most extreme at 35ºC. From table 4.19 it can be seen that a mesophillic 

temperature of 35 ºC is best suited for biogas generation from different biomass. Biomethanation is 

found maximum from anaerobic digestion of wheat straw (330ml) followed by digestion of sugarcane 

bagasse (310ml) and rice husk (205ml). Incubation temperature surround by the digester affects the 

biogas creation process. There are distinctive temperature ranges throughout which anaerobic aging 

can be completed: psychrophilic thermophilic (50º-60ºC). Nonetheless, anaerobes are most dynamic 

in the mesophilic & thermophilic temperature run. The distance end to end of the maturation phase is 

subject totemperature. 

Table 4.19 EFFECT OF TEMPERATURE ON BIOMETHANATION OF BIOMASS 
 
 

Temp Biogas i(ml) 

iRICE iHUSK 

Biogas i(ml) 

iWHEAT iSTRAW 

Biogas i(ml) 

iSUGARCANE iBAGASSE 

30 140±2.5 230±2.4 146±2.1 

35 205±3.4 330±3.5 310±2.9 

45 170±3.1 195±2.4 165±3.6 

 

 

 

 
4.2.10 BIOSLURRY ASMANURE 
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Bioslurry is used to improve soil fertility, soil structure, and crop productivity, and it may be used as an 

excellent fertilizer(Warnars, 2012). Table 4.20 shows the NPK value ofspent slurry from thedigestor 

of different biomass. Analysis shows that NPK value was found comparable to the slurry obtained 

after digestion ofrice husk, sugarcane bagasse, and wheat straw. 

Table 4.20 Analysis of NPK value of slurry from digestor 
 
 

S.No N i(%) P(%) K(%) 

Cow iDung 1.932±0.03 0.83±0.04 1.54±0.05 

Rice iHusk 1.986±0.04 0.96±0.01 1.73±0.01 

Wheat iStraw 1.980±0.01 0.93±0.02 1.70±0.02 

Sugarcane iBagass 

e 

1.975±0.07 0.90±0.06 1.63±0.08 

 

 
4.3 SUMMARY 

 

Delignification of WS, RH and SB with acidic and biological methods was  persistently checked    

by using UV-VIS spectrophotometer. Degree of expulsion of lignin during different conditions has 

been presented in tables 4.4-4.10 and figure 4.3. Results demonstrate that all the treatment strategies 

prompted the obvious expulsion of lignin content from  the  substrate,  however  it was  maximum 

in  case of fungal attack. In acidic conditions, pretreatment  was 

completed   in   the   presence of varied sulfuric   acid starts   from(  1%   to 72%); optimum 

concentration of sulphuric acid  being 30%  H₂SO₄  causing  maximum expulsion  of lignin. Acid 

pretreatment accomplished high response rates and altogether improved cellulose hydrolysis 

(Jeonget al., 2016). The relation between methane yield and the measurement of lignin is one where 

less lignin influenced the expanded methane yield (Sindhu et al., 2016; Bhatia et al., 2017b). Acid 

treatment demonstrates an appropriate strategy for delignification and biomethanation of biogas from 

biomass(Bharathiraja et al.,2018). 

The alkali pre-treatment utilizing 2% NaOH had the impact of separating hydrogen bond 

associations which can act to solubilize lignin. Although  it is  most  ordinarily  utilized technique 

for the pretreatment of lignocellulosic materials yet by this strategy,  lignin  is evacuated  uniquely 

to an constrained degree and is redistributed on the fiber surfaces because of softening and 

depolymerization responses. 
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Delignification in the presence  of dilute NaOH was lesser   than acid which is in 

concurrence  with  literature(Vindis  etal., 2009).  Lesser delignification during basic hydrolysis is 

due to reason that soluble base expels acetyl and other group substituted on hemicellulose, decreasing 

the availability   of   hemicellulose and cellulose to  catalysts. Dilute  NaOH 

treatment of lignocellulosic materials cause swelling driving an expansion in inner surface region. 

Thisdecline  in  the level  of polymerization and  crystallinity caused partitionof 

auxiliary linkages among lignin and starches, and finally breaking of the lignin structure (Ko et al., 

2015; Li et al., 2018)).  Pretreatment under thermal conditions in neutral medium result in least 

degree of delignification (Abdul et al.,2016). 

Biological treatment is a safe and condition amicable strategy for delignification. Containing 

higher   C/N proportion (30:1), growths are equipped for debasing   any lignocellulosic 

material. White-spoil growths are best for biological pretreatment of lignocellulosic materials. 

Among  different contagious species, P. chrysosporium (white decay parasites) caused 

maximum extreme delignification, followed by A.  niger,  A.  flavus,  C.  contiment,  and  H. 

solani. . The white-decay organism P. chrysosporium discharges three sorts of extracellular 

phenoloxidases, specifically, lignin peroxidase (LiP), manganese peroxidase  and  laccase  in 

charge of starting the depolymerization of lignin (Zhang et al., 2016).The effect of biological 

pretreatment on delignification is shown in fig4.8. 

Methane  content  in  biogas   production  under  different conditions is related to the degree of 

delignification. Measurement of methane in biogas obtained from pretreated substrate under different 

conditions (best condition browsed for all the pretreatment techniques) is shown in Figure 4.8. 

Expanded generation of biogas  after  the  treatment  of  substrates  with  rot-fungi is  because  of  

the   way  that  the organisms   need to utilize the lignocellulosic squanders as substrate for 

its development. Additional cell compounds and enzymes delivered by 

organisms are responsible for separating the lignocellulose present in the biomass. These chemicals 

transformed  waste  into  simpler  structures,  which  is  basic  for  the  development and 

nourishment of the organisms. 

The optimum pretreatment condition for WS,RH, SB are appeared table 4.21, which shows that 

sulphuric acid treatment at 30%(60 minutes)  gave  highest  methane  content  (%  in biogas)  in 

wheat straw (80%) followed by  Sugarcane  bagasse  (75%)  and  Rice  Husk (73%). Alkali  

treatment 2% Sodium Hydroxide(for 120 minute) yieldedvaried amounts of 
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methane in biogas:   Wheat straw(75%) Rice husk (72%) and sugarcane bagasse (76%) by 

.Lignocellulosic waste are fantastic wellsprings of biogas satisfying two significant 

purposes, one administration of the loss to be discarded, and second creation of biogas ready 

to fulfill the need of vitality to an impressive degree. The finest feed to water 

weakening proportion was 1:8 w/v, which give the biogas way of 340 mL in sugarcane bagasse. The 

best biogas yields of 310 mL/day in wheat straw were accounted for pH 7. Maximum biogas yield 340 

mL in sugarcane bagasse got at Nitrogenous substance 30 .High NPK substance estimation of slurry 

was acquired after anaerobic processing of treated Rice Husk. Pretreatment of Wheat Straw produce 

biogas with methane substance ranges from 80% (Acid Treatment),75% (Alkaline Treatment), 72% 

(Thermal Treatment) and 92% (Fungal Treatment). The ideal condition for anaerobic assimilation was 

8% TS , 7 (pH) focus at the temperature of 35°C. High NPK substance estimation of slurry was gotten 

after anaerobic absorption of treated WS. Pretreatment of Sugarcane Bagasse produce biogas with 

methane ranges from 75% (Acid Treatment),76%(Alkaline Treatment),71% (Thermal Treatment)and, 

86% (Fungal Treatment). Anaerobic digestion pretreated rice husk yield biomethane content at 

optimum parameter of 73% (Acid Treatment), 72% (Alkaline Treatment), 69% (Thermal Treatment), 

and 83% (Fungal Treatment). The comparative biomethantion content is shown in fig 4.9-4.12 The 

maximum output of methane content was found after the biological treatment of wheat straw biomass 

at optimum conditioni. 

Table 4.21 OPTIMIZED PRETREATMENT CONDITION (WS, RH & SB) 

 
S. 

 
No. 

PRETREATM 

ENT 

OPTIMIZED 

PRETREATME 

NT CONDITION 

Lignin estimation 

 
(%) 

W.S 

 
Methan 

e 

content 

(%) in 

Biogas 

R.H 

 
Methan 

e 

content 

(%) in 

Biogas 

S.B 

 
Methan 

e 

content 

(%) in 

Biogas 

 

WS 

 

RH 

 

SB 

 

1. 

 

Acid 
30% (60 minute) 

Sulphuric acid 

6.30 

8±0.003 

4.12 

5±0.006 

3.25 

4±0.00 
2 

 

80±0.8 

 

73±0.9 

 

75±0.4 

 

2. 

 

Alkali 

2%Sodium 

Hydroxide(120 

minute) 

 
3.12 

3±0.002 

 
2.96 

9±0.001 

 
2.98 

6±0.00 

4 

 

75±0.6 

 

72±0.2 

 

76±0.1 
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3. 
 

Thermal 
Water (120 

Minute) 

2.21 

2±0.007 

1.96 

3±0.004 

1.98 

7±0.005 

 

72±0.7 

 

69±0.6 

 

71±0.4 

4. Biological P. chrysosporium 10±0.1 9±0.2 10±0.3 92±0.7 83±0.6 86±0.3 

5 Standard Without 

Pretreatment 

0.9±0.15 0.8±0.2 

6 

1.0±0 60±0.5 58±0.3 64±0.4 

 

 

 

 

Thermal treatment Water(120 Minuteutes) gave max yield in wheat straw (72%) trailed by sugarcane 

bagasse (71%) and rice husk(69%). The pre-treatment seemed to affect the cellulose content, causing 

decreases in crystallinity due to expansion in water- soluble extractives, mainly cellobiose and 

glucose created from the cellulose. At high temp water- soluble extractives water solubles mostly 

comprise of sugar, gelatin, starch, and inorganics, which deliver methane. The percentage increase in 

biomethane content due to different pretreatment is shown in fig 4.13. 

Baesd on results, pretreatment of lignocellulosic waste can be guaranteed and endorsed as a profitable 

technique for improving the amount of biogas, especially under biological treatments Henceforth, 

before exposing to anaerobic assimilation, the waste needs to be dealt for delignification under 

appropriate condition to build the productivity of the procedure. Biogas, the outcome of anaerobic 

digestion through suitable pretreatment is a potential future fuel, able to impact the economy of the 

nation . 

 

 
Fig. 4.8 Effect of Biological Treatment 
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Fig. 4.9 Comparative biomethane content of wheat straw 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10 Comparative biomethane content of Rice husk 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.11 Biomethane content of Sugarcane Bagasse 
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Fig. 4.12 Comparative biomethane content of Biomass (SB,RH &WS) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.13 Effect of Pretreatment on percentage increase in methanecontent of biomass(WS,RH 

&SB) 

 

 

 

 

 

 

100 

90 

80 

70 

60 

50     

40 

Wheat straw 

Rice husk 

Sugarcane 
 

20 

10 

 

Acid Alkaline Thermal Fungus 
biological 

m
e

th
an

e
 ic

o
n

te
n

t 
i(

%
) 

%
 i
n

cr
ea

se
in

m
et

h
a

n
ec

o
n

te
n

t 



86 
 

 

 

Fig 4.14 Effect of Pretreatment on yeild of biogas(ml/gVs) content of biomass(WS,RH &SB) 
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CHAPTER – 5 

CONCLUSIONS AND SCOPE FOR FUTURE WORK 

 
The consumption level of fossil fuels has far surpassed its formation- level that encouraged scientists to 

search for an alternative energy source that is sympathetic to the atmosphere and cost- efficient. 

Nevertheless, their re-calcitrant structure and composition is their major task when using 

lignocellulose substrates like agricultural residues and energy crops. Different techniques of pre- 

treatment were thus recommended and evaluated to change the composition of the lignocellulosic 

substrates, facilitate their enzyme hydrolysis and therefore improve their methane output. It can be 

helpful to compare the finest kind of treatment with pretreatment used wheat straw, rice husk, and 

sugarcane bagasse. Renewable power sources such as lignocellulose biomass have appeared as a great 

option as their unlimited and unused energy supply has been identified. In most emerging nations, 

such as India, China, etc., a big amount of lignocellulosic biomass is also generated from the 

agriculture, the plant factories, etc. This study aims to investigate the efficacy of various pretreatment 

techniques and the result features of lignocellulosic digestion (WS, RH, SB) for biogas production. 

Pretreatment technologies for lignocellulosic biomass include biological, mechanical, chemical 

methods, and various combinations thereof. Pretreatments must improve the digestibility of 

lignocellulosic biomaterials, and each pretreatment has its effect on the cellulose-, hemicellulose- and 

lignin fractions. 

Table 5.1 A summary of techniques investigated for enhancing biogas production from 

lignocellulosic materials. 

 

Technique Subdivision 

Mechanical Milling 

Thermal Steam explosion 

 
Thermal hydrolysis 

Chemical Acid hydrolysis 

 
Alkaline pretreatment 

Biological Fungi 
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CONTRIBUTION OF THE PRESENT WORK 

 
Three lignocellulose biomasses were selected and studied for its potentiality for biogas production. 

They are found to have a fairly good amount of cellulose content in it although they contain lignin too. 

In this research, therefore, an optimal achievement of the lignocelluloses plant has been evaluated in 

the pretreatment impact (physical, chemical, and biological) and multiple biogas manufacturing 

parameters. The pretreatment method focused on the removal of lignin content by applying different 

alkaline and acid condition and then anaerobic digestion of pretreated biomass (WS, RH, and SB). 

The parameters considered for the analysis TS of biomass, temperature of the substrate, C:N ratio, and 

pH. Methane manufacturing from lignocellulose (i.e. crop residue and power plants) seems to be one 

of the most successful solutions to food vs fuel from fossil fuels. 

CONCLUSION OF THE STUDY 

 
5.1 Improved characteristics ofbiomass 

 
In chapter 3, rice husk and sugarcane bagasse biomass are described to achieve the goal and target of 

the current working on wheat straw along with livestock dung. Proximate analyzes reveals that rice 

husk, bagasse from sugarcane, grain straw, and livestock dung have solid oxygen ranges from 12% to 

21.5%. The ash content of biomass, after subjection to an elevated degradation temperature, is the 

non-volatile inorganic material. It is found to vary from 3.6-12.35 % for all the above-mentioned 

biomasses. Volatile matter content of cattle dung, rice husk and wheat straw are found to be in the 

range of 66% to 68% whereas for the rest of the sugarcane bagasse biomass it is in the range of 

82.17%. The result was that the biomass could readily be dissolved by volatile and fixed carbon. The 

final analysis of lignocellulose biomass revealed that the characteristics studied were wheat straws, 

rice husks, and sugarcane bagasse, while the biomass nitrogen content varies between 0.9 and 1.7 

percent. High C: N is not beneficial for the manufacturing of optimum biogas. That is why the 

biomasses are mixed with cattle dung in 1:3 ratios to adjust the C: N of the substrate for better biogas 

production. Fiber analysis ofthe biomass’s lignin content of all the biomass feedstocks is found to be in 

the range of3% to 20% which is quite high. 

5.2 Comparative pretreatment of different biomass (WS, RH, SB) 

 
By contrast, the solution of cellulose, hemicellulose, and lignin for biomass (WS), RH, SB, alkaline, 

thermal, alkaline, and alkaline-biotherapy (HMB), is solventised by acid, alkaline,thermal, and 
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biological 
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pretreatment (WH, HR, SB, etc.). Lignin degradation is found to be the maximum acid and 

biological method used, and alkaline, and thermal methods. Increased methane yields three for 

sugarcane bagasse, wheat straw, and rice husk, but led to increased anaerobic digestion mainly because 

of the solubilization of cellulose and hemicellulose fractions are beneficial thermal pretreatment 

carried out at 121°C. Among thermal treatments, best results in the increase of methane 

manufacturing were observed with the treatment of wheat straw followed by sugar cane bagasse 

and rice husk at 121°C & 120 minutes (19,8%,18%, and 13%, respectively). Pretreating alcohol 

has been commonly used in the biogas production method. Sulfuric acid (H2SO4) is the most 

commonly used acid in acid pretreatment. Acid pretreatment at optimized condition (30%, (60 

minutes) and % increase in methane content is found maximum with anaerobic digestion of 

wheat straw (25%), sugarcane bagasse (20%) followed by rice husk (17%). Acid pretreatment 

has a maximum impact on bio methanation of wheat straw biomass at optimized conditions. 

Biological pretreatments, performed with fungus led to an increase of methane production of biomass 

(WS, RH, SB). Biological pretreatments performed with a fungal strain, improve methane 

production. The percentage increase in methane content after pretreatment with fungal strain is 

found maximum for wheat straw (34%), followed by sugarcane bagasse (30.2%) and rice husk 

(27.7%) respectively.The maximum biogas yeild 321ml/gVS is found with fungal treated wheat 

staw. Results from all classifications of pretreatment have been acquired. There are more results in 

acid and biological pre-treatment in methane content, but for the energy as well as the economy, 

the only alkaline pre-treatment is also preferred. Also , wheat straw was the largest output of 

methane among the three substrates. 

5.3 Optimized anaerobic condition forbiogas production 

 
Optimization of the anaerobic absorption procedure brought about the improvement of biogas amount 

and quality. A few changes demonstrated to be fundamental while others demonstrated to be 

insufficient. Cluster testing upon the absorption procedure demonstrated that pH was a viable pointer 

about the phase of processing. Through consistent pH checking, each phase of assimilation could be 

distinguished, giving an approach to treatment plants to screen digester activity. It was resolved 

through parametric examinations that every single tried parameter were coupled. Accordingly, one 

parameter can't be adjusted without influencing others Biogas creation was most elevated close to an 

unbiased pH. The ideal range was characterized to be 7.0, as the examples inside this range 

demonstrated the most noteworthy mole division of methane all through the testing period. The ideal 

temperature for assimilation fell inside the mesophilic run. Most noteworthy creation was 

accomplished at 35°C, yet vitality adjusts demonstrated that keeping up assimilation inside the lower 
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part of the mesophilic range would be more vitality effective. The impact of C: N proportion was 
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discovered greatest at an ideal proportion of 30:1. The all- out strong concentration of 8% gave 

maximum biogas amount. 

5.4 End product ofthe pre-treatment and digester: Manures 

 
Alongside the biogas delivered, AD additionally changes the additional feedstock into digestate that 

can be utilized as a compost which is high in nitrogen, potassium, and phosphorus substance. The 

digestate can be put away at that point utilized in farmlands for yield creation at a proper time moving 

along without any more treatment.Also , it very well may be isolated to create fiber and alcohol. The 

fiber can be sold or utilized as a decent compost or a dirt conditioner, while the alcohol contains 

different supplements and could be utilized as a fluid manure that could be sold or utilized nearby. The 

digestate nearly stays all the non-degradable substances from the percent, which kind of feedstock 

(WS,RH,SB) is processed.Besides , AD procedure of excrement or other natural biomass could change 

some portion of natural bound supplements to a mineral structure. This impact is significant for 

nitrogen. It likewise lessens the requirement for utilizing extra mineral nitrogen composts. So the 

digestate from anaerobic aging is considered as an improved and profitable compost that could 

substitute mineral manure because of the expanded accessibility of nitrogen to crops. Likewise, 

anaerobic treatment limits the survival of pathogens from the feedstock, which is significant for the 

digestate utilized as a manure. The N (%) from spent slurry from anaerobic assimilation of 

biomass (WS, RH, SB) is in the scope of 0.93 to 0.98, most noteworthy P(%) and K(%) found 

from the slurry of anaerobic processing of rice husk. 

FUTURE STUDIES/RECOMMENDATIONS 

 
Lignocellulose residuals are currently being manufactured from biogas in its preparatory phase and far 

more research needs to be undertaken to enable the economically feasible, large-scale use of 

lignocellulose in the future to producebiogas. 

Interesting and difficult topics and fields for potential research: 

 
• The reasonable pretreatment strategies, which are not just financially achievable on a full- scale 

process, yet additionally viable, vitality effective and use as meager synthetic compounds as 

would be prudent. 

• So far, the majority of the pretreatment techniques and conditions examined have been 

assessed by anaerobic clump assimilation tests. This has been done to decide the methane 

potential accomplished after the pretreatment. Almost no test work has been done to research 

the long haul impacts in a ceaseless co-assimilation process where lignocelluloses are one of 
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the substrates used. This progression is essential to have the option to explore the possible 

restraining just as synergistic impacts. Besides, pilot- scale thinks about, including the 

pretreatment and anaerobic absorption steps, are vital toward the commercialization of these 

sorts of procedures. 

• Specific structural modifications affecting the microbial degradation of lignocelluloses are still 

very unknown. Substrate features which are essential for elevated degradation levels and how 

they can be evaluated have been limitedly investigated. It will be easier in the future to build a 

pretreatment technique that operates most effectively when we are prepared to discover 

responses to these fundamentalissues. 

• On the relationship between pretreated feedstock lignocelluloses and a microbial composition 

has only beenstudied for a few years; therefore, more information is required. 

• The cellulosomes, or the cellulose corrupting compound- complex, is another intriguing 

territory, where there is still a lot to learn. Do the microorganisms embrace the plan of the 

cellulosomes of the substrate they meet? Is it conceivable to hereditarily alter these 

microorganisms to create cellulosomes, with an ideal structure and arrangement of chemicals 

to accomplish the bestdebasement? 
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Appendix – I 

Characterization of Biomass 

 
I.1 Sample calculations forproximate analysis for sugarcane baggase 

Total solids in biomass 

Total solid (%) for Sugarcane baggase = 
1.8794 - 0.156 

× 100 

2 

= 86.17% 

where 
 

Weight of dry pan + dry sample is 1.8794 gm 

Weight of dry pan is 0.156 gm 

Weight of sample as received is 2 gm 

 
Moisture content of sugarcane baggase 

Moisture content in sugarcane baggase(%) =100 1.8794-0.156 × 100 

2 

Moisture content in sugarcane baggase (%) = 13.83 % 

 
Volatile content in huskisugarcane baggase = w2 – w4 × 100 

w2 - w1 

 
Volatile content inisugarcane baggase = 57.56439 – 58.3860 × 100 

57.56439 - 5655819 
 

Volatile content insugarcane baggase = 82.17% 
 

where 
 

w1 = mass of the empty crucible with the lid is 56.55819 gm. 

w2=mass ofthe crucible with lid and the sample before heating is 57.56439 gm. W4 

= mass ofthe crucible with lid and the sample after heating is 58.3860 gm. 
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Ash content in sugarcane baggase 
 

% of Ash in sugarcane baggase = (33.229 – 33.193) × 100 = 3.6% 
 

 

 

where 
 

Weight of crucible + sugarcane baggase is 33.229 gm 

Weight of crucible is 33.193 gm 

Weight of sample as received is 1 gm 
 

CV analysis of sugarcane baggase 

Cv = Heat of combustion of the biomass sample, MJ/kg 
 

Wc = Water equivalent ofthe bombcalorimeter, MJ/°C =10.74×10
-3 

MJ/°C Initial 

water temperature =26.04°C 

Final water temperature = 26.89°C 
 

ΔT = Rise in temperature, °C = 0.85 °C 
 

Ms = Mass of the biomass sample burnt, kg = 0.503 gm 
 

C = 
Wc × ΔT 

Ms 

 
 

= 
10.73 × 10

-3 
× (26.89 - 26.04) 

0.503 × 10
-3

 

= 18.266 MJ 

 
I.2 Sample calculations forproximate analysis for Rice husk 

Total solids in biomass 

Total solid (%) for Rice husk = 
1.9442 - 0.156 

× 100 

2 

= 89.41% 
 

where 
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Weight of dry pan + dry sample is 1.9442 gm 

Weight of dry pan is 0.156 gm 

Weight of sample as received is 2 gm 

 
Moisture content of Rice husk 

Moisture content in Rice husk (%) =100 1.9442-0.156 × 100 

2 

Moisture content in Rice husk (%) = 10.59 % 
 
 

Volatile content in Rice husk = w2 – w4 × 100 

w2 - w1 

Volatile content in Rice husk = 57.56439–58.2539×100 

57.56439 – 56.55830 

 

Volatile content in Ricehusk  = 68.96% 
 

where 
 

w1 = mass of the empty crucible with the lid is 56.55830 gm. 

w2=mass ofthe crucible with lid and the sample before heating is 57.56439 gm. w4 

= mass ofthe crucible with lid and the sample after heating is 58.2539igm. 
 

Ash content in Rice husk 
 

% of Ash in Rice husk = (33.334 – 33.193) × 100 

 

= 14.1% 
 

where 
 

Weight of crucible + Rice husk is 33.334 gm 

Weight of crucible is 33.193 gm 

Weight of sample as received is 1 gm 

 

 

CV analysis of Rice husk 

Cv = Heat of combustion of the biomass sample, MJ/kg 
 

Wc = Water equivalent of the bomb calorimeter, MJ/°C =10.74×10
-3 

MJ/°C 
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Initial water temperature = 26.04°C 

Final water temperature = 26.70 °C 

ΔT = Rise in temperature, °C = 0.66 °C 

Ms = Mass of the biomass sample burnt, kg = 0.508 gm 
 

C = 
Wc × ΔT 

Ms 

 
 

= 
10.73 × 10

-3 
× (26.70 - 26.04) 

0.508 × 10
-3

 

= 14.10 MJ 

 
I.3 Sample calculations forproximate analysis for Wheat straw 

Total solids in biomass 

Total solid (%) for Wheat straw = 
1.9026 - 0.156 

× 100 

2 

= 87.33% 
 

where 
 

Weight of dry pan + dry sample is 1.9026 gm 

Weight of dry pan is 0.156 gm 

Weight of sample as received is 2 gm 

 
Moisture content of wheat straw 

Moisture content in wheat straw (%) =100 1.9026-0.156 × 100 

2 

Moisture content in wheat straw (%) = 12.67% 

 
Volatile content in wheat straw = w2 – w4 × 100 

 

 
Volatile content in wheat straw 

 

 
= 

w2 - w1 

 
57.56439–i58.1958 ×100 

  57.56439 – 56.55840 
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Volatile content in wheat straw = 63.15 % 
 

where 
 

w1 = mass of the empty crucible with the lid is 56.55840 gm. 

w2=mass ofthe crucible with lid and the sample before heating is 57.56439 gm. W4 

= mass ofthe crucible with lid and the sample after heating is 58.1958gm. 
 

Ash content in wheat straw 
 

% of Ash in wheat straw = (33.442 – 33.387) × 100 

 

= 5.46% 
 

where 
 

Weight of crucible + wheat straw is 33.442 gm 

Weight of crucible is 33.387 gm 

Weight of sample as received is 1 gm 

 

 

CV analysis of wheat straw 

Cv = Heat of combustion of the biomass sample, MJ/kg 
 

Wc = Water equivalent ofthe bombcalorimeter, MJ/°C =10.74×10
-3 

MJ/°C Initial 

water temperature =26.04°C 

Final water temperature = 26.64°C 
 

ΔT = Rise in temperature, °C = 0.66 °C 
 

Ms = Mass of the biomass sample burnt, kg = 0.510 gm 
 

C = 
Wc × ΔT 

Ms 

 
 

= 
10.73 × 10

-3 
× (26.64 - 26.04) 

0.510 × 10
-3

 

= 12.73 MJ 
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Table I.1 Characterzation results of lgnocellulosic biomass. Values correspond to mean ± 

standard deviation of measurement performed in triplicate 
 

Sl. 

N 

o 

 
Sample 

TS 

(%) 

 
M (%) 

Fixed 

Carbon 

 
Ash (%) 

VM 

(%) 

 

 
PH 

CV 

(MJ/Kg 

) 

COD 

(mg/L) 

1 Sugarcan 

e Bagasse 

86.1 

7±0.40 

13.8 

3±0.15 

12.1 

0±0.25 

 
3.60±0.0 

3 

82.1 

7±0.20 

7.8 

5±0.01 

18.2 

6±0.16 

 
4688.83 

±0.10 

2 Rice Husk 89.4 

1±0.1 

10.5 

9±0.20 

14.1 

3±0.2 

14.1 

0±0.20 

68.9 

6±0.15 

8.9 

5±0.02 

14.0 

1±0.02 

37836.6 

7±0.21 

3 Wheat 

Straw 

87.3 

3±0.15 

12.6 

7±0.20 

12.0 

3±0.20 
5.46±0.0 

2 

63.1 

5±0.10 

8.6 

1±0.01 

12.7 

3±0.02 
9292.12 
±0.014 

 

 

 
 

Table-I.2 The proximate and ultimate analysis of various lignocellulose biomass 

(literature) 

 

Biomass type Ultimate analysis (db, % 

w/w) 

Proximate analysis (% 

w/w) 

LHV 

 

(MJ/kg) 

C H O N S ASH VM FC M 

Wheat straw  

46.1 
 

5.6 
 

41.7 
 

0.5 
 

0.08 
 

6.1 
 

75.8 
 

18.1 

  

17.20 

Sugar cane 

bagasse 

 
48.58 

 
5.97 

 
38.94 

 
0.2 

 
0.05 

 
2.26 

70- 
 

84 

10- 
 

25 

 
DB 

 
19.05 

Rice husk  

45.8 
 

6.0 
 

47.9 
 

0.3 
 

--- 
 

8 
 

73.8 
 

13.1 
 

12.3 
 

13.36 

VM: Volatile matter, FC: Fixed Carbon, M: Moisture, DB:Dry basis 
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3.2 Fibre analysis results 
 

Table I.3 Results obtained from the fibre analysis of the feed material 
 

Sl. 

No. 

Biomass Hemicellulose 

(%) 

Cellulose 

(%) 

Lignin 

(%) 

Lignin to 

Cellulose ratio 

1 Sugarcane 

Bagasse 

 

24.5±0.10 
 

41.5±0.20 

 

20±0.1 

4 

 

0.481 

2 Wheat straw 27±0.12 35±0.10 17±0.0 
1 

0.491 

3 Rice husk 23.2±0.2 32±0.15 18±0.2 
4 

0.562 
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Appendix – II 

Control of C:N ratio and TS of substrates 

 
II.1 Sample calculation for TS% of biomass and cattle dung mixture withwater 

Total solid of Sugarcane bagasse = 86.17% 

Total solid of cattle dung = 20.036% 

Cattle dung is mixed with biomass in 1:2 ratio. 

Total solid of sugarcane baggase and cattle dung mixture, TS% = 86.17 + 2 × 20.036 

3 

=  42.08 % 

When water is added to the mixture in 1:2 ratio, TS% = 42.08 

3 

= 14.02 % 

When water is added to the mixture in 1:3 ratio, TS% = 42.08 

4 

=  10.52 % 

When water is added to the mixture in 1:5 ratio, TS% = 42.08 

6 

=  7.01 % 

II.2 Sample calculation for TS% of Rice husk and cattle dung mixture withwater 

Total solid of Rice husk = 89.41 % 

Total solid of cattle dung = 20.036% 

Cattle dung is mixed with biomass in 1:2 ratio. 

Total solid of rice husk and cattle dung mixture, TS% = 89.41 + 2 × 20.036 

3 

= 43.16% 

When water is added to the mixture in 1:2 ratio, TS% = 43.16 

3 

= 14.38 % 

When water is added to the mixture in 1:3 ratio, TS% = 43.16 

4 

=  10.79 % 
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When water is added to the mixture in 1:5 ratio, TS% = 43.16 

6 

=   7.19 % 

II.3 Sample calculation for TS% of wheat straw and cattle dung mixture with water 

Total solid of Wheat straw = 87.33 % 

Total solid of cattle dung = 20.036% 

Cattle dung is mixed with biomass in 1:2 ratio. 

Total solid of wheat straw and cattle dung mixture, TS% = 87.33 + 2 × 20.036 

3 

= 42.46% 

When water is added to the mixture in 1:2 ratio, TS% = 42.46 

3 

= 14.15 % 

When water is added to the mixture in 1:3 ratio, TS% = 42.46 

4 

= 10.61 % 

When water is added to the mixture in 1:5 ratio, TS% = 42.46 

6 

= 7.07 % 
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Table II.1 TS (%) of biomass before and after mixing with cattle dung and water 
 

Biomass TS 

(%) 

Bioma 

ss + 

Cattle 

dung 

in 1:2 

ratio 

TS 

(%) 

Biomass + 

Cattle dung 

: Water 

TS 

(%) 

for 

1: 

2 

ratio 

TS (%) 

for 1:3 

ratio 

TS (%) 

for 1:5 

ratio 

Sugarcane 
 

Bagasse (SB) 

83.1 

7±0.20 

 
SB+CD 

41.0 

8±0.05 

SB + CD + 

Water 

13.6 

9±0. 
04 

 
10.27±0.0 

1 

 
6.84±0.04 

Rice Husk (RH) 89.4 RH+CD 43.1 RH + CD + 14.3 10.79±0. 7.19±0.0 

 
1±0.14 

 
6±0.02 Water 8±0. 

06 8 

     1   

Wheat Straw 87.3 RS+CD 42.4 RS + CD + 14.1 10.61±0. 7.07±0.1 

(WS) 3 ±0.10 
 

6±0.04 Water 50.0 
08 0 

     5   

Cattle Dung 

(CD) 

 

20.03± 

0.10 
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Appendix – III 

List of Equipment/Instrument Used 

 
List of instruments used 

• Weighing balance: weighing scale panel, measuring range; max = 15 kg, min = 0.04 

kg, error, error =2 gm, Model: SP/p1s-15-FLP, manufactured by Shyaam Switchgears 

Pvt.Ltd. 

• Gas analyzer (Thermo) 

• Muffle Furnance Bionics with model (BST/MF/900) 

• Hot air oven (BST/HAO-1122)(300 x 300 x 300 mm) 

 

• Indian standard sieve for particle size measurement (manufactured by Scientific 

Engineering Corporation) 

• Rotameter for flow measurement: capacity 0 to 5lpm. 

 

• Thermocouple sensor –itype-K 

 

• Thermocouple calibrator with constant temperatureibath. 
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water baths 

digesters 

connecting tube 

1) 

2) 

3) 

Accessories used: 

Appendix – IV 

Accessoried Used in the Experimental Set-Up 

 

 

 

 
 

 
Fig. IV.1 Waterbathwhere smallscale digesters were kept for fermentation under 

constant temperaturecondition 

 

 

 

Fig. IV.2 Small scale digesters inside water bath kept for fermentation 



117 
 

 

Fig. IV.3 Various accessories used in the experimental set-up 
 

 

 

 
Fig. IV.4  Convection Oven Fig. IV.5 Muffle Furnace 

 

 

Fig. IV.6 Set-up for COD with heating 

mantle 

Fig. IV.7 Gas Chromatography machine 

solution bottle 

conical flask (beaker) 

copper tube 

Thermometer 

measuring cylinder 

beaker 

4) 

5) 

6) 

7) 

8) 

9) 
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Fig. IV.8 Laboratory scale digesters 



119 
 

Appendix – V 

GC analysis of biogas 
 

 

 

 

Fig. V.1 GC analysis of biogas from cattle dung 
 

Fig. V.2 GC analysis of biogas from sugarcane bagasse and cattle dung mixture 

 

 

Fig. V.3 GC analysis of biogas from Rice husk and cattle dung mixture 
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Fig. V.4 GC Analysis of biogas from Wheat straw and cattle dung mixture 
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