BENCHMARKING AND TRANSFORMATION OF MAJOR PORTS IN INDIA

By

AMBATI JANARDHANA RAO

SCHOOL OF BUSINESS

(DEPARTMENT OF TRANSPORTATION)

Submitted

IN PARTIAL FULFILLMENT OF THE REQUIREMENT OF THE DEGREE OF **DOCTOR OF PHILOSOPHY**

TO

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

DEHRADUN

May, 2018

UNDER GUIDANCE OF

DR. T. BANGAR RAJU

(GUIDE)

(CO-GUIDE)

DR. HIRANMOY ROY

PROFESSOR & HEAD

DEPARTMENT OF TRANSPORTATION

SoB-UPES DEHRADUN

ASSOCIATE PROFESSOR

DEPARTMENT OF ECONOMICS & IB

SoB, UPES DEHRADUN

DR. L.R. THAPAR

(EXTERNAL GUIDE)

DIRECTOR

HIND TERMINALS LIMITED

NEW DELHI

भारत के प्रमुख बंदरगाहों में बेंच मार्किंग तथा परिवर्तन

द्वारा

ए जनार्धना राव

डॉक्टरऑफ फिलॉसफी की डिग्री कीआवश्यकता कीआंशिक पूर्ति के लिए

(पेट्रोलियम और ऊर्जा शिक्षा विश्वविद्यालय) May 2018

के मार्गदर्शन में

गाइड

डॉ टी बंगार राजू प्रोफ़ेसर और प्रमुख परिवहन प्रबंध विभाग एस. ओ. बी. - पेट्रोलियम और ऊर्जा शिक्षा विश्वविद्यालय देहरादून सह गाइड डॉ हिरनमॉय रॉय सहयोगी प्रोफ़ेसर अर्थशास्त्र और आईबी विभाग एस. ओ. बी. - पेट्रोलियम और ऊर्जा शिक्षा विश्वविद्यालय देहरादून बाह्य गाइड डॉ एल के थापर निदेशक हिंद टर्मिनल लिमिटेड नई दिल्ली

Acknowledgements

I would like to state that I worked upon this thesis solely based on my utmost fascination to the Port Sector and my inner urge to contribute substantially towards indelible progress of the Major Ports. This thesis has been kept on track and seen through to completion with the support and encouragement of numerous people including my family, wellwishers and various institutions. I would like to thank all those people who made this thesis possible. It is a pleasant task to express my thanks to all those who contributed in many ways to the success of this study and made it an unforgettable experience for me.

At this moment of accomplishment, first of all I pay special honor to my guide, Dr. T. Bangar Raju- HOD & Professor, Department of Transportation, UPES and Co-Guide Dr. Hiranmoy Roy – Associate Professor, Department of Economics & IB UPES. This work would not have been possible without their guidance, support and encouragement. Under their guidance I successfully overcame many difficulties and learned a lot. I am very much thankful to them for considering me as their Research Scholar.

I would like to express my sincere gratitude to University of Petroleum & Energy Studies (UPES) for allowing me to undertake this research. I am very grateful to Chancellor, UPES & Vice-Chancellor, UPES for the motivation that they have given during this journey of research.

My utmost respects go to Dr. L.R. Thapar for his constant support in shaping the research output. My sincere regards to the members of SoB-UPES for their constant assistance and help that they have extended to me. My sincere thanks to the members of FRC, UPES for their constant and invaluable suggestions that have helped in enhancing the quality of this research work. My sincere thanks to the officials of Indian Ports Association (IPA), all Major Ports, Indian Ship Owners Association (INSA) and various stakeholders in the port sector for providing much required inputs and support that helped in carving this research work.

A special thanks to my family. Words cannot express how grateful I am to my family for continuously motivating and encouraging me to continue this journey.

I would also like to acknowledge the immense contribution of my friends who supported me in writing, and induced me to strive towards my goal. Last but not least, I would like to express appreciation to my beloved wife who was always in my support during the inevitable ups and downs of conducting my research, this helped me a lot to work for hours together tirelessly.

DECLARATION

I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, except where due acknowledgment has been made in the text.

7-5-2018 A JANARDHANA RAO

Scanned with CamScanner

Thesis Completion Certificate

This is to certify that thesis on "Benchmarking and Transformation of Major Ports in India" by Mr. A. Janardhana Rao in partial completion of requirements for the award of the Degree of Doctor of Philosophy is an original work carried out by him under my supervision.

It is certified that the work has not been submitted anywhere else for the award of any diploma or degree of this or any other University.

Dr. T. Bangar Raju

Guide

Dr. Hiranmoy Roy Co-Guide

Thapas

Dr. L. R. Thapar **External Guide**

CORPORATE OFFICE: 210, 2nd Floor, Okhla Industrial Estate, Phase III, New Delhi - 110 020, INDIA, T +91 - 11 - 41730151-53, F +91 - 11 - 41730154

CAMPUSES:

ENERCY ACRES: Bidholi Via Prem Nagar, Dehradun - 248 007 (Uttarakhand), INDIA, T +91 - 135 - 2770137, 2776053/54/91, 2776201 F +91 - 135 - 2776090/95

KNOWLEDCE ACRES: Kandoli Via Prem Nagar, Dehradun - 248 007 (Uttarakhand), INDIA, T +91 - 8171979021/2/3, 7060111775

Engineering = Computer Science = Design = Business = Law

TABLE OF CONTENT

EXECU	JTIVE SUMMARY	14
ABBRE	EVIATIONS	18
СНАРТ	TER I - INTRODUCTION	20
1.1	BACKGROUND	20
1.2	Major Ports in India - An Overview:	21
1.3	MAJOR PORTS LOSING SHARE TO NON-MAJOR PORTS	24
1.4	HIGHER TURN ROUND TIME IN MAJOR PORTS OF INDIA	24
1.5	Size of Coal vessels visiting major ports of India	25
1.6	LOGISTICS SHARE IN INDIAN GDP	25
1.7	CAPACITY AUGMENTATION	27
1.8	QUANTITATIVE BENCHMARKING	28
	1.8.1 Benchmarking Theory:	28
	1.8.2 Techniques of Benchmarking/Classification:	29
	1.8.3 Selection of benchmark ports and data normalization	
1.9	BUSINESS PROBLEM:	32
1.10	MOTIVATION FOR STUDY:	32
СНАРТ	TER II- LITERATURE REVIEW	
2.1	MAJOR INFERENCES DERIVED FROM LITERATURE REVIEW:	
2.2	Major Gaps derived from Literature Review:	
2.3	THEME BASED INFERENCES AND GAPS:	
2.4	BENCHMARKING STUDIES:	
	TER III - RESEARCH METHODOLOGY	
3.1	Research Problem	
3.2	RESEARCH QUESTIONS:	
3.2	Research Objectives:	
3.3	Research Design	
3.4	PROCESS DETAILS	
3.5	RESEARCH METHODOLOGY FOR RESEARCH OBJECTIVE 1:	
3.6	Research Methodology for Objective 2	
3.7	THEORETICAL UNDERPINNING:	
3.8	BENCHMARKING THEORY:	108
СНАРТ	TER IV- ANALYSIS (OBJECTIVE 1)	111
4.1	CONTAINER TERMINALS	111
	4.1.1 Underutilization of Container Capacity FY 2014-15	112
	4.1.2 Berth occupancy FY 2014-15	113
	4.1.3 Berth productivity FY 2014-15	114
	4.1.4 JNPT own terminal and V.O.C lagging behind peers in quay crane productivity lo	wering
	their effective capacity	115
	4.1.5 Yard throughput levels	116
	4.1.6 Ground slot density FY 2014-15	117
	4.1.7 Yard space utilization FY 2014-15	118
	4.1.8 Number of cranes per meter quay FY 2014-15	119
	4.1.9 Number of RTGCs in line with benchmarks except for own terminal at JNPT	

4.1.10 RTGC productivity above international benchmark levels for most terminals excep	t JNP
own terminal	
4.1.11 Number of terminal tractors FY 2014-15	د
4.1.12 TT productivity FY 2014-15	
4.1.13 Evacuation of containers FY 2014-15	<i>د</i>
4.1.14 Gate lane productivity FY 2014-15	ز
4.1.15 Truck turnaround time FY 2014-15	ز
4.1.16 Variation in rail line productivity between JNPT terminals FY 2014-15	ز
4.1.17 Rail turnaround time for container terminals in India	ز
4.2 Dry Bulk Terminals	1
4.2.1 Distribution of coal traffic handled by the major ports FY 2014-15	
4.2.2 Distribution of size of coal vessels calls across major ports FY 2014-15	
4.2.3 Benchmarking Procedures:	
4.2.4 Occupancy levels for Mechanized and Conventional Berths	
4.2.5 Productivity across berths	
4.2.6 Productivity of Panamax vessel	
4.2.7 Potential improvements in case of adaptation of 'best demonstrated performance'	
4.3 Fertilizer Terminals	
4.3.1 Panamax class constitutes ~45% of all dry bulk fertilizer vessel calls	
4.3.2 Berths handling for dry fertilizer running	
4.3.3 Productivity of Dry bulk fertilizer	
4.3.4 Large scope for improvement as avg. BDP is 13000 MT/day	
4.3.5 Low capacity utilization for Dry Bulk Fertilizer Cargo	
4.4 POL	
4.4 FOL 4.4.1 Distribution of Liquid cargo traffic across major ports FY 2014-15	
4.4.1 Distribution of Eigene Cargo (ray) cucross major ports F7 2014-15	
4.4.2 Hundymax class constitutes 50% of an inquia vesser cans	
4.4.4 Productivity of POL (Crude) at Major Ports FY 2014-15	
4.4.5 Productivity of LPG across berths of Major Ports FY 2014-15	
4.4.6 Productivity of POL (Product) across berths of Major Ports in 2014-15	
4.4.7 Productivity across berth significantly below benchmarks (IV)	
4.4.8 Potential to double volumes by replicating 'best demonstrated performance' consis	
4.5 BULK STORAGE AND EVACUATION	
4.5.1 Preliminary view of storage allocation by commodities across deep-dive ports	
4.5.2 Rake turn-around times higher than private ports	
4.6 Port Cost Benchmark	
4.6.1 Labour, operation & maintenance and dredging accounts for ~80% of the operating	-
expenditure across ports	
4.6.2 Labour cost is highest in legacy ports such as Mumbai, Kolkata and Goa	
4.6.3 Number of cargo and non cargo handling employees per MT	
4.6.4 Maintenance & Operations cost per unit traffic	
4.6.5 Port crane utilization high in Mormugao, J.N.P.T and Kandla	
CHAPTER V – ANALYSIS (OBJECTIVE 2)	•••••
5.1 Jawaharlal Nehru Port Trust	
5.1.1 Port performance dashboard – JNPT	•••••
5.1.2 Summary of suggestions – JNPT	••••••
5.1.3 JNPT Reduce shift change losses to improve QC productivity	
5.1.4 JNPT Increase twin-lift ratio	
5.1.5 JNPT Redesign operation incentive scheme	

5.1.6 JNPT Redesign operation incentive scheme	
5.1.7 JNPT Dynamic deployment of RTGCs based on actual demand	
5.1.8 JNPT Ensure 100% yard integrity through real-time update of container loc	
operators	
5.1.9 JNPT Acquire additional RTGCs	
5.2 Paradip Port Trust	172
5.2.1 Port performance dashboard – PPT	
5.2.2 Summary of suggestions – PPT	
5.2.3 PPT Modification of existing berthing policy and setup of penal berth charg	es linked to
productivity norms	
5.2.4 PPT Generate additional demand for thermal coal from existing and new co	ustomers175
5.2.5 PPT Use IHP for export coal cargo and handle Haldia top-up vessels and sm	aller players176
5.2.6 PPT Rationalisation of existing plots in MCHP and development of addition	nal land177
5.2.7 PPT Improve RRS monitoring to reduce rake TRT	
5.2.8 PPT Operate 8 HMCs across EQ 1-3, CQ 1-2 berths to upgrade productivity	
5.2.9 PPT Develop additional storage capacity and full rake sidings for conventio	
	-
5.3 Cochin Port Trust	
5.3.1 Port performance dashboard – CoPT	
5.3.2 Summary of suggestions – CoPT	
5.3.3 CoPT Pilot for improving rail connectivity from Coimbatore to ICTT	
5.3.4 CoPT Requirements for easing the delays and costs for road transport to IC	
5.3.5 CoPT Proposal for extended cabotage relaxation for coastal cargo	
5.3.6 CoPT Mechanization to attract FCI food-gain traffic from North India/ Andl	
5.3.7 CoPT Mechanized bagging plant to attract fertilizer imports	
5.3.8 CoPT Enable BPCL to set up POL quality testing facility within port premises	
5.4 Chennai Port Trust	
5.4.1 Port performance dashboard – CHPT	
5.4.2 Summary of suggestions – CHPT	
5.4.3 CHPT Monitor and incentivise yard productivity of private terminals	
5.4.4 CHPT Provide additional yard space to DPW	
5.4.5 CHPT Frontload pre-gate processing & entry of trailer details to CFS	
5.4.6 CHPT Automate container verification by installing cameras	
5.4.7 CHPT Discount charges on rake operations for Bangalore ICD	
5.4.8 CHPT Facilitate construction of new POL-products pipeline	
5.4.9 CHPT Reduce the port charges at Chennai to match the prices at Krishnapa	
oil	-
5.4.10 CHPT Start edible oil rakes between Chennai and Madurai	
5.4.11 CHPT Facilitate investment in mechanized fertilizer bagging plant	
5.5 VISHAKHAPATNAM PORT TRUST	
5.5.1 Port performance dashboard – VPT	
5.5.2 Summary of suggestions – VPT	
5.5.3 VPT Setup new Business Development team to convert customers	
5.5.4 VPT Reconfigure cargo handling volumes of existing customers along S. Ce	
from low to high productive berths	-
5.5.5 VPT Allocate additional land to high productive berths to drive higher prod	
5.5.6 VPT Revisit storage cost in PPP BOT to make them competitive	-
5.5.7 VPT Setup dashboard and regularize weekly meetings to track performance	
use inputs to set productivity norms	
5.6 MUMBAI PORT TRUST	
5.6.1 Port performance dashboard – MbPT	

	5.6.2 Summary of suggestions – MbPT	. 208
	5.6.3 MbPT Install quick release systems on berths	. 209
	5.6.4 MbPT Policy change to mandate usage of testing lab at JD	210
	5.6.5 MbPT Bring JD 5 plans of creating tank farms forward and implement low performanc penalties	е
	5.6.6 MbPT Installation of higher capacity shore crane will help increase productivity by 20	0%
	5.6.7 MbPT Use of 2 nd OCT berth for steel handling to unlock additional capacity	
5.7	/ KANDLA PORT TRUST	
	5.7.1 Port performance dashboard – KPT	
	5.7.2 Summary of suggestions in KPT I/II	
	5.7.3 KPT Increasing crane throughput by optimizing grab sizes to commodities	
	5.7.4 KPT Bunching of TIL ELL cranes in fewer berths to increase crane density on the berths	
	5.7.5 KPT Improving performance of own MHC by optimizing boom length and grab volume	
	5.7.6 KPT Increase crane density by adding 4 100T MHCs	
	5.7.7 KPT Reduce tug fuel consumption	
	5.7.8 KPT Improve night navigation by using advanced navigational aids	222
	5.7.9 KPT Reducing fertilizer rake loading time by adding automated bag loader	
	5.7.10 KPT Increase overall dry bulk productivity by instituting berth productivity norms	
	5.7.11 KPT Reduce non-working time by instituting hot seat changes	
	5.7.12 KPT Reduce non working time by changing shift schedule	
	5.7.13 KPT Increase overall liquid productivity by instituting berth productivity norms	
5.8	B KOLKATA PORT TRUST	
	5.8.1 Port performance dashboard – KOPT	228
	5.8.2 Summary of suggestions in KoPT	
	5.8.3 KOPT HMC for berths 2,8; hardstand 56 sqm	
	5.8.4 KOPT HMC for berths 9, 13; hardstand 150 sqm	. 232
	5.8.5 KOPT Reduce non-working time by reducing shift change time, marine wait time	. 233
	5.8.6 KOPT Increase capacity of mechanized coal export berth 4	234
	5.8.7 KOPT Making transloading option attractive by reducing overall cost and creating a combined package	
	5.8.8 KOPT Increase container handling capacity by adding HMC to berth 3 in KDC, NSD	
	5.8.9 KOPT Reduce NWT by instituting hot seat changes and reducing marine wait time 5.8.10 KOPT Improvement of truck traffic during night by facilitating night payment and	
	customs clearance	
	5.8.10 KOPT Reduce rake turnaround time at KDS by improving railway infrastructure	
	5.8.11 KOPT Dredging cost reduction	
	5.8.12 KOPT Reduce loco hiring cost by relocating 2 good quality locos to from KDS to HDC	
	5.8.13 KOPT Reduce tug operation cost at HDC by scrapping own tugs and replacing them b hired tugs	
	5.8.14 KOPT Reduce security cost at KDS by reducing security cover for areas with lower act.	
	5.5.14 Korr neuvel security cost at Kos by reducing security cover for areas with lower det	
5.9	VOC Port Trust	
0.0	5.9.1 Port performance dashboard – VOCPT	
	5.9.2 Summary of suggestions in VOCPT	
	5.9.3 VOC Incorporate specific productivity norms in berthing policy	
	5.9.4 VOC Installation of MHCs at berths III and IV	
	5.9.5 VOC Mechanization of evacuation at berth IX	
	5.9.6 VOC Consolidation and improvement of spare capacity on TNEB berths	
	5.9.7 VOC Short-term agreement with DBGT for us of berth VIII for copper concentrate vesse	

5.10	Mormugao Port Trust	-
	5.10.1 Port performance dashboard – MPT	
	5.10.2 Summary of suggestions in MPT	
	5.10.3 MPT Implement hot seat shift change for HMC	
	5.10.4 MPT Improve HMC operator performance	
	5.10.5 MPT Addition of HMC on general cargo berths	
	5.10.6 MPT Enhance draft for JSW coal berth to increase cargo handling capacity	
	5.10.7 MPT Development of 10 MTPA new coal terminal	
	5.10.8 MPT Doubling of MPT railway line to Hospet	
	5.10.9 MPT SVRS announcement and redeployment of MOHP employees	
5.11	New Mangalore Port Trust	
	5.11.1 Port performance dashboard – NMPT	
	5.11.2 Summary of suggestions - NMPT	
	5.11.3 NMPT Increase container cargo by attracting customers from Mysore and adjoining	
	areas	
	5.11.4 NMPT Improve service level for containers	
	5.11.5 NMPT Setup a LNG terminal at NMPT	
	5.11.6 NMPT Setup a mechanized berth for handling fertilizer	265
	5.11.7 NMPT Reduce overtime costs for marine equipment by migrating to three shift	
	deployment	
5.12	KAMARAJAR PORT TRUST	
	5.12.1 Port performance dashboard – KPL	
	5.12.2 Summary of suggestions - KPL	
	5.12.3 KPL Improve productivity at existing coal terminals to increase cargo handling capac	
	and implement governance mechanism	
	5.12.4 KPL Requirement of additional cargo to fill capacity at Chettinad terminal	
	5.12.5 KPL Modification of existing empty Iron Ore berth to handle coal and serve hinterlan demand	
	5.12.6 KPL Improve productivity at liquid terminal through reduction in pigging and samplir	ıg
	time	272
СНАРТ	FER VI - SUGGESTIONS AND CONCLUSIONS	273
6.1	TECHNOLOGY UPGRADE	273
6.2	Process Optimization	
6.3	PRICING & INCENTIVE ALIGNMENT	
6.4	EQUIPMENT UPGRADE	
6.5	Barge based dredging successfully piloted in Kolkata	-
6.6	Dual-loading of ships implemented at Paradip resulting in achievement of 2X normal berth	
	JCTIVITY:	279
6.7.	LIQUID NORMS DESIGNED IN KANDLA TO ENCOURAGE CUSTOMERS TO SHIFT TO LARGER VESSELS	280
6.8.	JNPT EVACUATION INITIATIVES SHOWING IMPROVEMENTS	281
6.9	Likely Reduction Turnaround Times across ports	283
6.10	>Rs 3,500 Cr value creation	
6.12	FOCUS ON MECHANIZATION OF PORT BERTHS TO ENHANCE PORT CAPACITY	
6.13.		
APPEN	DIX - SURVEY OF MAJOR INDIAN PORTS	
	ENCES	
NELEK		300

List of Figures and Tables

FIGURE 1.1 INDIAN SEAPORTS AND CONTRIBUTION TO GDP THROUGH EXPORT-IMPORT TRADE	20
FIGURE 1.2 CONTRIBUTION OF MARITIME TRADE TO TOTAL EXPORT-IMPORT TRADE VALUE IN INDIA	21
FIGURE. 1.3 THE LOCATION AND TRAFFIC OF ALL MAJOR PORTS IN THE COUNTRY.	22
TABLE 1. 1 TRAFFIC HANDLED BY THE MAJOR PORTS DURING 2016-17.	
FIGURE 1.4 (A) TURNAROUND TIME STATUS AT MAJOR PORTS OF INDIA.	24
FIGURE 1.4 (B) VESSELS TRAFFIC (COAL), FY 2015	
FIGURE 1.5 (A): COMPARISON OF LOGISTICS SHARE TO GDP.	
TABLE 1.4 IMPACT OF HIGH LOGISTIC COSTS OF SEAPORTS	
FIGURE 1.6 (A): EXPECTED INVESTMENTS IN PORTS SECTOR IN THE YEARS TO COME.	
TABLE 2.1: LIST OF JOURNALS & DATABASE EXPLORED FOR LITERATURE REVIEW	
TABLE 2.2 THEMATIC SEGREGATION OF LITERATURE REVIEW DATA	
TABLE 2.3 AUTHOR-WISE LITERATURE REVIEW	
TABLE 3.5.1 BENCHMARKING PROCESS	97
TABLE 3.5.2 DATA NORMALIZATION WAS UNDERTAKEN FOR ACCURATE BENCHMARKING	97
TABLE 3.5.3 DATA COLLECTION	99
TABLE 3.5.4 METRIC USED FOR BENCHMARKING PROCESS	100
FIGURE 4.1: CONTAINER TRAFFIC, 2014-15	
FIGURE 4.1.1: CAPACITY UTILIZATION AT NOMINAL PRODUCTIVITY	
FIGURE 4.1.2: BERTH OCCUPANCY	
FIGURE 4.1.3: BERTH PRODUCTIVITY	
FIGURE 4.1.4: CRANE PRODUCTIVITY	
FIGURE 4.1.5: THROUGHPUT PER HECTARE	116
FIGURE 4.1.6: GROUND SLOTS PER HA	
FIGURE 4.1.8: QUAY CRANES PER 100 METERS QUAY LENGTH	
FIGURE 4.1.9: RUBBER TIRE GANTRY CRANE PER QUAY CRANE	
FIGURE 4.1.10: RTGC PRODUCTIVITY	
FIGURE 4.1.11: TERMINAL FACTOR PER QUAY CRANE	
FIGURE 4.1.12: TT PRODUCTIVITY	
FIGURE 4.1.13: MODE OF EVACUATION	124
FIGURE 4.1.14 THROUGHPUT PER LANE PER DAY	
FIGURE 4.1.16: RAIL THROUGHPUT/DAY/RAIL LINE (TEUS)	
FIGURE 4.1.17: RAIL TURNAROUND TIME	
FIGURE 4.2.1: DISTRIBUTION OF COAL TRAFFIC	
FIGURE 4.2.2: DISTRIBUTION OF SIZE OF COAL VESSELS CALLS	
TABLE 4.3.1: DATA CLEAN UP, RE-ANALYSIS AND NORMALIZATION DONE TO ENSURE 'LIKE TO LIKE' BENCHMARKING	
FIGURE 4.2.4 (A): OCCUPANCY LEVEL (MECHANIZED BERTH)	
FIGURE 4.2.5 (A): PRODUCTIVITY ACROSS BERTH (MECHANICAL)	
TABLE 4.2.7: BERTHS HANDLING >60% COAL TRAFFIC (2014-15)	
FIGURE 4.3.1: PERCENTAGE OF SPLIT TRAFFIC DRY BULK FERTILIZER VESSEL CALLS	
FIGURE 4.3.2: BERTHS HANDLING MORE THAN 40% DRY BULK FERTILIZER CARGO FY 2014-15	
FIGURE 4.3.5: BERTHS HANDLING MORE THAN 40% DRY BULK FERTILIZER CARGO	
FIGURE 4.4.1:MAJOR PORT DISTRIBUTION OF LIQUID CARGO	
FIGURE 4.4.2: PERCENTAGE OF SPLIT TRAFFIC	
FIGURE 4.4.3: LIQUID BERTHS - OCCUPANCY	
FIGURE 4.4.4 (A): CRUDE PRODUCTIVITY	
FIGURE 4.4.5: LPG PRODUCTIVITY	
FIGURE 4.4.6: POL PRODUCTIVITY & AVG FLOW RATE	
FIGURE 4.4.7 PRODUCTIVITY & AVG FLOW RATE (OTHER LIQUIDS)	

FIGURE 4.5.1 (B): DRY BULK STORAGE ALLOCATION ACROSS DEEP-DIVE PORTS	154
FIGURE 4.5.1 (C): BREAK BULK STORAGE ALLOCATION ACROSS DEEP-DIVE PORTS	155
FIGURE 4.5.2 (A): TAT FOR RAKE LOADING ACROSS DEEP-DIVE PORTS - COAL	156
FIGURE 4.5.2 (B): TAT FOR RAKE LOADING ACROSS DEEP-DIVE PORTS - FERTILIZERS	156
FIGURE 4.6: TOTAL COST PER TON OF TOTAL TRAFFIC	157
FIGURE 4.6.1: PERCENT TO TOTAL EXPENSES	158
FIGURE 4.6.2 (A): LABOUR COST PER TON OF TOTAL TRAFFIC	159
FIGURE 4.6.3 (A): NO OF EMPLOYEES PER TON OF NON CONTAINER DRY CARGO	160
FIGURE 4.6.4: MAINTENANCE AND OPERATIONS COST PER TON OF TOTAL TRAFFIC	161
FIGURE 4.6.5: PERCENTAGE OF CRANE UTILIZATION	
FIGURE 6.5 (A): BARGES DEPLOYED FOR CARRYING DREDGED SILT TO DUMPING SITE	278
FIGURE 6.6 (A): UTILIZATION OF SHIP LOADERS MAXIMIZED THROUGH DUAL LOADING	
FIGURE 6.7 (A): PARCEL SIZE BASED NORMS DRAFTED FOR KANDLA PORT	
FIGURE 6.7 (C):>50% IMPROVEMENT DUE TO NORM ROLLOUT	
FIGURE 6.8 (C): 27% REDUCTION IN BORDER COMPLIANCE TIME	
FIGURE 6.9: LIKELY REDUCTION TURNAROUND TIMES ACROSS PORTS	
FIGURE 6.9 (C): SHARP JUMP IN PRODUCTIVITY ACROSS HIGH OCCUPANCY BERTHS	
FIGURE 6.9 (D): SHARP JUMP IN PRODUCTIVITY ACROSS HIGH OCCUPANCY BERTHS	
FIGURE 6.11: HIGH VALUE INITIATIVES NEED TO BE COMPLETED IN TIME	
FIGURE 6.13: WAY FORWARD : FEW IDEAS TO DRIVE FURTHER EFFICIENCY UNLOCK BEYOND CAPITAL PROJECTS	

EXECUTIVE SUMMARY

BENCHMARKING AND TRANSFORMATION OF MAJOR PORTS IN INDIA

Economic buoyancy coupled with progressive flow of foreign investments have fueled growth in Indian foreign trade during the last three decades. Easing of quantitative restrictions and tariff levels across product lines have resulted in growth of India's international business and trade. Consequently, both imports and exports have seen an upward trend resulting in a spurt in demand for shipping of cargo across many nations across the world. Recognising the need for existence of robust ports that act as key nodes in the supply chain cycle, government of India has allowed private participation including 100% FDI investments in port sector. Ports in India, due to strategic reasons, were under the control of both Federal and State governments in India. However, due to numerous reasons, performance standards of these ports stagnated at low over a period of time and they could not match-up to the growing needs of India's foreign trade. Taking into cognizance of the prevailing conditions at the publicly owned ports, government of India allowed private investments at major ports of India that are aimed to make them competitive vis-à-vis the private ports. Investments through PPP mode at various processes of these ports are aimed at improving their operational efficiency and result in financial gains.

It is interesting to note that ports in India have improved in their cargo handling capacities with private ports taking a lead over their public counterparts. There has been a significant growth in the cargo handled by these ports with major ports handling 64.83 MT during the year 2016-17 and with CAGR of over 4% from 2007 to 2017. The non-

major ports handled 48.52 MT during the year 2016-17 with a CAGR of over 10% from 2007-17. In spite of these growth trends, Indian ports have to go a long way to match their performance standards at par with the counterparts of the world. Efficiency trends displayed by some the world ports are resultant of meticulously designed performance standards. Benchmarking standards has resulted in competitive spirit among the ports and helped them to enhance their performance and efficiency. Lack to such benchmarks have resulted in lopsided performance among the major ports. Performance declared by the major ports merely show the actuals which, often times, cannot be compared to any benchmarks due to numerous factors like infrastructure facilities at the ports, type of cargo handled, clientele, etc. Considering the existence of a vacuum in efficiency comparison mechanism, this research has framed its business problem.

Although privatization has resulted in efficiency improvements at Major Ports of India, lack to efficiency benchmarks are hampering the measurement of their absolute efficiency.

As an attempt to probe the implications of theory and practice of benchmarking, a search of existing literature is made with key words including 'performance', 'efficiency', 'benchmarking', and 'performance standards'. The search resulted in gathering of research papers covering various sectors, apart from ports, including aviation, agriculture, banking, airlines, power, automobiles, shipping etc. from across 200 research articles covering 27 journals of international repute. The literature is segregated into broad themes of 'performance and efficiency – general', 'performance and efficiency – ports', 'benchmarking – general', 'benchmarking – ports'. A review of literature highlights the fact that benchmarking is attempted in numerous sectors and is slowly gathering momentum in port sector at some selected parts of the world. However, most of these

studies relied on publicly available data and used both parametric and non-parametric tools for benchmarking. The studies have also proved that benchmarking has resulted in significant improvement in efficiencies of these ports. However, gaps gathered from the literature review prove need for more studies on benchmarking using newer techniques that allow usage of data that can be gathered from personal interactions and observations that are generally not in public domain. Literature on Indian ports reveal a greater need and scope for benchmarking studies that can comprehend and suggest in proposing of benchmarking standards for sustainable efficiency improvements.

These gaps have helped in devising the following research problem, research questions, and research objectives:

Research Problem

Numerous studies have measured efficiency of Indian major ports. However, these studies could not prescribe any effective and implementable standards for improvement in efficiency parameters. This warrants a comprehensive research to set performance benchmarks in comparison to the best-in-class ports and thereby explore measures for improvement of overall efficiency resulting in optimisation of capacity and financial gains.

Research Questions:

- How to benchmark various Key Productivity Parameters in port operation for Major Ports of India?
- How port efficiency can be improved using benchmarks?

Research Objectives:

- To determine & calculate benchmarks for Key Productivity Parameters in port operation for Major Ports of India;
- To explore the initiative required to improve efficiencies at major ports of India and transform them into best- in- class ports.

To answer the first research question of determining 'important KPIs' and 'calculate benchmark', major ports were clustered on the basis of cargo being handled following which a comparison of selected performance indicators on basis of literature review in relation to some of the best ports is done and finally a survey method is used to identify reliable and pragmatic benchmarking standards. For the second research question, 'efficiency improvements at major ports of India', deep 'Root Cause Analysis' carried through Fish-Bone diagram analysis, "5 Whys analysis" are captured in deep-dive analysis chapter that form basis for suggestion of measures to improve efficiency standards at these ports.

Overall, this research encompasses a unique exercise of exploring solutions after deep dive analysis into the real productivity issues in Major Ports by taking into consideration the aspirations of stakeholders and it is what distinguishes from other research studies. These solutions are vividly described under various heads like Technology upgrade, Process optimization, Pricing & incentive alignment and Value creation in the last chapter.

ABBREVIATIONS

AHP -	Analytic Hierarchy Process
BOT -	Built Operate Transfer
CE -	Chief Engineer
Chen	Chennai
CHPT -	Chennai Port Trust
CME -	Chief Mechanical Engineer
Coch -	Cochin
COL/CMB -	Colombo
- CoPT	Cochin Port Trust
DBGT -	Dakshin Bharat Gateway Termial
DMU -	Decision Making Units
DPR -	Detail Project Report
DPW -	DP world
EDP -	Early Departure Procedure
EIR -	Equipment Interchange Receipt
ELC -	Electric Level Luffing Crane
EOI -	Expression of Interest
GTI -	Gateway terminal
HDC -	Haldia Dock Complex
JEB/JAB -	Jebal Ali
KoPT -	Kolkata Port Trust
KPL (Ennore)-	Kamarajar Port Limited
KPT -	Kandla Port Trust
KRI -	Krishnapatnam
KTPD -	Killo Tons Per Day
MbPT -	Mumbai Port Trust
MgPT -	Mormugao Port Trust
MMC -	Mobile Harbor Crane
MMT -	Million Metric Ton
MOHP -	Mechanical Ore Handling Plant
MPSS -	Most Productive Scale Size
MT -	Metric Ton
MTPA -	Metric Ton Per Annum
MUN -	Mundra
NMPT -	New Mangalore Port Trust
NWT -	Non-working time
OCR -	Optical Character Recognition
OCT -	Outer Container Terminal
OPEX -	Operating Expenditure
POL -	Petroleum Oil Lubricants
PPT -	Paradip Port Trust
PSA -	1
QC -	Port of Singapore
•	Quay Crane Quick Palaasa System
QRS -	Quick Release System
RFQ - RTGC -	Request for Qualification
KIUC -	Rubber Tyred Gantry Crane

SAH	-	Salalah
SIN	-	Singapore
SPM	-	Single Point Mooring
SVRS	-	Special Volunteer Retirement Scheme
TAMP	-	Tariff Authority of Major Ports
TPH	-	Tons per Hour
TRT/TAT	-	Turnaround time
TT	-	Tractor Trailer
ULA	-	United Liner Agencies
VPT	-	Vishakhapatnam Port Trust
WT	-	Working time
YOK	-	Yokohama

CHAPTER I - INTRODUCTION

India, a major maritime nation, is bestowed with a vast coastline of 7517 Kms including the two island territories, dotted with 12 major ports and 176 non-major ports. Cargo Volumes handled in Indian Ports has seen a strong growth in the last decade. Traffic has grown by around 10% CAGR during this period. Volumes are expected to continue growing at this rate as India's GDP growth rate accelerates back to 7-8% YoY basis.

The demand for coal, petroleum, container and other commodities can further accelerate if the plans for debottlenecking of logistic infrastructure are implemented in time, and the 'Make in India' push drives greater industrial production and foreign trade. Further, the Sagarmala initiative is expected to drive coastal movement of cargo to further increase the volumes handled at the Indian Ports.

1.1 Background

Ports play a vital role in the international trade of any country. In India, exports and imports account for almost 50% of the country's GDP (Figure – 1.1). Maritime trade further contributes to a significant 90% of the total export-import trade value of the country (Figure – 1.2).

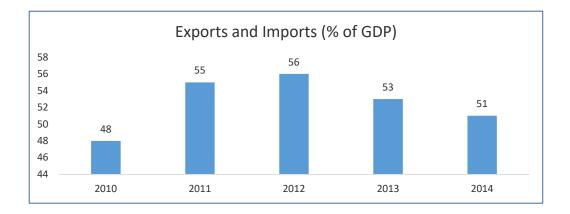


Figure 1.1 Indian Seaports and contribution to GDP through export-import trade

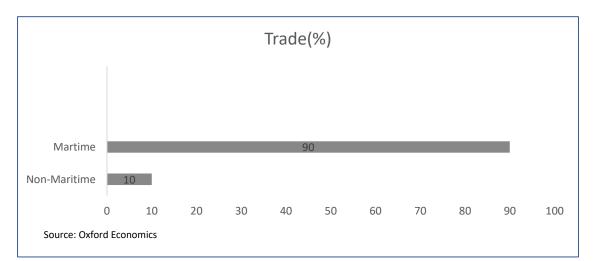


Figure 1.2 Contribution of Maritime trade to total export-import trade value in India *Source: Oxford Economics*

1.2 Major Ports in India - An Overview:

Major ports form the backbone of India's port network accounting for 57% of overall port traffic. India has 12 major ports across the coastline of the country – Kandla, JNPT and Mumbai on the western coast; Kolkata and Paradip on the eastern coast; and Vizag, Chennai, New Mangalore, VOC, Ennore, Cochin and Mormugao on the southern coast of India. These ports handled approximately 556 million tonnes (MMT) of cargo in the year 2013-14. The following figure depicts location-wise distribution of major ports in the country.

Figure. 1.3 The location and traffic of all major ports in the country.

Total traffic handled by major ports during the current year 2014-15 is around 582 Million Metric Ton (MMT).

Table below gives total traffic handled by the major ports of India during 2016-17

Table 1.1Traffic handled by the Major Ports during 2016-17			
Port	Traffic (MMT)	Port	Traffic (MMT)
Kandla Port Trust	92	Kolkata Port Trust	46
Mumbai Port Trust	62	Paradip Port Trust	71
JNPT Port Trust	64	Vizag Port Trust	58
Mormugao Port Trust	15	Ennore Port Corporation	30
New Mangalore Port Trust	37	Chennai Port Trust	53
Cochin Port Trust	22	VOC Port Trust	32

Source: Major Ports of India: A profile 2016 – 17 by Indian Ports Association

Though the major ports of India contribute significantly to the national economy, they have been losing share to non-major ports in the recent years – traffic volumes at major ports decreased from 71% in 2006-07 to 57% in 2013-14.

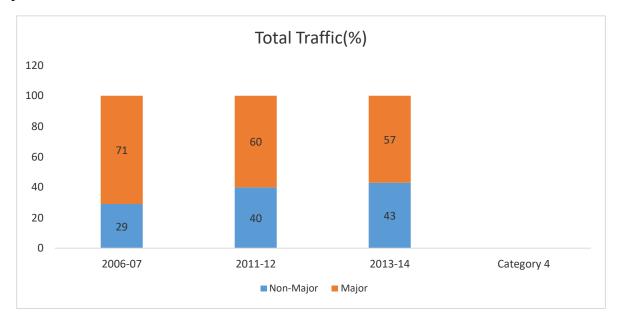
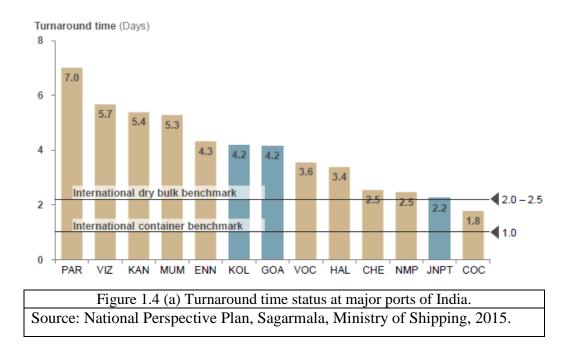


Figure 1.3 (b) Traffic handled by major and non-major ports of India Source: Major Ports of India: A profile 2016 – 17 by Indian Ports Association

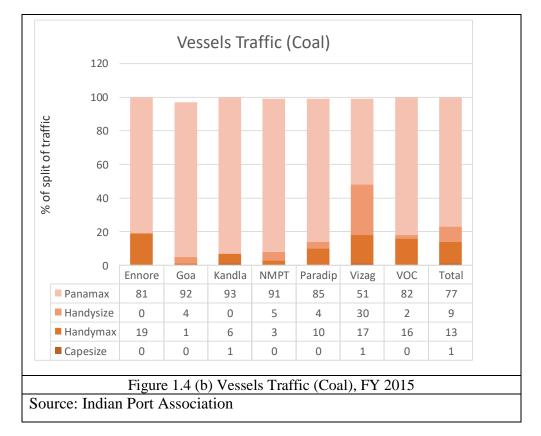
The 12 Major ports have faced key challenges in the last 8 years with a decline in profitability and market share. Operating profit margins have shrunk from 43% in 2008 to 28% in 2014 with a low of 23% in 2013. Although profitability has seen an uptick, other key challenges need to be addressed to sustain the growth in profitability.

1.3 Major ports losing share to non-major ports


Government policies to open-up port sector to private participation has seen a sharp rise in the number of private ports and has led to a shrinkage in the cargo volumes handled by major ports.

The loss of share by major ports is attributed to three key areas:

- Low productivity levels and higher turn round time
- Congestion issues in road evacuation
- Insufficient draft to handle large vessels


1.4 Higher Turn round time in major ports of India

Average turn round time of vessels at major ports of India are much higher in comparison to International benchmarks for Container vessels and Dry bulk vessels, as can be seen from the Figure 1.4 (a)

1.5 Size of Coal vessels visiting major ports of India

Panamax vessels are most frequent at major ports of India for Coal traffic. Cape size vessels to achieve economy of scale are rare as can be seen from the Figure – 1.4(b). Average parcel size ranged between 40546 tonnes to 66844 for Panamax vessels against 110666 tonnes registered in one Indian Major Port. This is primarily due to availability of lesser draft at Indian ports.

1.6 Logistics share in Indian GDP

India spends 12-15% of GDP on logistics costs as compared to 9-12% for other BRIC nations, and just 7-8% for developed countries. A 0.5% decrease in logistics cost, relative to GDP, leads to a 2% increase in trade and a 40% increase in exports, as can be seen from the Figure 1.5 (a)

Therefore, it is important that high logistics costs be curbed both directly through improving port cost efficiency, and indirectly through port operational efficiency, Charges related to vessels, stevedoring and storage have a direct impact on costs, on the other hand vessel turn-around time (TAT), long dwell time, and high rake and truck turn-around time increase inventory costs and freight burden, which have an indirect impact on overall logistics costs. Likely impacts of high logistic costs of seaports are shown in the Table 1.4

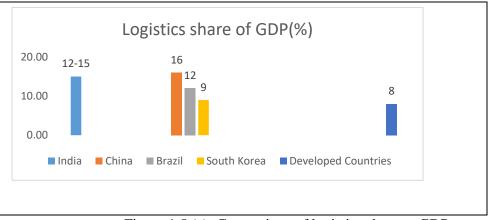


Figure 1.5 (a): Comparison of logistics share to GDP. Source: India Transport Report 2014

Direct Impact through Port's		Indirect Impact of operations on	
charges		costs	
Vessel related charges]	High TAT increases overall shipping	
vesser related charges		costs	
Stevedoring Charges		Congested yards & long dwell cargo	
		dwell time increases inventory costs	
Storage charges		High rake & truck TAT at ports	
		increases freight burden	
Improve port cost 🛛 🥧		Improve port operational	
efficiency		efficiency	
Source: India Transport Report 2014			

Table 1.4Impact of high logistic costs of seaports

1.7 Capacity augmentation

According to the 12th Five-Year Plan of the Planning Commission, Government of India, the port sector to receive significant investments to enhance capacity, and to reach a capacity of 3,200 MMT by 2020, which is four times the capacity handled in 2013-14. (Figure 1.6(a) and 1.6 (b)). However, there is a need to ensure capital efficiency by also maximizing utilization of existing infrastructure.

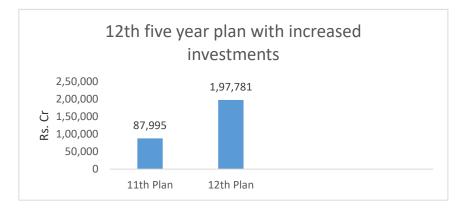


Figure 1.6 (a): Expected Investments in Ports Sector in the years to come. Source: Planning Commission, Maritime Agenda 2020

1.6 (b): Expected capacity enhancements in years to come.Source: Planning Commission, Maritime Agenda 2020

Therefore, it is critical to achieve greater productivity and efficiencies to unlock capacity, and ensure that we do not undermine our competitiveness and slow down economic growth. Process delays and operational bottlenecks are the key reasons behind under-utilization of capacity. Focused efforts are required to streamline these operations and strengthen processes along the entire value chain.

1.8 Quantitative Benchmarking

1.8.1 Benchmarking Theory:

Formal definition of benchmarking used by Rank Xerox, 2013 'Continuous systematic process of evaluating companies recognised as industry leaders, to determine business and work processes that represent best practices and establish rational performance goals.' In operational terms it is frequency condensed to 'the search for industry best practices that lead to superior performance.' 'Best Practices' refer to the methods used in work processes that best meet customer requirements. Benchmarking is not 'what we want to achieve' but 'how they are to be achieved'.

Types and ways of Benchmarking Theory:

- 1. Types of Benchmarking Product and Process
- 2. Ways of process benchmarking/How benchmarking is done?

a. Benchmarking Internal Operations – to find the best-performing unit within your own company;

- b. Benchmark vis-à-vis competitor;
- c. Best-in-class Comparing your performance vis-à-vis the best in industry;

d. Strategic benchmarking – integrates strategic competitive analysis with bestin-class benchmarking.

1.8.2 Techniques of Benchmarking/Classification:

- Analytical Hierarchy Process (AHP) (Saaty 1980; Partovi, 1994; Ragavan & Punniyamoorthy, 2003; Punniyamoorthy & Murali, 2008.
- ii. Data Envelopment Analysis (DEA) (Banker et al, 1984, Wober, 2002)
- iii. Principal Component Analysis (PCA) De, 2001; Buyukzkan & Marie
- iv. Confirmatory Factor Analysis (CFA) Buyukozkan & Marie, 1998
- v. Stochastic Frontier Analysis (SFA) approach (Walters, 1963; Braeutigam, 1999)
- vi. Partial Productivity Measures (PPM) approach (Saari, 2006)
- vii. Discriminant Analysis- (Itoh, Matsuoka and Okada 2005)
- viii. Cluster Analysis (Fengrong et al. 2014)

In view of various techniques of benchmarking with different sets of assumptions and limitations studied in literature review, it is proposed to use the 'best in class' method using 'Root Cause Analysis' technique.

In this phase, it is proposed to collect data for 12 major ports as well as relevant private Indian ports and international ports to benchmark performance on all three key dimensions of

- 1) Financial,
- 2) Operational, and
- 3) Organizational capability

In each of these benchmarking focus areas/ dimensions, a set of targeted and specific metrics was used for comparing performance. These metrics have been shortlisted since they provide the most specific and insightful understanding of the relative performance of the ports. The KPIs shortlisted under following heads are:

- 1. Demand and utilization
- 2. Marine services
- 3. Productivity
- 4. Equipment
- 5. Yard and gate productivity
- 6. Labor
- 7. Profile/cost metrics

In case of any specific situation /context for a port, other relevant metrics added as required for building an in-depth and specific understanding of the port's performance.

1.8.3 Selection of benchmark ports and data normalization

The major ports have been clustered based on cargo categories (mechanized dry bulk, conventional dry bulk, containers, and break bulk) for the purpose of benchmarking, relevant and comparable private Indian Ports and international ports were selected to ensure that these benchmark ports are comparable on the following parameters:

- Size of port
- Number of berths
- Type of commodity

• Degree of automation

During the benchmarking phase, it was proposed to conduct a 'customer survey'. The survey to be a combination of online and face-to-face discussions with key port stakeholders. The objective of this survey was to provide an external perspective on stakeholders' views of the port, rank KPIs determined by literature review and highlight the key concerns and issues being faced by them in conducting operations at the port.

List of some of the stakeholders surveyed:

- Container liners and bulk ship owners/operators
- Terminal operators
- Cargo handling /stevedore agents
- Railways
- Logistics and transport providers
- Exporters/importers (end-customer)

As an outcome from the benchmarking phase, a list of priority focus areas was identified for each of the 12 major ports across financial, operational and organizational metrics.

1.9 Business Problem:

Although privatisation has resulted in efficiency improvements at Major Ports of India, lack to efficiency benchmarks are hampering the measurement of their absolute efficiency.

Ports, handle 80% of world trade by volume and over 70% by value. In 2000, 5.88 billion tons was moved through World's ports. In India also, Ports play a vital role in the overall economic development of the country. About 90% by volume and 70% by value of the country's international trade is carried on through maritime transport. Hence, the significance of Ports in the overall economy of the country needs no emphasise. Having recognized the immense importance of the role of Ports, Indian Ports are still languishing at Turn Round time of 2.25 days and Average Pre-Berthing Detention at 6.94 Hrs on Port Account. Ideally, there should not be any pre-berthing detention (Zero Pre-berthing detention) and also Overall Turnaround time should not exceed 1 day in any case. Ship-standing cost is in the level of US\$ 9,000 per day (Approximately 6, 12,000 Rs. Per day). If Vessels stay longer for various reasons, Trade and the Nation lose economically. Similarly, Vessel related charges are reportedly high in Indian ports and consequently entails high transactional cost. It is required to study and do in-depth research to quantify the loss and measures to mitigate/minimise the loss.

1.10 Motivation for Study:

Efficiency and productivity at ports across the world has been an area of interest for researchers and policy makers from times immemorial. Numerous studies in the western and eastern world have proved positive relationship between port performance and development of an economy. Setting standards for performance of ports, actually, help in enhancing of performance of ports and numerous initiatives in this direction are already at implementation stage among countries competing for a niche maritime sector. In the Indian context, significant number of researchers have attempted to measure efficiency and productivity in hindsight. However, considering, the buoyant aspirations of Government of India, existence of performance benchmarks in the port sector can alone help in enhance absolute efficiency levels at the Major Ports of India. The current research, therefore, is an attempt to set and achieve performance benchmarks for the Major Ports of India.

CHAPTER II- LITERATURE REVIEW

With intent to conduct literature survey of the research works done hitherto, a theme based approach is used to search various sources. Apart from research works, numerous manuscripts, newspaper articles, industry reports, and orders are reviewed. Following table shows details of the same:

Key Words Used	Journals Explored	Databases
	1. Transport Research	
	2. Maritime Policy & Management	
1. Benchmarking	3. International Journal on Production	
2. Maritime sector	Management	
3. Performance	4. Transport Reviews	
measurement	5. Transportation Planning and	
4. Port Performance	Technology	Seenus
5. Port Evaluation	6. Applied Economics	Scopus Tavlor &
6. Port Efficiency	7. International Journal of Logistics	Taylor & Francis
7. Port Productivity	Research and Applications	Elsevier
8. Pre-Berthing	8. Transport Policy	
Detentions	9. Transportation Research–A to E	Google- scholar
9. Transactional Costs	10. Journal of Economics & Business	Palgrave
10. Port Sector	11. Journal of Maritime Research	Faiglave
Reforms	12. World Development	
11. Indian Ports	13. Maritime Policy	
12. Port	14. UNCTAD Reports	
Privatization	15. World Bank Reports	
	16. Reports of Ministry of Shipping	
	17. Reports of Indian Port Association	

Table 2.1: List of Journals & Database explored for Literature Review

Literature collected from the above sources is thematically collated as: Table 2.2 Thematic segregation of Literature Review Data

1. Performance and Efficiency	2. Benchmarking		
a. In General,	a. In General		
b. In Port Sector	b. In Port Sector		
3. Pre Berthing Detention	4. Transactional Cost		

Table 2.3Author-wise Literature Review					
Author(s)	Year	Context	Variables	Conclusions	Gaps
M.R.Ghasemi	2015	A fuzzy expected	CO2 equivalent,	The results of	Fuzzy expected GDEA model
Joshua Ignatius		value approach under	quantity of	validation and model	requires solving
Sebastian Lozano		generalized data	energy, gross	comparisons showed	only one linear programming
Ali Emrouznejad		envelopment	electricity,	that the proposed model	problem, which would generate
		Analysis	average annual	is able to handle	results for fuzzy expected CCR,
			emissions,	asymmetric fuzzy	fuzzy expected BCC, and fuzzy
			substituted	numbers, discriminate	expected FDH models in a unified
			fuel	efficient DMUs better	way
				and avoid infeasibility	
				problems when	
				combined with the	
				super-efficiency	
				method.	
Jacek Strojny		Implementation of the	GUS data	Application of AHP	Necessary to find a compromise
		AHP and	(National	method allows	between Theoretical assumptions
		benchmarking in	statistical data)	customizing the analysis	and Practical measurement
	2015	Strategic Analysis		to the information	capability.
		of Polish Regions		needs, arising from the	
				management of the	
				territorial unit.	
Subhadip Sarkar	2015	Assessment of	Productivity,	The proposed method	Deficits are found high in case of
		performance using	schools	offers ranking to the	schools like B-E in both outputs.
		MPSS based DEA		DMU based on their	Selection of right variables is an
				performance index.	issue.
				Although, it does not	

				have any resemblance	
				with the ranking found	
				in case of CCR	
				DEA or from their	
				super-efficiencies, but,	
				it clearly supports the	
				claim of these two	
				models that the schools	
				E and F are very close	
				to be referred as	
				efficient performers.	
Reetesh Sharma	2015	Cathay & Southwest:	Southwest	The success of M&As	Business performance is
Mark Thomas		flying the flag of good	airlines, cathay	results from giving	influenced by external factors
		practice in airline	pacific airlines	importance to both the	which are beyond firm's control
		mergers		business model and	and thus, not considered for
				human factors, as the	analysis.
				latter ultimately impacts	
				the customers' loyalty	
				and perception of the	
				brand.	
Navarro-Chavez	2014	Allocative and	Fixed Assets,	Results on efficiency	
& Zamora-Torres		economic efficiency	Operating	realize the need to	
		of 32 container ports	Expenses,	advance strategies for	
		across the world for year 2012.	Number of terminals,	reduced costs and a better mix of inputs.	
		yeai 2012.	Container Yard	ocuer mix or mputs.	
			Area, Throughput		
			(TEUs)		

Mustafa	2014	Using Shapley value	Generation	In the proposed	Despite other multi-objective
Jahangoshai		in multi-objective data	capacity (MW)	MODEA model, each	problems, the existing methods
Rezaee		envelopment analysis:	Planned outage	function is a category of	and procedures for obtaining
		Power plants	count to total	inputs and outputs.	Pareto solutions cannot be useful.
		evaluation with	properly operated	Each category produces	This approach is based only on
		multiple frontiers	hours (%)	a frontier and DMUs	Shapley value.
				must compete in	
				multiple	
				frontiers to reach higher	
				efficiency than others.	
Enzo Barberio	2014	Human development	Cultivation costs,	The data envelopment	The economic and environmental
Mariano		and data envelopment	intermediate	analysis can be an	dimensions have an important role
Vinicius Amorim		analysis : A structured	consumption	excellent tool to help in	in the analysis of quality of life,
Sobreiro		literature review	materials, total	the measurement and	which proves that all these
Daisy Aparecida			expenses	analysis of issues related	concepts still need a more precise
do Nascimento				to human development,	definition.
Rebelatto				and through it indexes	
				with lower arbitrary	
				weights can be	
				composed, in addition to	
				evaluating the efficiency	
				in generating quality of	
				life from wealth or	
				economic, social and	
				environmental	
				resources.	

Rajasekar et. al.	2014	Measured operational efficiency of Major Ports of India 1993- 2011,	No. of Berths, Length/No. of Docks, Total Staff, , Throughput (TEU), Throughput	Proved that size does not determine port efficiency. Suggested need for long-term plans and modernisation of facilities to maintain efficiency.	Selected only few of the major ports
Kazim Baris Atici Victor V. Podinovski	2014	Using data envelopment analysis for the assessment of technical efficiency of units with different specializations : An application to agriculture	(Tons) Cultivation costs, intermediate consumption; materials, total expenses	This paper proposed a way to overcome the above problem based on the incorporation of production trade-offs between different outputs in DEA models.	Computations show that the use of conventional VRS and CRS models in our application results in poor efficiency discrimination due to a large number of outputs in each regional sample.
Adel Hatami- Marbini Mohsen Rostamy- Malkhalifeh Per J. Agrell Madjid Tavana Fatemeh Mohammadi	2014	Extended symmetric and asymmetric weight assignment methods in data envelopment analysis	A panel of district heating plants in Denmark 2000–2001 around 286 plants for with two inputs and four outputs.	One of the most enticing, yet frustrating, features of non-parametric frontier analysis with DEA is the endogenous dual weight determination. The absence of the requirement to impose an a priori functional form turns DEA into a	Complete flexibility to assign dual weights may also lead to results that are nothing but mathematical abstractions, failing to detect best system practice among outliers and mavericks with little or no predictive value.

				powerful, informative and cautious	
				performance assessment method.	
Min Yang Yong Jun Li Liang Liang	2014	A generalized equilibrium efficient frontier data envelopment analysis approach for evaluating DMUs with fixed-sum outputs	Performance of each nation.	method.The proposed approachimprovesEEFDEAapproach(Yangetal.,2014)andFSODEA approach.1-the equilibriumefficient frontier can beachieved in only onestep instead of manysteps in prior study.2-the constraint inEEFDEA and FSODEAthat the sign of ad-justments of fixed-sumoutputs of a DMU mustbe identical is relaxed inGEEFDEA approach.3-the order of evaluationwhich can affect theresults in EEFDEA isnot necessary in theproposedGEEFDEA	The current approach is applied to evaluating performance of each participating country in the 2012 London Olympic Games.
				approach.	

4-it remains to maintain all advantages of EEFDEA approach such as common platform
EEFDEA approach such as common platform
as common platform
evaluation and full rank
orders.
Ole B. Olesen 2014 Stochastic Data Manager talent, The outcome of an The outcome of an efficienc
Niels Christian Envelopment Analysis inefficiency- efficiency analysis analysis based on disaggregat
Petersen — A review environment based upon DEA is for data are more easily understoo
these reasons easy to by the involved decision maker
communicate to but the discriminating power of
decision makers. the corresponding confidence
Equally important, the intervals is weak in the we
outcome extends known scenario with a limite
beyond the estimation of number of observations in
measures of multidimensional input output
inefficiency. space.
Mahdi Mahdiloo 2014 Technical, the factors This paper proposed a The unavailability of the upstream
Reza Farzipoor environmental and incorporated into new way of modeling suppliers' data is a limitation of
Saen eco-efficiency the models are undesirable outputs in our study.
Ki-Hoon Lee measurement for separated as DEA and applied it to The MOLP model enables the
supplier selection: An inputs and outputs technical, environmental identification of a DMU as bein
extension and and eco-efficiency eco-inefficient if the DMU
application of data measurement of either technically of
envelopment analysis suppliers of the Hyundai environmentally inefficient.
Steel Company in South
Korea. This study shows

Dilek Demirbas Helen Flint David Bennett	2014	Supply chain interfaces between a port utilizing organisation and port operator	Port, performance, throughput, operations	that the existing DEA models for this purpose are computationally intensive, since for a data set with n DMUs, running3_n models and linear programming is required This study explored the role of ports within supply chains and examined the interfaces between an organisation that utilizes a port and a port authority/operator, through a case study of a	in the interfaces between an organisation that utilizes a port and a port authority or operator, as well the data used were only from one
				UK port and steelworks.	
Port regulator of			Throughput	South African terminal	
SA	15	Benchmarking South		performance looked at	
		African Ports:		through the lens of	
		container and		productivity measures	
		automotive terminals		registers variable results	
				against the global	
				sample as determined	
Gunter Festel &	2014	Benchmarking of		The developed	

Martin		industrial park		benchmark	
Würmseher		infrastructures in		methodology using the	
		Germany		correction factors made	
				a	
				discussion based on	
				comparable and	
				comprehensible figures	
				possible. It is well suited	
				to evaluate best practice	
				in the field of industrial	
				park infrastructures.	
Avinash Panwar;	2013	Implementation of		It was observed that	Lack of standards at industry level
Bimal Nepal;		benchmarking		large auto companies	makes assessment a challenge.
Rakesh Jain Om;		concepts in Indian		possessing many plants	
&		automobile industry -		prefer to carry out	
Prakash Yadav		an empirical		internal benchmarking	
		study		through transfer of best	
				practices from one unit	
				to another	
Javier Morales		Technical efficiency	Total area,	Gains in productivity	Analysis of port efficiency, such
Sarriera		analysis of container	Berth length,	from the use of ship-to-	as dwell times and crane
Tomas		ports in Latin America	Number of cranes	shore gantry cranes and	productivity.
Serebrisky	2013	and the Caribbean.	in container ports.	berth length are the	
Gonzalo Araya	2013			largest among the inputs	
Cecilia Briceno-				considered.	
Garmendia					
Jordan Schwartz					

Andreia Zanella		Undesirable outputs	All variables we	e Two alternative	Directional CI model has
Ana S Camanho		and weighting	specified	s approaches that can be	weaknesses related to the
Teresa G Dias	2013	schemes in composite	outputs and a	n used for the construction	possibility of obtaining negative
		indicators based on	identical inp	It of CI in this context: an	marginal rates of substitution
		data envelopment	level	indirect approach, based	between desirable and undesirable
		analysis		on a traditional DEA	outputs for DMUs located on
				model, including a	downward-sloping segments of
				transformation in the	the frontier
				measurement scale of	
				undesirable outputs; and	
				a direct approach, based	
				on a directional distance	
				function model, that	
				allows for dealing with	
				the undesirable outputs	
				in their original	
				measurement scale	
Mahmood	2013		Upper bounde	d With the help of the	The current study is mainly
Mehdiloozad		On the identification	variables	introduced notions, it	concerned with the identification
S. Morteza		of the global reference		was demonstrated that	of all the possible reference units
Mirdehghan		set in data		the convex hull of the	of an evaluated inefficient DMU.
Biresh K. Sahoo		envelopment analysis		GRS is equal to the	
Israfil Roshdi				minimum face, from	
				which it was	
				immediately concluded	
				that the minimum face	
				is a polytope. Three	

				types of multipleness	
				may occur in any non-	
				radial DEA model:	
				multiple URSs (TypeI),	
				multiple projections	
				(TypeII), and multiple	
				supporting hyperplanes	
				(TypeIII).	
Ali Mohammadi	2013	Joint Life Cycle	Rice paddy fields	The LCA results	More attempts are required to
Shahin Rafiee		Assessment and Data	Water supply	implied that the spring	develop further uses of the
Ali Jafri		Envelopment Analysis	Water	rice paddy has a lower	LCA b DEA methodology in this
Tommy Dalgaard		for the	Consumption	environmental impact,	field.
Marrie Trydeman		benchmarking of		with regard to global	
Thu Lan T.		environmental impacts		warming, acidification,	
Nguyen		in rice paddy		eutrophication, non-	
Robert Borek		production		renewable energy	
John E.		-		demand and water	
Hermansen				depletion per kg	
				produced compared to	
				the	
				summer rice paddy.	
Amy L. Fraher	2013	Airline downsizing	US Airlines,	Commercial pilots	Although this study included
		and its impact on team	Pilots	working in downsized	pilots from most major US air
		performance		airlines reported	carriers, a significant proportion
		Performance		increased mistakes,	of study volunteers (87 percent)
				distraction, and stress	were employed by a single carrier.
				resulting in a decrease	The
				resulting in a decrease	

				in trust, morale, and organizational commitment, with a corresponding increase in suspicion and selfishness.	sample is not large enough to make statistically significant generalizations to the entire US commercial airline pilot population
Tony Diggle	2013	Water: how collective intelligence initiatives can address this challenge	Agriculture, water resources, climate change, policy, finance, governance.	There are major issues over water to do with lack of access, poor health and sanitation, infant mortality and shortages for agriculture to name just a few.	The major decisions are taken by policy makers and governments outside the industry, thus insiders work is not shown independent that of outsiders.
Maik Huettinger	2013	What determines the business activities in the airline industry? A theoretical framework	Airlines, privatization, labour, finance	A model has been developed to enable researchers and managers to further systematically analyze the determinants which actually form and influence the development of the airline business.	The research should consider additional aspects: as the focus of this work is put on the strategic/environmental aspects (as a dependent dimension), the influence of other distinguishing parameters (such as occupational culture and national cultures), therefore, have to be minimized.
Shahriar	2013	Financing company	Stock, finance,	There were several	Leonardo

Khaksari		growth at MRV	inflation,	conflicting goals among	Corre [^] a's needed to decide on the
Stefan Platikanov		Engenharia e		which Leonardo	features that would make
		Participacoes SA		Corre [^] a's needed to	investors interested in the
				strike the right balance.	securities.
				He was expecting the	
				company to grow	
				steadily in the next	
				several years and	
				wanted to preserve as	
				much as possible	
				financial flexibility and	
				borrowing capacity for	
				the future.	
Luliya	2013	Competitive strategies	Cost leadership,	Results fully support the	There may be variables omitted
Teeratansirikool,		and firm performance:	financial	importance of using	from the
Sununta		the mediating role of	measures, firm	both financial and non-	model in this study that may also
Siengthai;		performance	performance, non-	financial	moderate, or mediate, the
Yuosre Badir &		measurement	financial	performance measures	relationship between different
Chotchai			performance,	for firms pursuing a cost	performance measures and firm
Charoenngam			differentiation	leadership strategy and a	performance, not all organizations
				differentiation strategy,	experience improved performance
				consistent with the	through the development
				conventional theories	of performance measures.
Mengying Feng		Comparative	Speed of	The Humber port	Research areas to broader and
John Mangan	2012	investigation of port	handling,	authorities are proposed	more randomized samples of more
Chandra Lalwani	2012	performance between	Proximity, Safety,	to diversify port	ports in both the regions.
		Western Europe and	Logistics services,	ownership to reduce	

		Eastern Asia and	Shipping services,	cost and improve	
		develop a strategy to	Risks.	infrastructure,	
		improve their port		encourage diversified	
		performance.		investment for	
				infrastructure	
				improvement; Xiamen	
				needs to improve its	
				custom services,	
				enhance govt. support,	
				and expand hinterland	
				by improving	
				infrastructure, increase	
				logistic demand.	
		Linkage between size	Labour, Port	Found little influence of	
		and efficiency at	Location, Length	size on efficiency.	
		Indian major ports	of Berth/Quay,	Suggested	
		1993 – 2011.	No. of Quay	containerisation and	
			Cranes, Number of Yard Cranes,	long-term planning for	
			No. of Straddle	productivity.	
			Carriers, No. of		
Rajasekar & Deo	2012		Prime Mover		
			Tractors/Forklifts,		
			No. of		
			Trailers/Vehicles/		
			Trucks, Number		
			of Lifters/Steelsers		
			Lifters/Stackers,		
			Throughput		

			(TEU), Traffic Handled		
Mengying Feng	2012	Comparing port	Port service	The findings from this	More focus is done on Chinese
John Mangan		performance: Western	provider, port	research assist port	ports rather than all Asian ports.
Chandra Lalwani		European versus	regulations, port	managers and	
		Eastern Asian ports	transport	policymakers to	
				examine local port	
				performance and	
				develop their operations	
				strategy to improve port	
				performance	
				accordingly.	
Vanumamalai	2012	Improving the service	Container	This study attempted to	Though it has identified the areas
Kannan		quality of ocean	carriers, services,	find out the list of	of strengths and weaknesses of
S.K. Bose		container carriers: an	Indian market	criteria that decide the	container carriers, it has not
N.G. Kannan		Indian case study		service quality of ocean	attempted to suggest
				container carriers in the	what these container carriers
				Indian market and then	should do to improve weak areas
				attempted to measure	
				the service quality of the	
				select container carriers.	
Milla Laisi	2012	North European	Economy, trade	Even if the state of the	
Olli-Pekka		companies' relation		world was totally	
Hilmola		with Russia and		different during year	
Hilmola Mikko		China: future outlook		2006 and 2009	
Sutela		on transport		our three surveys	
		flows		completed during the	

				years indicated that transportation flows are not that greatly affected between North	
				European companies	
				and Eurasian	
				economies.	
Ole Jørgen	2012	Benchmarking of	Marine bunker	From a user perspective	
Anfindse		marine bunker fuel	fuels, quantity	the main strengths of the	
Grunde Løvoll		suppliers: the good,		presented benchmark	
Thomas Mestl		the bad, the ugly		are: institutive and easy	
				to understand,	
				applicable for few or	
				even singleton samples;	
				and able to pinpoint	
				different density	
				reporting schemes.	
John Williams	2012	Overcoming		This study of peer-	
Cheryl Brown		benchmarking		reviewed literature	
Anita Springer		reluctance: a literature		dated 2005-2010 found	
		review		research on the topic of	
				benchmarking	
				reluctance to be limited.	
Vanumamalai	2012	Improving the service	Container carriers	It has first attempted to	There were gaps in all shipping
Kannan		quality of ocean		find out the list of	lines operating in india except
S.K. Bose		container carriers: an		criteria that decide the	hanjin and hapag,
N.G. Kannan		Indian case study		service quality of ocean	

				container carriers in the Indian market and then attempted to measure the service quality of the select container carriers.	
Antero Putkiranta	2012	Benchmarking: a longitudinal study		Between 1993 and 2004 the use of benchmarking grew appreciably and changed from internal use to competitive benchmarking.	Why benchmarking changed over time is not clear.
Pjevcevic, Radonjic, Colic	2012	Serbian River Port efficiency measurement using DEA	Throughput, Berth Length, No. of cranes, Warehouse Area	Assessed inefficiency sources and formulated proposals for improving services.	Data insufficiency and limited timeframe.
Nwanosike, Tipi, Smith	2012	Reforms and efficiency improvements at 6 Nigerian ports 2004 – 2010 using DEA	Throughput, Ship Rate, Berth Length, No. of cranes, No. straddle carriers, no. of prime movers, no. of trailers/vehicles/tr ucks, no. of water ways, total staff	Cargo throughput and traffic improved significantly with concessionaire agreements.	Mismatch between number of ports and number of variables considered.
Lu & Wang	2012	Measurement of	Throughput, berth	Probed reason for	

		operating efficiency of 31 east-Asian major container terminals using DEA Measuring the	length, port draft, no. of cranes, port area	inefficiency, potential areas of improvement at inefficient terminals by using returns to scale approach to assess returns to scale. A well-managed	
Gi-Tae Yeo Michael Roe John Dinwoodie	2011	competitiveness of container ports.		logistics function can enhance the marketing function and thereby corporate productivity, and effective channel management relies on the choice of an efficient container port in an efficient logistics chain.	
Bhatt & Gaur	2011	Impact of containerisation on port efficiency at JNPT and Mundra Ports.	Crane hours, No. of Trailers/Vehicles/ Trucks, Average cycle of Internal Transport, Truck Turnaround time, Slot density, Yard utilisation rate, Effective working rate	Improved berth operational efficiency at container terminals with privatisation.	Only two ports compared
Gi-Tae Yeo	2011	Measuring the	ship owners,	This method	Continuous updating of research

Michael Roe		competitiveness of	shipping company	successfully overcomes	using these approaches is likely to
John Dinwoodie		container ports:	executives,	difficulties	be required to regularly re-
		logisticians'	shippers,	encountered in	evaluate port competitiveness in
		perspectives	logistics related	quantitative analysis in	this vital, dynamic and
			companies, and	this field, namely in	unpredictable region. Additional
			freight forwarders	identifying apposite	surveys will also be required in
				factors for measuring	other regions to undertake
				port competitiveness,	comparative studies and analyses
				making estimates from	of the competitiveness of the ports
				inaccurate data, and	in them and thereby their potential
				quantifying inputs from	to offer alternative distribution
				qualitative data.	channels.
Rama K. Jayanti	2011	Effects of airline	Market share,	Show that bankruptcies	This would need keeping a
S.V. Jayanti		bankruptcies: an event	Share price,	do influence the market	watchful eye on industry specific
		study	Companies	value and share of rival	events for predicting Bankrupting
				firms and this effect is	of company.
				especially pronounced	
				for bankruptcies of	
				major firms compared to	
				minor firms.	
A.S. Gbadegesin	2011	Sustainable	Water supply,	The existing policy to	Solution to changing political
F.B. Olorunfemi		technological policy	water	supply water through	policies is not addressed.
		options for rural water	consumption,	boreholes especially in	
		supply management in	water storage	situations	
		selected		where there is no	
		rural areas of Oyo		regular electricity	
		State, Nigeria		supply to power the	

				machines, as currently	
				, ,	
				obtained in the rural	
				areas studied, is counter	
				productive.	
Olli-Pekka	2011	Benchmarking	Bus companies,	Problem with economic	This research work has pointed
Hilmola		efficiency of public	rail operators,	growth is that larger	only some frontier cities, there
		passenger transport in	private vehicles	amounts of people will	does not exist any support that
		larger cities		get an opportunity	these sorts of systems could
				to use private car	favour nor support the objectives
				transportation – in larger	of year 2020 or 2030 in terms of
				scale need to modify our	transportation sustainability.
				transportation systems	
				in a manner that travel	
				need is fulfilled by the	
				most environmentally	
				friendly means.	
Lucio Cappelli	2011	Peer evaluation to	Motor training	the training content	
Roberta		develop benchmarking	institutes, training	necessary: first, to place	
Guglielmetti		in the public sector	courses	"peers" in a position to	
Giovanni				be able to autonomously	
Mattia Roberto				and fully carry out their	
Merli				evaluation work on the	
Maria Francesca				basis of the CAF model;	
Renzi				and second, to render	
				the evaluation activities	
				systematically	
				comparable among the	

				various administrations.	
Robert de Souza	2011	A proposed		Most significant thing to	
Albert Wee		framework for		take note of the	
Kwan Tan		managing service		proposed	
Hafidzaturrafeah		parts in automotive		framework is to quantify	
Othman		and aerospace		the customer service	
Miti Garg		industries		level for different	
				customer segments, and	
				provide the necessary	
				processes, enablers and	
				supply chain network to	
				meet each service level.	
Wanke, Barbastefano, Hijjar	2011	Efficiency determinants at 25 Port terminals in Brazil using DEA.	No. of loaded shipments, throughput (in tons), no. of berths, terminal area, parking lot for trucks, rail- road connectivity	Efficiency indicators grouped basing inputs and outputs for production function analysis. Found private terminals to be more efficient.	The study is not on panel data.
Bergantino & Musso	2011	Studied various influencing factors on port efficiency using a multi-step approach.	Throughput (tons), container lot size, port location, port accessibility, terminal area, container yard size, customer satisfaction,	Checked external and internal factors influencing efficiency. Found environmental factors like economic condition, port accessibility, and employment level to	

			education level of employees, GDP of the nation.	influence efficiency.	
Ifeoluwa Ajelabi Yinshang Tang	2010	Principle Project Management Performance Improvement.	of the hation.	Benchmarkinganoutwardlookingevaluationtool,comparestheperformanceofprojectmanagementactivities.	
Susila munisamy Gurcharan Singh	2010	Efficiency of Asian container ports	Berth length Terminal area Quayside cranes Total yard shipment	Inefficiency in Asian container ports is due to pure technical inefficiencies rather than scale inefficiencies.	Port managers must improve their management practices to favor efficient ways and to meet customer requirements.
Dotun Adebanjo Ahmed Abbas Robin Mann	2010	Investigation of the adoption and implementation of benchmarking.		Awareness and effectiveness of benchmarking compares quite well with a range of other management techniques.	
Ahmed Salem Al-Eraqi Adli Mustafa Ahamad Tajudin Khader	2010	Evaluation of the efficiency of cargo ports situated in the regions of East Africa and Middle East	Ship calls, throughput, berth length, terminal area and equipment handling.	Smallseaportsareefficientwhilebigseaportsareinefficient.Thethroughputofseaportsin this region isnotstable,dueuetotheinstabilityin the region.	The determination of the estimated efficient seaports in the region will be better evaluated by selecting the important seaports of the region in terms of the number of equipment, storage

					capacity and berth length.
Maria Bjorklund	2010	Development of		The development of a	
		benchmark tool that		tool/framework that	
		can be applied to		offer guidance regarding	
		improve corporate		which potentials that is	
		social responsibility.		most meaningful to	
				implement in order to	
				improve the	
				performance. It is of	
				large importance to	
				identify practices that	
				improve performance in	
				order to help companies	
				not to be engaged in	
				superfluous activities	
				that can serve only as	
				"green washing."	
Breno Nunes	2010	Green operations	Environment,	The main initiatives	
David Bennett		initiatives in the	society, economy	undertaken by the three	
		automotive industry:		automotive companies	
		An environmental		rather than making a	
		reports		comparison between	
		analysis and		them.	
		benchmarking study			
Adrien Presley	2010	Benchmarking for		It provide a contribution	
Laura Meade		sustainability: an		to the literature by	
		application to the		seeking to develop a	

		sustainable		framework that is	
		construction industry		generic enough for a	
		construction medistry		green build to	
				benchmark the	
				indicators they	
				particularly want to	
				focus on.	
Vanumamalai	2010	Benchmarking the	Shipping lines,	Paper identified and	
Kannan		service quality of	services	clustering of various	
		ocean container		attributes that decide the	
		carriers using AHP		service quality of	
				container carriers in the	
				Indian environment.	
				After clustering of	
				attributes under seven	
				criteria, four decision	
				choices were	
				hypothesized and then	
				the AHP hierarchy was	
				structured.	
Liu	2010	Efficiency	Throughput	Efficiency indicators	Too many variables considering
LIU	2010	determinants at 25	(tons), service	grouped basing inputs	the number of DMUs.
		Port terminals in	standards, time	and outputs for	the number of Divies.
		Brazil using DEA	spent on	production function	
		0	operations,	analysis. Found private	
			average idle time,	terminals to be more	
			energy consumed,	efficient.	
			container lot size,		

	1		C		1
			no. of tugs,		
			income, personnel		
			expenses,		
			accounts		
			receivable		
			turnover,		
			depreciation,		
			direct & indirect		
			labour, no. of		
			berths, terminal		
			area, no. of quay		
			cranes, no. of		
			buildings, no. of		
			warehouses, no.		
			of waterways,		
			customer		
			satisfaction,		
			average age of		
			workforce		
Simoes, Marques	2010	Performance of 41	Throughput	Found inefficiency by	Only one year data considered
		European ports in	(TEU),	reducing noise, presence	
		2005 using DEA	throughput (tons),	of outliners and 'curse	
			no. of passengers,	of dimensionality'.	
			Operating		
			expenses, capital		
			employed.		
Wu, Goh	2010	Port operations	Throughput, berth	Regardless of input-	Study on container terminals
		efficiency in emerging	length, terminal	output volumes,	suggests for further studies
		markets using DEA	area, no. of quay	planning facilities based	covering non-tangible factors that
		6	cranes, no. yard	on actual cargo demand	influence terminal efficiency.
			cranes, no. of	achieves efficiency.	

			straddle carriers, no. of prime movers/forklifts, no. of trailers/vehicles/tr ucks, no. of lifters/stakers	Ports of emerging economies lack heavy equipment but are operationally competitive than advanced ports.	
M.B.M de Koster B.M. Balk W.T.I van Nus	2009	Using DEA for benchmarking container terminals.	Quay gantry cranes, total quay length, terminal area.	DEA is commonly used to benchmark container terminals by using public data. The method requires no prior information on the data and is a powerful tool to relate multiple inputs to multiple outputs.	
Hokey Min Seong-Jong Joo	2009	Assessing the comparative strengths and weaknesses of leading third-party logistics providers in the USA.	Current assets, fixed assets and other assets such as intangible assets.	The proposed BCC version of DEA model mitigates the impact of economies of scale on the 3PL's financial efficiency and thus helps to identify the true sources of inefficiencies.	To develop innovative ways to analyze and interpret secondary data sources available from both private and public (e.g. government) sectors.
Jiang, Li	2009	Performance Measurement of	Throughput, berth length, no. of	Propose technical efficiency parameters,	

Panayides, Maxoulis, Wang, & Ng	2009	Seaports in Northeast Asia Review & critical analysis of DEA as technique measuring port efficiency.	quay cranes, no. yard cranes, US imports, US exports, GDP Review Paper	proved availability of substantial efficiency improvement opportunities & heterogeneity. Suggested for use of greater number of input- output variables with adequate sample size.	Only cross-sectional data used. Time series data would give better results.
Barros &Mangi	2008	Efficiency drivers at 39 Japanese Seaports, 2003-2005 using DEA	Throughput (tons), throughput (TEUs), no. of vessels handled, no. of quay cranes, no. yard cranes, workforce	Technical efficiency scores of unique assets exhibit differentiated levels. Hub port strategy improved efficiency. Ports with similar asset configurations pursued same strategies & similar performances & differentiated strategies result different efficiencies.	
Park, Ro-Kyung	2008	Verified 24 Korean container ports Efficiency for 3 years using DEA	Throughput (TEUs), time spent on operations, direct & indirect labour, length of quay, container yard area, no. of container cranes.	To understand efficiency and for future planning, results of both techniques used are required.	
Mohd Daud	2008	Perceived resistance,	Age,	It is hoped that the	Examination of comprehensive

Norzaidi			user		Education,	above suggestions will	dimension of perceived resistance,
Soiong	Choy		resistance an	d	Department,	provide	user resistance, and intranet usage.
Chong			managers'		Gender,	some insight to	
Mohamed	Intan		performance in th	le	Position,	organization's	
Salwani			Malaysian		Task technology	contemplating	
			port industry		fit,	technological usage on	
					User resistance,	what should be	
					Manager's	done in order to	
					performance.	overcome resistance and	
						encourage voluntary	
						usage.	
			International		Total tons		Internal port operations,
			comparison c	of	throughput, level		Efficient customs clearance
			logistics/port		service, use's		operations.
			operations with a mai	n	satisfaction, ship		
			focus on India.		calls, total cargo		
					moved through		
Yen-Chun	Jim				docks, ship		
Wu		2008			working rate,		
Chia-Wen L	in				number of		
					containers,		
					number of ships,		
					total containers		
					handled, Revenue		
					obtained from		
					port activities.		
Photis	М.	2008	Integration of seapor	rt	Container	Traditional methods and	Identification of

Panayides		container terminals in	Terminals.	measures for measuring	factors that may lead to
Dong-Wook		supply chains		port performance can be	integration and empirical
Song				significantly enhanced	investigation of whether and to
				by incorporating supply	what
				chain variables.	extent those factors are actually
					predictors of container TESCI.
		Factors influencing	TEU's Handled at	That transport issues	
		implementation of a	ports, TEU's on	might be closely related	
		dry port.	rail.	to psychological and	
Violeta Roso	2008			behavioral issues and if	
v Ioleta Koso	2008			actors involved are not	
				well-informed on the	
				matter problems might	
				arise.	
Wai Peng	2008	A review on		Benchmarking is an	
Wong Kaun		benchmarking of		essential cornerstone for	
Yew Wong		supply chain		companies to remain at	
		performance		the forefront of	
		measures.		excellence in a level	
				playing field market. A	
				clear understanding of	
				their inherent features	
				will help to provide a	
				more optimal approach	
				to benchmarking in	
				supply chain.	
Cherie Blanchard	2008	Adding value to		It is important for	

Clare L. Comm		service providers		every company to	
Dennis F.X.		helping them to learn		examine its industry and	
Mathaisel		Wal-Mart's best		its own business	
		practices in SCM.		strategy in order to	
		-		determine if a SCM	
				technique will support	
				its goals. If service	
				providers can learn from	
				Wal-Mart how to	
				achieve these	
				benchmarks then they	
				can become more	
				competitive and add	
				more value for their	
				clients.	
Sandra Moffett	2008	Exploration of	Beyond Internal	Use of benchmarking	
Karen Anderson-		theoretical	and External	there is an indication	
Gillespie		understanding and	Performance	that across all	
Rodney McAdam		practical application	Measures Lead	organisation sizes more	
		lead benchmarking	and lag	focus is placed on	
		and performance	performance	operational issues than	
		measurement as a way	measures,	strategic issues. The	
		to achieve	Upstream	location of lead	
		organisational change.	performance	benchmarking and	
			dimension, Lead	performance	
			Benchmarking	measurement was	
			Indicators	clearly identified as	

					being upstream in the	
					organisation.	
Anatoliy	G.	2008	Performance	Material cost,	Using both domestic	
Goncharuk			benchmarking in gas	Amortization,	and international	
			distribution industry.	Employees,	performance	
			,	Accounts payable,	benchmarking gives the	
				Operating	important information	
				revenues.	for company	
					management about	
					capability of improving	
					of the efficiency. The	
					analysis has revealed	
					weak influence of the	
					factor of regional	
					location on efficiency of	
					the companies.	
Jeanette		2008	Technique of		Major reforms and	
Raymond			benchmarking to		benchmarks are needed	
			improve the quality of		for effective	
			the public		implementation of	
			procurement process.		government	
					procurement policies.	
					Benchmarks are also	
					necessary so that	
					politicians and	

Yen-Chun Jim Wu Chia-Wen Lin	2008	National port competitiveness: implications for India	Land, Equipment, Labor Input, Tug boats, Cargo, Actual Throughput, Service Level output.	government officials will perform tasks to generate benefits for the country rather than for themselves. This study found that the ports of Shanghai in China and Chittagong in Bangladesh had efficiency levels between 2000 and 2005 that even surpassed those found in advanced countries. Although our findings suggest that India's efficiency score is unsatisfactory, with the country ranking 6th among ports using the CCR model and 10th using the BCC model, India showed considerable improvement during the	RCA indicators are only able to examine past and present industry conditions based on export results, and do not provide a detailed explanation of the reasons for changes in levels of competitiveness.
Chudasama,	2008	Measured efficiency	No. of Berths, No.	2003-2005 period Performances have been	

Pandya		of Indian Ports in competitive environment 2002- 2006.	of Quay/Container Cranes, No. of Yard Cranes, No. of Straddle Carriers No. of Prime Mover Tractors/Forklifts, No. of Trailers/Vehicles/ Trucks, No. of Lifters/Stackers, Throughput (Tons), Number of Vessels Handled/Total Traffic	diverse with some ports registering better technical efficiency and some on scale of operations.	
Pranav J. Deshpande Ali Yalcin Jose Zayas- Castro Luis E. Herrera	2007	Discrete simulation approach to benchmarking performance measures of terminal operations of less-than-truckload (LTL) freight carriers.	Truck arrival rate, outbound freight volume, Inbound freight volume.	Simulation models can be used at the highest level of detail to interact with and evaluate the policy recommendations of more aggregate optimization-based models.	
Mark Jaques Barry Povey	2007	Assessingthechangingrole,attitudesandknowledgeofUK	Business units, Industry sector.	Although BL has beenrestructuredtowardsstart-upsandsmallbusinessesthe	Need to use sophisticated benchmarking tools such as Product 10 (BPD) on these companies.

		business advisors to		benchmarking tools	
		the benefits of		available to the advisor	
		benchmarking and		have not changed to	
		benchmarking tools.		reflect this, and	
				therefore cannot be used	
				by the majority of the	
				advisors clients.	
Glenn R. Luecke	2007	Use of nodes in cluster		The performance results	
Ying Li		efficiency by studying		from running the	
Martin Cuma		the NAS parallel		NASPB show that better	
		Benchmarks (NASPB)		performance can	
		on Intel Xeon and		sometimes be achieved	
		AMD Opteron dual		using 1 ppn. The	
		CPU Linux clusters.		performance results in	
				this paper also show that	
				the Opteron/Myrinet	
				cluster is able to achieve	
				significantly better	
				utilization of the second	
				processor than the	
				Xeon/Myrinet cluster.	
Okke Braadbaart	2007	Collaborative	Customer per km	Benchmarking enhanced	The test results presented here do
OKKC Diadubaan	2007		mains, total water	•	-
		benchmarking,		transparency.	not offer support for the managed
		transparency and	sales, water sales	Benchmarking did not	competition proposition that
		performance:	per connection,	affect utility	yardstick regulation is necessary
		Evidence from The	water source	performance until	for benchmarking to make an
		Netherlands water		benchmarking results	impact on economic performance.

		supply industry		entered the public	
				domain.	
Cheon	2007	Impact of institutional reforms on efficiency from 1991 to 2004.	Throughput (TEUs), Frequency of ship visits, terminal area	World ports improved due to reforms that resulted in decentralised management, technological progress, & scale adjustments. However, the study also found that overdependence on technologies has its own limitations.	
Cheryl Henderson-Smart Tracey Winning Tania Gerzina, Shalinie King and Sarah Hyde	2006	Benchmarking teaching and learning in response to an institutional need to validate a new program in Dentistry at the University of Sydney, Australia.	Students, staff, resources.	The main purpose of benchmarking is self- regulation and quality improvement in teaching and learning.	
Yean Pin Lee Suhaiza Zailani Keng Lin Soh	2006	Understanding factors for benchmarking adoption in Malaysia.	Top management commitment, Internal Assessment, Employee Participation, Benchmarking	Theemployeeparticipation,topmanagementcommitmentandroleofqualitydepartmentarediscriminatingfactors	There is a relationship between industry and benchmarking adoption. Therefore, it is recommended to extend the framework to a more distinguished industry such as service, construction and public

			limitations,	for benchmarking	sectors.
			quality	adoption, regardless of	
			department,	the customer orientation	
			customer	of the company and	
			orientation and	benchmarking limitation	
			benchmarking	ε	
			adoption.		
Cullinane, Wang		Efficiency of 69	Throughput	With large data, found	
, ,		container terminals	(TEUs), terminal	low efficiency. Found	
		with over 10,000	area, container	linkage between cargo	
		TEUs throughput	yard area, no. of	volumes and	
		across 24 European	quay cranes, no.	performance.	
		countries during 2002.	of yard cranes, no.		
	2006		of straddle		
	2006		carriers, no. of		
			prime movers, no.		
			tractors/forklifts,		
			no. of		
			trailers/vessels/tru		
			cks, no. of		
			lifters/stakers		
		Service quality and	1) Wage	The dimension of	Efficiency change, frontier
		prospects for	2) Price of	performance is	change, quality change
		benchmarking of	Capital	especially important for	
Chen Lin	2005	Peruvian water sector	3) Water billed	the water and sewerage	
			4) Number of	industry in developing	
			customers	countries.	
			5) Positive rate		

			of chlorine		
			tests		
			6) Continuity of		
			service		
		An empirical analysis	Public sector	Across all size sectors,	More in-depth
		of lead benchmarking	manufacturing	there is more of focus	explanation of the reasons why
		and performance	industries.	on operational issues	the approaches and attitudes to
		measurement.		than that of strategic	lead benchmarking
Karen Anderson	2005			issues. Larger	and performance measurement are
Rodney McAdam	2005			organizations were more	taken in organizations.
				likely to strategically	
				implement and make	
				effective use of lead	
				benchmarking.	
		Current attitudes and	Economic	Considerable	Further study covering higher
		practical experience of	performances,	developments within the	number of operations needed.
		airport benchmarking.	Operational	area of airport	
			performances,	benchmarking in recent	
			Environmental	years and the sector no	
Anne Graham	2005		performances.	longer lags so much	
				behind other industries,	
				including airlines, in the	
				knowledge and practical	
				use of performance	
				indicators.	
Jackie Fry	2005	Use of best practice	Regions,	The high uptake of	
Ian Humpherys	2003	benchmarking in civil	Passengers	benchmarking is	

Graham Francis		aviation.	handled.	probably due, in part, to	
				the turbulent nature of	
				civil aviation.	
		To describe and	Price, Net profit	The adoption of EVA as	
		analyse the adoption	after tax, Capital.	a method of	
		of economic value		benchmarking	
Lloyd M. Austin	2005	added income as a		performance and	
Lloyd M. Austin	2003	benchmark.		controlling	
				monopoly earnings has	
				been a successful	
				strategy for ACNZ.	
		A competence-based	Airports, Number	The study of strategic	Focus on different organisations
		strategic management	of passengers, Air	management is one of	in different industries and
		model factoring in key	cargo.	the most important	undertake comparative analysis
		success factors and		issues in all business	across these organizations.
		benchmarking.		areas, since every	
				decision made by an	
				organization's managers	
Hsiu-Li Chen	2005			has strategic	
IISIu-LI Chen	2003			implications, and people	
				at every organizational	
				level have a role to play	
				in	
				developing,	
				implementing and	
				changing the	
				organization's	

				strategies.	
		Performance		A public sector	
		assessment and		organisation that needs	
		benchmarking in		to balance financial	
		public sector.		management with	
				services for the public	
K.L.H. Wynn-	2005			good must be clear in	
Williams	2005			the manner that	
				potential conflicts are	
				managed; it is here that	
				the greatest need is seen	
				for stated and agreed	
				process benchmarks.	
Vinh Van Thai	2005	An analysis of the	Volume of cargo	This study has revealed	Methods of capital rising and
Devinder Grewal		efficiency and	handled, TEU's	some basic problems as	finance related issues are not
		competitiveness of	handled, Ports of	far as efficiency and	discussed in this paper.
		Vietnamese port	Vietnam,	competitiveness are	
		system		concerned. In order to	
				achieve comparative	
				advantage in the	
				international market, the	
				port system of Vietnam	
				should note these issues	
				and works out strategies	
				to improve.	
Lee, Chou, Kuo	2005	Port Efficiency at 16	Throughput	Ranked selected	
		Container Terminals	(TEUs), average	container ports in Asia	

Clyde Kenneth Walter Richard F. Poist	2004	in Asia Pacific Region using Recursive DEA North American inland port development: international vs. domestic-only shippers.	idle time, vessel working rate, no. of tugs, direct & indirect labour, no. of berths, terminal area, no. of quay cranes, no. of yard cranes. Company size, operations, Size of operations in central lowa, Respondent information.	Pacific region considering operational efficiency. The target market for a North American inland port is primarily international shippers, not domestic-only shippers. The most- desirable features of a North American inland port appear to be both information and	Research on Inland ports and their development.
Chinonye Ugboma Innocent C. Ogwude	2004	Determinants of service quality and determines the quality of service offered by two ports in Nigeria.	Port Harcourt, Lagos	Informationandfacilities-based.The port industryreceived strong ratingson the "responsiveness"and "tangibles"dimensions of servicequality and lower	Identification of service quality in ports.
J. Bauer	2004	Performance		ratings on the empathy dimension. Benchmarking is	

S.J. Tanner		measurement audit		recognized by	
A. Neely		template can be used		successful organizations	
		as a basis to examine		as a practical and	
		and improve		proven tool to accelerate	
		performance		improvement by	
		measurement in		learning from other	
		organizations.		outstanding	
				organizations.	
		An analysis of JIT	Procedures and	The extent of	Operational, Strategic and
		implementations in the	oriented	modification efforts	organizational facets and effective
		manufacturing	modifications,	undertaken in	JIT practices.
Mahmoud M.		services and public	operations	preparation for JIT and	
Yasin	2004	sectors.	oriented	potential problems	
Marwan Wafa	2001		modifications,	encountered during the	
Michael H.Small			human related	JIT implementation	
			problems,	process are significantly	
			Supplier related	correlated.	
			problems.		
		The availability of a		Most of employees	
		knowledge		agreed that the Ministry	
Syed Omar		management strategy		could gain a lot of	
Sharifuddin bin		in a public		benefits from managing	
Syed-Ikhsan	2004	organisation in		knowledge. In addition	
Fytton Rowland		Malaysia.		to improving work	
,				quality, having up-to-	
				date information and	
				improving decision	

Manuel Cuadrado Marta Frasquet Amparo Cervera	2004	Benchmarking techniques to the sphere of ports.		making, it was believed that by managing knowledge the Ministry would be able to respond to customer needs. Transport intermodality has stimulated the increase in sea traffic and has favoured the development of ports as logistics platforms. The services can be analysed in relation to the following dimensions: time, safety and cost by establishing concrete indicators to measure and evaluate each of these dimensions.	
Manuel	2004	Benchmarking the	Cost, safety, time	These services can be	This proposal is based on a client
Cuadrado		port services: a		analysed in relation to	oriented approach and it considers
Marta Frasquet		customer oriented		the following	that the processes that should be
Amparo Cervera		proposal		dimensions: time, safety	analysed are those implicit in the
				and cost by establishing	motives for choosing one port
				concrete indicators to	over another.
				measure and evaluate	

			eachofthesedimensions.Detailedanalysisoftheseindicatorswilldecidewhichoftheshouldbeimproved toincreasethelevelcompetitiveness.	
Ana Cristina Paixao Peter Bernard Marlow	2003	Fourth generation ports and a methodology for implementing the concept of agile ports.	Uncertainty is certainly the one that is causing the most concern within the port industry, obliging ports to become more competitive. Agility is one such strategy that will help ports to adjust to the new economy.	
R. Dattakumar R. Jagadeesh	2003	A review of literature on benchmarking.	A scrutiny of the publications shows that several aspects of benchmarking along with many interesting and diversified applications, have been covered in sufficient detail.	*

		Revising the concept	Performances,	Benchmarking requires	
		and classification for	Technology,	some conceptual	
		both theoretical and	Process,	rethinking. It was	
		practical purposes of	Competence and	argued that the need for	
Doulo Vyro	2003	benchmarking.	strategy.	re-conceptualizing is	
Paula Kyro	2005			due both to the	
				appearance of three new	
				forms of benchmarking,	
				and new fields of	
				benchmarking.	
		In order for		It is vital for public-	
		benchmarking to be		sector organisations to	
		successful in public		develop a desire to	
		sector organisations, it		change processes as	
Hesham Magd		is important to have a		well as outputs and an	
Adrienne Curry	2003	full commitment to		organisational	
Trancinic Curry		continuous		willingness to search for	
		improvement.		ideas outside the	
				organisation in order to	
				achieve successful	
				benchmarking.	
		Legal issues in		The practice of	
		Benchmarking.		benchmarking creates a	
Louise boulter	2003			new area of interest for	
	2005			the law. Organisations	
				conducting	
				benchmarking studies	

				should consider taking responsibility for raising the awareness of employees conducting benchmarking practices on the law.	
Ana Cristina Paixão Peter Bernard Marlow	2003	Fourth generation ports – a question of agility?	Transport modes, cargo	Uncertainty is certainly the one that is causing the most concern within the port industry, obliging ports to become more competitive. To become proactive rather than reactive, port operators must adopt new management strategies	Other aspects are not defined like land utilization and expansion.
Gordon Rankine	2003	Benchmarking container terminal performance	Terminals, productivity,	like agility.Withincreasingpressureoncostsandefficiencyoflandutilisationutilisationbenchmarkingisaparticularlyusefultoolforanycontainerterminal.utilisation	
Mahmoud M.	2002	Benchmarking		The applied art of	

Yasin		practices and theory	benchmarking has	
		reviewed from 1986 to	become broader in	
		2000.	nature to include	
			strategies and systems.	
		The process of	Benchmarking,	
		benchmarking,	benchlearning and	
		benchlearning and	benchaction is not a	
		benchaction.	one-time project. It is a	
			continuous	
Per V. Freytag &	2001		improvement strategy	
Svend Holensen.	2001		and a change	
			management process.	
			Benchmarking is a part	
			of the TQM system, and	
			it relates well to other	
			TQM initiatives.	
		Benchmarking in UK	The challenge for higher	
		higher education.	education will be to	
			develop benchmarking	
			in a way that will help	
			people learn about and	
Norman Jackson	2001		improve their own	
			practice while	
			improving the overall	
			capacity of the system	
			to develop, improve and	
			regulate itself.	

		Benchmarking		Organisations	Inter-temporal study of the
		Singapore's high		can be expected to be at	productivity leaders; Inter-country
		TQM maturity		different TQM maturity	studies could be done as the TQM
		organisations.		levels at any point in	framework; testing of various
				time because of the	TQM constructs and their
Woon Kin Chung	2001			influence of several	contributions to the organisation's
				factors, and that	performance.
				benchmarking provides	
				useful findings to	
				advance any TQM	
				programme.	
Carol Boyd	2001	HRM in the airline	Airlines, Quality,	A number of cost	Solution to the
		industry: strategies	Cost	minimization strategies	apparent failure of airlines to
		and outcomes	Minimization,	have been identified that	practice what they preach in
				may erode health and	policy statements
				safety standards in the	communicates a disheartening
				industry. The survey	message about the actual position
				findings strongly	of health and safety in
				suggest that airlines'	management agendas is missing.
				cost minimization and	
				productivity	
				maximization strategies	
				have a degenerative	
				effect on health and	
				safety standards.	
Seung-Kuk Paik	2000	Process reengineering		Process reengineering is	
Prabir K. Bagchi		in port operations.		often regarded as one of	

			the surest ways to make fundamental improvement in operations. IT can be used as a powerful enabler and thus opens up new possibility for better performance.	
M. Kia E. Shayan F. Ghotb	2000	Importance of IT in port terminal operations.	The advancement of information technology provides a wide range of options for the container terminal operator to automate its information system. The use of computer simulation has become a standard approach for evaluating design of complex cargo handling facilities.	
Matthew Hinton Graham Francis Jacky Holloway	2000	Best practice benchmarking in UK- based organizations.	A great deal of benchmarking activity can be described as "results" benchmarking as opposed to "process" benchmarking.	

Davis Longbottom	2000	Investigating the status of benchmarking within UK.		Benchmarking methods will need to penetrate much further into the Marketing domain than appears to be evident at the present time.	
Kin Chung Woon	2000	Assessment of TQM implementation: Benchmarking Singapore's productivity leaders	Validity, quality	The organisations were found to have a medium level of TQM implementation. The TQM constructs in these organisations were also found to be highly interrelated.	The organisations were found to have a medium level of TQM implementation.
Alexander Kouzmin Elke Loffler and Helmut Klages Nada Korac- Kakabadse	1999	Benchmarking and performance measurement in public sectors.		Publicsectororganizationsarebecomingnotonlyusers, but providers andexportersofglobalinformationandassociated services in anincreasinglyglobalized market.	
Ingrid Lobo Mohamed Zairi	1999	Competitive benchmarking in the air cargo industry: Part II	Airlines,	The analysis from the survey undertaken and the outcomes covered in this	

			paper have been useful in measuring the differences between the various organisations scrutinised and supporting the differences in scores by specifically highlighting the practices reported.	
GregoryM.Magnan,StanleyE.Fawcett,Laura M. Birou	1999	Benchmarking manufacturing practice using the product life cycle	The findings highlight many manufacturing practices that represent largely untapped opportunities.	
Bjørn Andersen & Rune M. Moen	1999	Integrating benchmarking and poor quality cost measurement for assisting the quality management work	The benchmarking model benefits from the structured activity analysis and the overall cost and performance picture visualized through the loss function.	
Khurrum S. & Bhutta Faizul Huq	1999	Benchmarking – best practices: an integrated approach	Senseless mistakes are avoided by setting goals and following the rules to achieve them. Companies that	

			han almontr identify	
			benchmark identify	
			specific areas of	
			weakness, and find	
			solutions to turn them	
			into strengths.	
		Extent of Utilization	Systematic sharing of	
		of benchmarking in	benchmarking	
Jeffrey J. Dorsch		public ports.	knowledge between the	
Moahmoud M.	1998		business community and	
Yasin			the academic	
			community is mutually	
			beneficial.	
		Introduction of	It helps in identifying	
Sik Wah Fong		benchmarking to	the sources of best	
Eddie W.L.	1000	management	practices as a result of	
Cheng	1998	practitioners.	assisting in promoting	
Danny C.K. Ho			management	
			perspectives.	
		Quality assurance in	The efficient	
		the maritime port	functioning of the	
		logistics chain: the	international	
Raul Compes		case of Valencia,	logistics supply chain	
Lopez	1998	Spain.	requires the provision of	
Nigle Poole		1	high quality port	
0			services so that	
			processes whereby	
			goods are transported by	
			goods are transported by	

R. Love H.S. Bunney M. Smith B.G. Dale	1998	Benchmarking in water supply services: the lessons learnt	Water sales, sales of water, cost	sea meet the expectations of the final consumers in respect of punctuality, quality, reliability and price. A benchmarking project is likely to generate other additional benchmarking projects within the process studied or with interfacing processes.	In order for a benchmarking project to be a success there are certain difficulties and pitfalls which must be avoided like <i>Lack</i> of a contingency plan, Failure to update the plan, Failure to communicate the plan and others whose solution is not given
R. Love H.S. Bunney M. Smith B.G. Dale	1998	Benchmarking in water supply services: the lessons learnt		It became clear as the study progressed that while lots of organisations and people use the benchmarking jargon, much of the discussion relates to competitive analysis of product and equipment and not the benchmarking of processes.	
Ross L. Chapman	1997	Strategic quality	Shareholders,	The labour productivity	There are also anomalies

Peter Charles		management and	Labour	ratio appears to be	regarding stated importance/
Murray Robert		financial performance	productivity.	considerably more	performance and measured
Mellor		indicators		sensitive to QSA/TQM	performance in terms of labour
				initiatives than either	productivity ratios
				return on assets (ROA	(LPR) over "all" companies,
				or ROTA as used here)	especially in the significant
				or earnings on	indicator of deployment/
				shareholder's funds	involvement.
				(EOS, or EOSF as used	In addition, current research
				here). Values for both	activities are targeting a small
				ROA and EOS type	number of companies in the
				ratios are susceptible to	sample for a longitudinal study
				variable financial	
				decision making.	
Alan Stainer	1997	Logistics - a	Labour, materials,	Logistics management	Many departments are left
		productivity and	transport,	must maintain and	untouched like continual
		performance	productivity	improve cost advantages	productivity and integrated
		perspective		reflected in total	performance excellence, to ensure
				productivity, as well as	that there are efficacious
				customer service	monitoring and communication
				performance in order to	systems in place and more.
				remain healthy.	
Brian S. Codling	1997	Dynamics of best	System	The considerations	
		practice - a	efficiency, culture	discussed in this paper	
		multidimensional		give an explanation as	
		perspective		to why many companies	
				are surprised, both	

				positivelyandnegatively,bytheresultsthattheyhaveobtainedinbenchmarking.Theyalsodevelop a rationalethat "best practice" for asystemisuniqueto	
				company	
Prabir K. Bagchi	1996	Role of benchmarking as a competitive strategy.		In an increasingly competitive marketplace, companies are searching for ways to achieve breakthrough improvements across the organization Benchmarking, involves critical self-evaluation – exposing one's weaknesses to the world.	Need to establish a link between the resources needed to manage a benchmarking study and the resultant benefits.
Jose L. Tongzon	1995	Systematizing international benchmarking for ports.	Total throughput, number of commercial vessel visits, vessel size and cargo exchange, number	Efficiency of a port must be compared with other ports of similar characteristics so that the assessment can be justified. Further overall	

			of container	performance can be	
			berths, number of	compared on the basis	
			gantry cranes.	of estimated principal	
				component.	
Mohamed Zairi	1995	A review of key		The authors conclude by	
Mohamed		publications on		noting that	
Youssef		benchmarking part I		benchmarking is a	
				process of raising	
				awareness within an	
				organization and	
				developing a culture that	
				is willing to learn.	

2.1 Major inferences derived from literature review:

- Numerous studies exist on performance measurement at selected organisations in various sectors and are based on limited data (but not on comprehensive data across the industry).
- Efficiency measurement at port sector is dominated with studies measuring relative efficiency using various techniques including Data Envelopment Analysis (DEA) in hindsight but do not propose any measures to improve efficiency.
- 3. Benchmarking studies in ports taken up at a few countries have contributed in efficiency gains at those ports/terminals.
- 4. In Indian context, numerous studies exist on port performance but there exists no study on setting benchmarks for performance improvement. This has led to an ambiguity of benchmarking performance standards.
- 5. Establishment of benchmarks in port sector would help in monitoring and thus enhancing the service quality levels at the major ports of India where by reducing pre berthing detention time, and faster turnaround time of vessels and reduction in the total transactional cost.

2.2Major Gaps derived from Literature Review:

From the literature review, the following gaps were evident

- a) Research papers on Indian ports hitherto focused on relative efficiency but not absolute efficiency. This results in lack of scope for efficiency improvements.
- b) No attempts were made to set benchmarks covering holistic efficiency of ports in India such as Overall Port/Terminal Efficiency, Berth Efficiency, Yard Throughput, and Evacuation Efficiency

2.3 Theme Based Inferences and Gaps:

Literature reviewed in the above table is segregated into themes and shown in this table below:

Theme	Authors	Inferences	Gaps
Performance and	Ghasmi et. al. (2015);	a. Numerous studies covering sectors	i. Studies traced deviations between
Efficiency – In General	Sarkar (2015); Rezaee	such as manufacturing, services,	standards and actuals, but failed to
	(2014); Barberio et. al.	human resources aspects, etc. have	suggest corrective actions to
	(2014); Atici & Podinovski	been assessed and is evolving.	enhance overall performance
	(2014); Hatami-Marbini et.	b. Numerous statistical,	
	al. (2014); Yang et. al.	mathematical, psychometric &	
	(2014);	behavioral approaches were	
		employed to measure performance.	
Performance and	Rajasekar et. al. (2014);	a. Studies measured comparative	i. Studies concentrated on relative
Efficiency – In Port	Marales et. al. (2013);	performance of ports across the	grading of ports
Sector	Rajasekar & Deo (2012);	world	ii. Few studies at some in China and
	Lu & Wang (2012);	b. Studies depended on parametric	selected European countries
	Nwanosike (2012);	and non-parametric models to	attempted to benchmark port

Table 2.4 Theme analysis of Literature Review

Pjevcevic (2012);	measure efficiency	performance. But no such attempt
Nwanosike, Tipi, Smith	c. Studies are mostly based on	is made in Indian context where
(2012); Lu & Wang	performance indicators proposed	standards for various terminals
(2012), Pjevcevic et. al.	by UNCTAD and World Bank	are set and actuals are compared.
(2012); Nwansoike	agencies	iii. Further studies in Indian
(2012); Wanke,		context, till date, have not
Barbastefano, Hijjar		attempted to trace reasons for
(2011); Bhatt & Gaur		efficiency/inefficiency. No study
(2011); Bergantino &		proposed measures for enhancing
Musso (2011); Simoes &		absolute efficiency at Indian
Marques (2010); Wu &		ports.
Goh (2010); Jiang & Li		iv. In Indian context, studies
(2009); Panayides (2009);		concentrated on operational
Liu (2010); Muniswamy		efficiency alone and ignored
(2010); Al-Eraqi (2010);		financial aspects.
Chun et. al. (2008);		
Chudasama & Pandya		
(2008); Barros & Mangi		
(2008); Park & Ro-Kyung		
(2008); Cheon (2007);		
Cullinane & Wang (2006);		

Benchmarking – In General	Lee et. al. (2005); Thai & Grewal (2005); Rankine (2003); Tongzon (1995); Jacek Strojny (2015); Festal & Wurmseher (2014);	a. Benchmarking is a process of setting standards and helps in	a. Benchmarking is a tedious exercise where micro level assessments are
	Panwar et. al. (2013); Mohammadi et. al. (2013); Williams et. al. (2012); Putkiranta (2012); Hilmola (2011); Cappelli et. al. (2011); Ajelabi & Tang (2010); Adebajo et. al. (2010); Bjorklund (2010); Nunes & Bennett (2010); Presley & Meade (2010); Peng et. al. (2008); Blanchard et. al. (2008); Goncharuk (2008); Goncharuk (2007); Jaques & Povey (2007); Luecke et. al. (2007); Hannderson-Smart et. al. (2006); Lee et. al. (2006); Anderson &	 enhancing overall performance of business entities b.Process of benchmarking is complex and is depended on type of processes and output. 	required. b. At the same time it has to be reviewed periodically.

	McAdam (2005); Graham		
	(2005); Fry et. al. (2005);		
	Austin (2005); Chen		
	(2005); Wynn-Williams		
	(2005); Bauer et. al (2004);		
	Dattakumar & Jagadeesh		
	(2003); Kyro (2003); Magd		
	& Curry (2003); Boulter		
	(2003); Yasin (2002);		
	Freytag & Holensen		
	(2001); Jackson (2001);		
	Chung (2001); Hinton et.		
	al. (2000);		
Benchmarking – In Port	Report of Port Regulator of	a. Benchmarking at a few of the	a. Benchmarking, as a process, is not
Sector	SA (2014); Jorgen et. al.	world ports has enhanced their	attempted at Indian port sector.
	(2012); Kannan (2010);	overall performance	This has resulted in inability to
	Koster et. al. (2009); Lin	b.It helped in detecting areas of	control both financial and
	(2005); Cuadrado (2004);	improvement and helped in control	operational opportunity losses.
	Rankine (2003); Dorsch &	mechanism	
	Yasin (1998); Tongzon		
	(1995)		

From the theme based segregation of literature review, the following research problem is derived.

2.4 Benchmarking Studies:

From the literature reviewed, it can be observed that numerous studies covering a wide variety of sectors are available that have attempted to set benchmarks. Researchers proposed benchmarks in industries such as automobile, airports, manufacturing, etc. to enhance workforce performance. However, number of studies on ports sector are limited and generally focused on operations of container terminals alone. Koster et. al.(2009) used Data Envelopment Analysis (DEA) to set benchmarks at selected container terminals across the world. The authors suggested DEA as a better tool for benchmarking only if accurate and minute data variables, often times not in public domain are available.

Deshpande et. al. 2009 attempted performance benchmarking of terminal operators of less than truck-load freight carriers. They used discrete simulation approach for benchmarking and found the tool to be effective, especially, in live work environment.

Cuadrad & Cervera, 2004 proposed time, safety and cost as important dimensions for benchmarking of selected container ports. They argued that these indicators can help in identification of services for improvement in efficiency of ports. Tongzon, 1995 used Principal Component Analysis to benchmark homogeneous ports and suggested measures for efficiency measurement among them.

While the above studies have attempted to benchmark ports/terminals, their access is limited to publicly available data. However, to derive reliable benchmark standards, a study considering the real time data pertaining to various activities at ports (including navigation side, berth side & yard side operations) is required. The current study aims to set benchmarks at various terminals at the major ports of India with the help of narrowed down real-time data. The results of this thesis would benefit all the major ports to look to these benchmark standards and compare their performance. The study would also help them to derive policies to improve their efficiencies and strive to achieve these standards.

Chapter III - Research Methodology

3.1 Research Problem

Numerous studies have measured efficiency of Indian major ports. However, these studies could not prescribe any standards for improvement in efficiency parameters. This warrants a comprehensive research to set performance benchmarks in comparison to the best-inclass ports and thereby explore measures for improvement of overall efficiency resulting in optimisation of capacity and financial gains.

3.2 Research Questions:

- How to benchmark various Key Productivity Parameters in port operation for Major Ports of India?
- How port efficiency can be improved using benchmarks?

3.2 Research Objectives:

- To determine & calculate benchmarks for Key Productivity Parameters in port operation for Major Ports of India;
- To explore the initiative required to improve efficiencies at major ports of India and transform them into best- in- class ports.

3.3 Research Design

In pursuance of the first objective, of determining 'important KPIs' and 'calculate benchmark', major ports were clustered on the basis of cargo being handled. KPIs was determined through literature review and raked them by survey through Liker Scale analysis, the operational and financial data for each of the 12 major Indian ports was collected for benchmarking against relevant private Indian Private Ports as well as a group of relevant International ports. The benchmarking exercise was done for all important aspects of port operations, i.e, marine operations, berth operations, yard management, storage and evacuation in terms of Key Performance Indicators by normalization of data by taking the parameters: viz., Size of Port, Number of Berths, Type of commodity and Degree of Automation. For the second research objective, 'efficiency improvements at major ports of India', deep 'Root Cause Analysis' carried through Fish-Bone diagram analysis, "5 Whys analysis" are captured in deep-dive analysis chapter that form basis for suggestion of measures to improve efficiency standards at these ports.

3.4 Process details

Benchmarking Process, normalization, nature of data and metric used for benchmarking process are shown in Table 3. 5.1, 3.5.2, 3.5.3 and 3.5.4 respectively.

Table 3.5.1Benchmarking Process

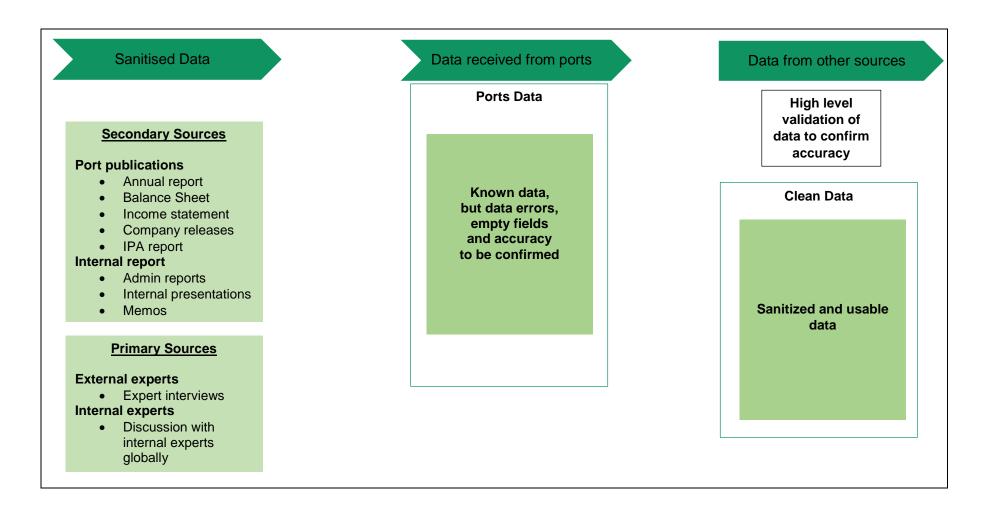

Benchmark KPIs	Data Collection	Normalisation of data
KPIs were identified across	Specific data requests shared with the	Collation of data in varying formats
parameters	ports	• Integration of data points in similar formats
Literature Reviewfind relative importance of KPIs	• Standard format shared with all ports	 Data sanitation and
and Rank them	• Follow-ups and data gathered	normalization

Table 3.5.2Data normalization was undertaken for accurate benchmarking

Data o	clean up, re-analysis and normalization dom		enchmarking	
Illustrations				
Metrics used for benchmarking	Metric standardised and redefined	Data analysis / consistency check	Normalization basis	
Capacity utilization	Definition 1: Actual throughput delivered / max throughout possible with 100% occupancy at best demonstrated productivity (%)	Best demonstrated performance calculated at each berth to calculate the max possible capacity	<u>Commodity:</u> Only berths with majority Coal traffic (> 60%) considered	

	Definition 2: Actual throughput delivered / maximum possible output with 100% occupancy at benchmark productivity (%)		
Berth occupancy	Original definition: No. of days when berth was occupied by a vessel Revised definition: No. of hours when berth was occupied by a vessel	Calculation built up using all entries in vessel logs	<u>Mechanical and Conventional</u> berths benchmarked separately <u>Commodity:</u> Only berths with majority Coal traffic (> 60%) considered
Berth productivity	<u>Definition</u> : Metric tonnes of coal handled berth hour (working + idle time)	Only coal entries taken in case multi purpose berths	<u>Vessel:</u> Panamax, capesize vessels calculated separately Adjusted for share of coal traffic handled

Table 3.5.4Metric used for benchmarking process

Key utilization/demand metrics	Key productivity metrics	Key cost metrics
 Berth utilization (%) Waiting time outside port (days) Equipment utilization (%) 	 Vessel turnaround time (days) Non-working time at berth (days) Berth output (MT per day) Quay crane/gang output (MT per shift Containers: RTG moves per hour Containers: QC:RTG:Truck ratios Containers: Truck turnaround times Cargo dwell times 	 Employees / MT handled Gang size per shift Fuel/energy cost per MT handled Equipment maintenance cost per MT handled Maintenance dredging cost per m3 excavated (if possible)

3.5 Research Methodology for Research Objective 1:

For the purpose of Benchmarking, the following steps are taken:

1. The Major Ports were clustered based on cargo categories (mechanised dry bulk, conventional dry bulk, containers and break bulk)

2. Important aspects of port operations were identified through Literature review viz., marine operations, berth operations, yard management, storage and evacuation. A set of targeted and specific metrics were used for comparing performance, they are:

- Berth output
- Vessel turnaround time
- Quay crane/gang output
- Containers: RTG moves/hr
- Containers: QC:RTG Truck Ratio
- Container: Truck turnaround times
- Cargo dwell times
- Waiting time outside port
- Berth utilization
- Equipment utilization
- Non-working time at berth
- Employees/MT handled
- Fuel/energy cost per MT handled
- Gang size per shift
- Equipment maintenance cost per MT handled
- Maintenance dredging cost per m3 excavated

To assess degree of importance of the identified KPIs, a survey was undertaken.
 A Likert type questionnaire (at Appendix- Survey Questionnaire) was administered among
 200 key port stakeholders to get an external perspective.

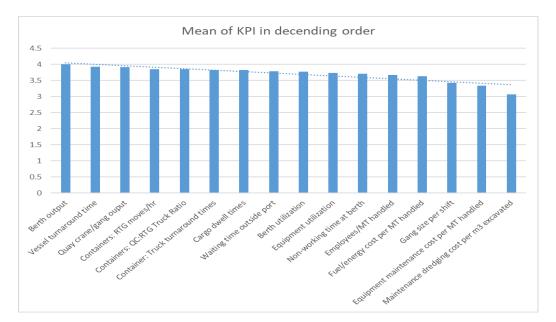
[About Likert scale: It is a measuring tool or scale used to measure attitudes, beliefs, opinions behaviors and perceptions of individuals or consumers. It is a set question (called items) where each item has a fixed number of response categories used to know the agreements of respondents on variety of items, products and services]

The stakeholders were drawn from Senior Port Officers and experts, Customs Department, CHAs, ICDs, Freight Forwarders, Container Shipping Lines, CFSs, Ship-owners, Importers, Exporters, Railways.

The respondents were requested to indicate their perceptions about degree of importance to each of the 16 identified KPI (arranged in random fashion) in a five-point scale where 5 denotes maximum importance and 1 denotes minimum importance of a KPI. However, complete responses covering all the KPIs were obtained only from 185 respondents. Analysis of data was carried out with the responses completed on all respects from these 185 respondents. Distribution of scores for each KPI was found to be positively skewed with large variance. This is primarily due to the fact that the stakeholders more or less perceived each KPI as important. However, variance of each KPI was high, indicating non-uniform perspectives of the respondents. Highest mean was 4.00 and the lowest mean was 3.065. Descriptive statistics of the KPIs are depicted below. Cronbach alpha for the questionnaire was found to be 0.692387 implying moderately high reliability of the questionnaire.

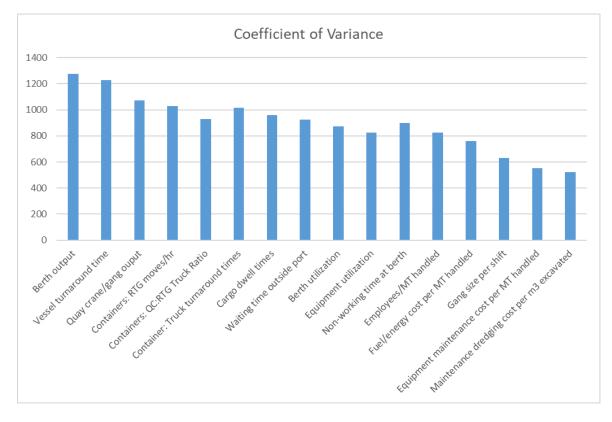
[About Cronbach's alpha: Reliability of Likert scale are usually found using Cronbach's alpha which is a measure of internal consistency of the scale or questionnaire and is a function of the number of items in a test, item variances and the variance of the total score. Alpha is defined as:

$$\alpha = \left(\frac{n}{n-1}\right) \left(1 - \frac{\text{Sum of item variances}}{\text{Test variance}}\right)$$


where n denotes the number of items. Cronbach's alpha increases as the intercorrelations among the items increase. Thus, it is known as an internal consistency estimate of reliability of test scores. It works well if the test is unidimensional]

4 924324 913514 348649	1277.373 1228.827 1071.787	1 2
913514		2
	1071.787	
818610		3
10043	1030.334	4
348649	929.5663	5
327027	1015.711	6
321622	961.7466	7
783784	923.6181	8
78378	873.9455	9
735135	825.6434	10
708108	899.3851	11
64865	823.5958	12
632432	761.7135	13
127027	628.5906	14
335135	552.4066	15
064865	522.1796	16
707095	14533.45	
	27027 21622 83784 78378 35135 08108 64865 32432 27027 35135 64865 07095	270271015.71121622961.746683784923.618178378873.945535135825.643408108899.385164865823.595832432761.713527027628.590635135552.406664865522.1796

Mean, variance and ranks of KPIs


Relative importance of the KPIs was found to be directly proportional to the

corresponding ranks in terms of mean score. Top three KPIs were Average Berth output, Average turnaround time and Quay crane/gang output. Graph showing mean score of the KPIs is shown below:

High value of variance of a KPI necessitated needs to see consistency of scores.

Consistence was reflected by Co-efficient of variation (CV) defined as $CV = \frac{SD}{Mean}X100$.

Graph showing KPI-wise CV is given below:

4.Relevant and comparable International Ports and private Indian Ports were selected by taking the following parameters:

- * Size of the Port
- * Number of berths
- * Type of commodity
- * Degree of mechanisation and automation

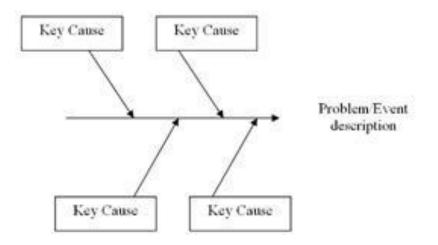
5. Operational and financial data for each of the 12 Indian major ports were collected for benchmarking against relevant international ports and private Indian ports

6. Normalization of the metrics was done by calculating the benchmarks by taking into account the extent of mechanisation, type of equipment, their capacity, process time,

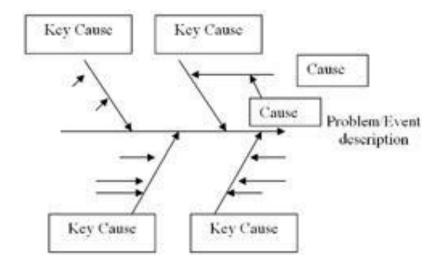
pilotage time. It is a mathematical calculation based on actual data collected from the benchmark ports. These calculations were shown for each of the metrics and for each of the port in Chapter V.

3.6 Research Methodology for Objective 2

This exercise involves deep dive, having identified broad causes by 'Root Cause Analysis' (RCA) technique carried through Fish-Bone (Ishikawa) diagram, also called, Cause–and– Effect Diagram. Thus, Primary data were collected from a set of stakeholders such as Exporters, Importers, C&F Agents, Steamer Agents, etc.


Purpose of Root Cause Analysis (RCA) is to get to the bottom of a cause for the gap between the benchmark and baseline, decide the corrective actions and develop plan that sustain the corrections. It uses DMAIC (define, measure, analyze, improve, control) approach to problem solving.

Fish-Bone(Ishikawa) diagram, also called, Cause-and-Effect Diagram:


The cause and effect diagram is also known as the fishbone diagram (as the key causes look like the bones of a fish when displayed visually, hence the name) and the Ishikawa diagram (named after Kaoru Ishikawa, who first proposed the tool). Constructing a Cause and Effect Diagram Step-by-Step: 1. Define the problem (effect) to be solved-This first step is probably one of the most important tasks in building a cause and effect diagram. While defining your problem or event, your problem statement may also contain information about the location and time of the event. On the cause and effect diagram the problem is visually represented by drawing a horizontal line with a box enclosing the description of the problem on the tip of the arrow.

Problem/Event description

2. Identify the key causes of the problem or event-In this step, the primary causes of the problem are drilled down by using brainstorming techniques. Often these causes are categorized under people, equipment, materials, external factors, etc. Some of the commonly used primary causes (but not limited to) include the 4 M's of manufacturing (machine, method, material and manpower); the 4 S's of the service sector (surroundings, suppliers, systems, and skills); the 5 M's (measurement, maintenance, money, management, and Mother Nature); and the 8 P's (product, price, place, promotion, people, process, physical environment, and productivity). Other appropriate primary causes include service, quality, technology, consumables, work processes, environment, service level, etc. The image below shows how to visually depict these key causes on the cause and effect diagram.

3. Identify the reasons behind the key causes -The goal in this step is to brainstorm as many causes for each of the key causes. Tools such as the 5 Whys (the subject of a future column) can help you to drill down to these sub-causes. Provide one reason behind a key cause. These suggestions should be written down and connected to their appropriate key cause arrow (see the image below). Remember that these reasons are free- flowing, form logical patterns, and are inter-connected to a key cause.

4. Identify the most likely causes- At the end of step three, we will have a good overview of the possible causes for the problem or event; if there are areas in the chart where possible causes are few, see if we can dig deeper to find more potential causes. We should focus more specifically on the potential cause(s) that have a high probability of taking place. It is not unusual for us to use techniques such as multi-voting to shortlist the areas that will have lasting impact on solving the problem at hand. In certain instances, we might collect additional data to better understand and quantify the potential causes. Simple hypothesis testing — such as asking "Where?", "When?", and "How?" — lead to a better understanding of the relationship between the potential cause and the problem tasked to solve.

5.Having identified the most probable causes, the relevant alternative solutions to bridge the gap between the benchmark and baseline are explored and solutions are provided with likely impact.

3.7 Theoretical Underpinning:

This research is the first of its kind in Benchmarking theory whereby the combination of normalization along with Best-in-class benchmarking and Root Cause Analysis was used for solutioning exercise, this will perhaps add a new dimension in the benchmarking exercise in port industry. This research contributes to the theory/literature of benchmarking, especially, in the context of Indian ports whereby the future researchers can get the benefit of standards for comparing operational performance of various ports in India.

3.8 Benchmarking Theory:

Formal definition of benchmarking used by Rank Xerox 'Continuous systematic process of evaluating companies recognised as industry leaders, to determine business and work processes that represent best practices and establish rational performance goals.' In operational terms it is frequency condensed to 'the search for industry best practices that lead to superior performance.' 'Best Practices' refer to – methods used in work processes that best meet customer requirements. Benchmarking is not 'what we want to achieve' but 'how they are to be achieved'.

Types and ways of Benchmarking Theory:

- Types of Benchmarking Product and Process
- Ways of process benchmarking/How benchmarking is done?

a. Benchmarking Internal Operations – to find the best-performing unit within your own company;

b. Benchmark vis-à-vis competitor;

c. Best-in-class – Comparing your performance vis-à-vis the best in industry;

d. Strategic benchmarking – integrates strategic competitive analysis with best-in-class benchmarking.

What we propose to use the 'best in class' method using deep 'Root Cause Analysis' technique. It was proposed to collect data for 12 major ports as well as relevant private Indian ports and international ports to benchmark performance on all three key dimensions of

- 1) Financial,
- 2) Operational, and
- 3) Organizational capability

In each of these benchmarking focus areas, a set of targeted and specific metrics were used for comparing performance. These metrics have been shortlisted through Literature review and ranked using 5-point Likert Scale Analysis via Survey since they provided the most specific and insightful understanding of the relative performance of the ports. The KPIs shortlisted for benchmarking

- Berth output
- Vessel turnaround time
- Quay crane/gang ouput
- Containers: RTG moves/hr
- Containers: QC:RTG Truck Ratio
- Container: Truck turnaround times
- Cargo dwell times

- Waiting time outside port
- Berth utilization
- Equipment utilization
- Non-working time at berth
- Employees/MT handled
- Fuel/energy cost per MT handled
- Gang size per shift
- Equipment maintenance cost per MT handled
- Maintenance dredging cost per m3 excavated

In case of any specific situation /context for a port, other relevant metrics were added as required for building an in-depth and specific understanding of the port's performance.

CHAPTER IV- ANALYSIS (OBJECTIVE 1)

(Normalization of Data and Comparing with best in class ports)

4.1 Container terminals

Seven ports with ten dedicated containers handling facilities handle 98% of container traffic in Major ports.

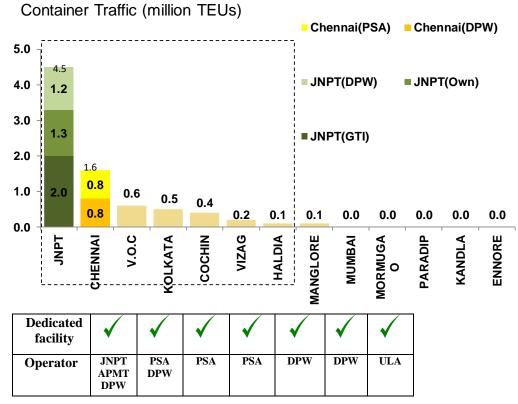
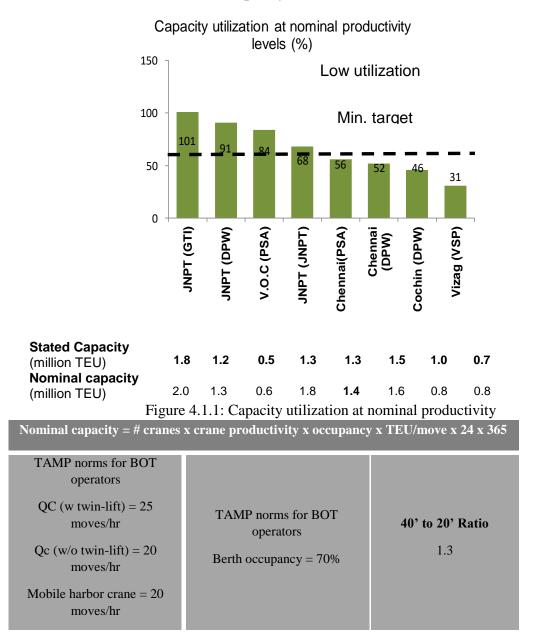
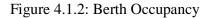



Figure 4.1: Container Traffic, 2014-15

Source: Indian Port Association Report

- JNPT alone has handled over 50% of total container traffic of all Major ports of India followed by Chennai.
- Within JNPT, the operator JNPT handled 2 million TEUs which is more than the total traffic at Chennai (two operators) and is equal to sum of total traffic at VOC, Kolkata, Cochin, Vizag and Haldia taken together.
- DP world handled 2.6 million TEUs in four ports viz. JNPT, Chennai, Cochin and Vizag and got 1st rank in terms of operator-wise traffic, followed by JNPT at 2 million TEUs. PSA operating at Chennai, VOC and Kolkata handled 1.9 million TEUs and stood at 3rd rank. APMT handled 1.3 million TEUs at JNPT.


4.1.1 Underutilization of Container Capacity FY 2014-15

Capacity Utilization at nominal productivity level exceeded the target for each of the three terminals of JNPT namely GTI, DPW and PSA. The same for the fourth terminal at JNPT was close to the target.

For the other terminal at other ports (PSA at Chennai, DPW at Chennai and Cochin and VSP at Vizag) capacity utilization was less than the target.

Berth Occupancy (%) TAMP norms for BOT operators Berth occupancy = 70% New TAMP ---7 Low Occupancy SIN CMB JEB MUN KRI VOC JNPT JNPT JNPT KOL Cochin VPT Chennai CHPT (PSA) (JNPT) (GTI) (DPW) (PSA) (DPW) (VSP) (DPW) (PSA) Ind. Pvt. Ports Major Indian Ports International Number of berths

4.1.2 Berth occupancy FY 2014-15

- JNPT recorded highest berth occupancy among the Indian Ports.
- High berth occupancy at the terminals of JNPT at the level of around 90% exceeded the same for international ports like SIN, JEB, etc. and also exceeded the TAMP norm.
- Such high berth occupancy tends to indicate risk of deteriorating physical performance in near future and immediate need to augment the capacity at JNPT.
- At Cochin and Chennai, berth occupancy at lower levels (much below the norm) tends to indicate need of effective business development plan to increase traffic resulting in better utilization of capacity so as to take maximum benefits of investment already made.

4.1.3 Berth productivity FY 2014-15

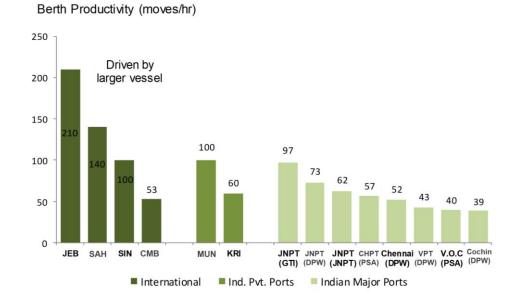
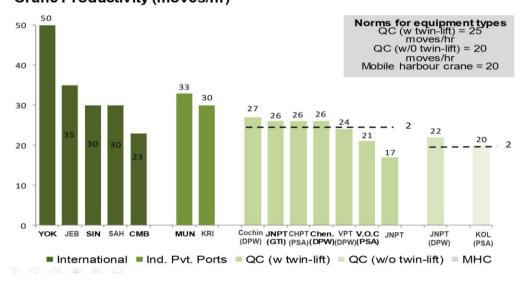



Figure 4.1.3: Berth productivity

- Berth productivity in terms of number of TEUs moved per hour at Indian ports is much less in comparison to international ports like JEB, SIN, etc.
- Highest berth productivity among Indian Ports was recorded at GTI terminal of JNPT.
- Low berth productivity in Indian ports (other than JNPT) tends to indicate higher dowelling time of containers and container vessels at those ports. To make the ports attractive, such ports need to upgrade significantly berth productivity.

4.1.4 JNPT own terminal and V.O.C lagging behind peers in quay crane productivity lowering their effective capacity Crane Productivity (moves/hr)

Figure 4.1.4: Crane Productivity

- Crane productivity in terms of number of containers move per hour at Indian ports was much less than the same for international ports like YOK, SI, MUN, etc.
- Crane productivity at terminals of JNPT and Chennai just exceeded the norm for QC (w twin-lift). However, the same was much below the norm for PSA terminal at V.O.C.
- For QC (w/o twin-lift), crane productivity achieved the norm for MHC.

4.1.5 Yard throughput levels

Throughput per hectare ('000 TEU/ha)

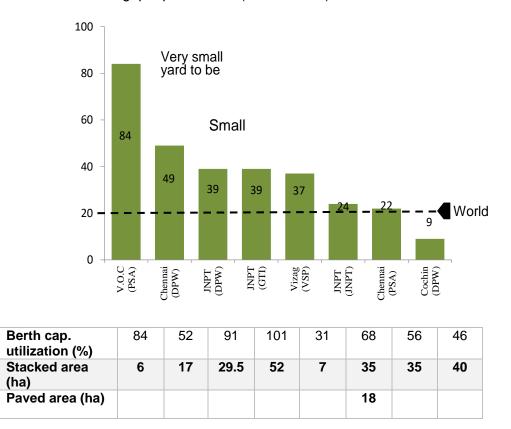


Figure 4.1.5: Throughput per hectare

- Yard throughput level in terms of thousand TEUs per hectare exceeded the World average for PSA terminal at V.O.C., DPW at Chennai and JNPT, GTI terminal at JNPT and VSP terminal at Vishakhapatnam.
- For JNPT (own) terminal, Yard throughput was equal to the World average. However, the same were below the World average for PSA terminal at Chennai port and DPW terminal at Cochin port.
- Yard throughput level was found to have maximum correlation with Berth capacity utilization.

4.1.6 Ground slot density FY 2014-15

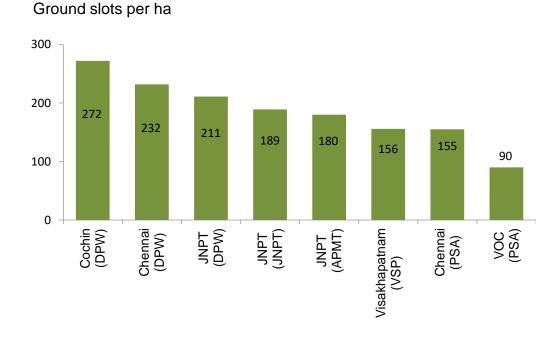
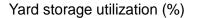



Figure 4.1.6: Ground slots per ha

- Ground slot density in terms of ground slots per hectare was highest for DPW terminal at Cochin (272) followed by DPW terminal at Chennai (232).
- Despite having high container throughput, ground slot density at terminals of JNPT ranged between 180 to 211.
- Ground slot density appears to be negatively correlated with Yard throughput.

4.1.7 Yard space utilization FY 2014-15

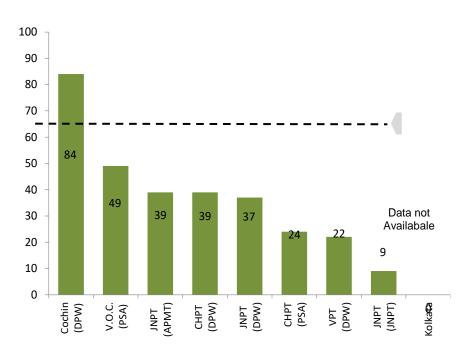
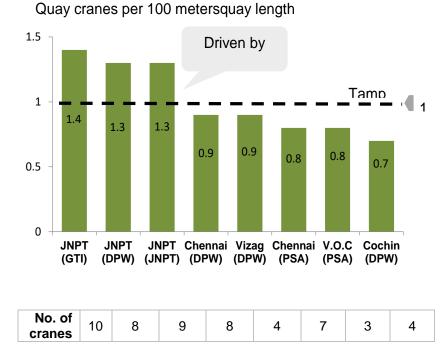
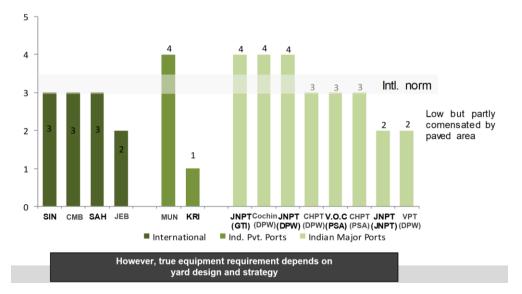



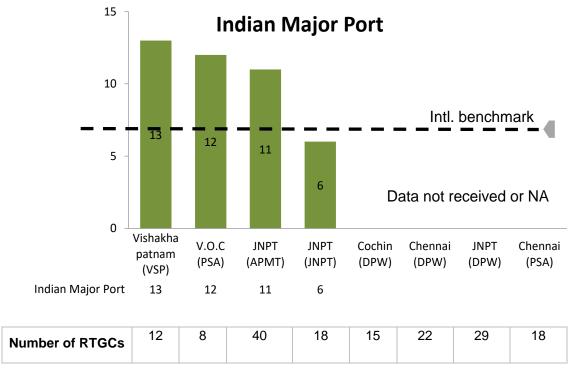
Figure 4.1.7: Yard Storage Utilization

Act. Dwell Time (days)	7.5	2	3.4	2.6	2.4	3.5	3	3.3		
Nominal Capacity = Ground slots x Operational stack height x 365 / Dwell time										
Ground slots / Stack height /Dwell time										


- DPW terminal at Cochin port had highest Yard storage utilization (over 80%) followed by PSA terminal at V.O.C.
- High value of Yard storage utilization may tend to increase dwelling time of containers in ports. Thus, DPW terminals at Cochin port recorded highest dwelling time of 7.5 days. However, such negative relationship cannot be proved for PSA terminal at V.O.C. which recorded minimum dwelling time of 2 days despite having 49% of Yard storage utilization. Other factors like berth productivity, frequency of arrivals of container vessels, etc. may contribute to dwelling time of containers.

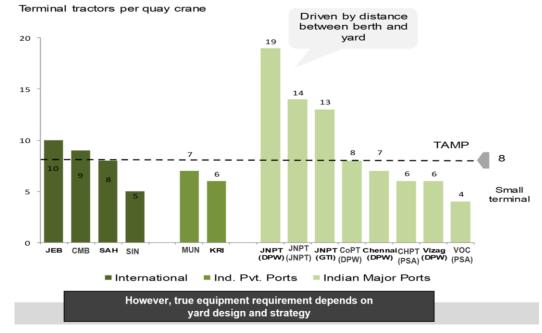
4.1.8 Number of cranes per meter quay FY 2014-15

Figure 4.1.8: Quay cranes per 100 meters quay length


- Number of Quay cranes per 100 meters of quay length contributes to terminal productivity in combination with other factors.
- Against TAMP norm of one Quay crane per 100 meters of quay length, GTI, DPW and JNPT (own) terminals at JNPT had an average 1.3 to 1.4 cranes per 100 meters of quay length, primarily to cater to high demand emerging from high arrival rate of container vessels.
- Each other terminal at Indian ports, other than JNPT could not achieve the TAMP norm.

4.1.9 Number of RTGCs in line with benchmarks except for own terminal at JNPT Rubber tire gantry cranes per guay crane

Figure 4.1.9: Rubber tire gantry crane per quay crane


- Number of Rubber tire gantry cranes (RTGs) per quay crane (QC) is an important factor of terminal productivity.
- International ports like SIN, SAH, etc deploy on an average 3 RTGs per QC, which can be taken as International norm. Against this backdrop, private terminals at JNPT deploy 4 RTGs. Similar figure for PSA at V.O.C. is 3. JNPT (own) terminal with paved areas usually deploys 2 RTGs per QC

4.1.10 RTGC productivity above international benchmark levels for most terminals except JNPT own terminal

Figure 4.1.10: RTGC Productivity

- Each port or terminal wants to have adequate number of RTGCs and also to have higher productivity of RTGCs. Considering International benchmark of RTGC productivity at the level of 10 moves per hour, the diagram revels that Vishakhapatnam, APMT terminal at JNPT achieved higher productivity (11 to 13 moves per hour).
- However, productivity at other terminals of Indian ports was much less than the international norm.

4.1.11 Number of terminal tractors FY 2014-15

Figure 4.1.11: Terminal Factor per quay crane

- To achieve higher value of crane productivity, adequate numbers of tractors are required to be assigned with a quay crane. Requirement of number of tractors may further increase if distance between berth and yard is more.
- Against TAMP norm of 8 tractors per QC, International ports like JEB, SAH deploy 8 to 10 tractors.
- Terminals at JNPT did well in this context by deploying 13 and above numbers of tractors per QC. DPW terminal at JNPT usually deploy 19 tractors because of higher distance between the berths and yard.
- Terminals at Vizag, Chennai and other small terminals failed to achieve the TAMP norm which appears to be on lower side.

4.1.12 TT productivity FY 2014-15

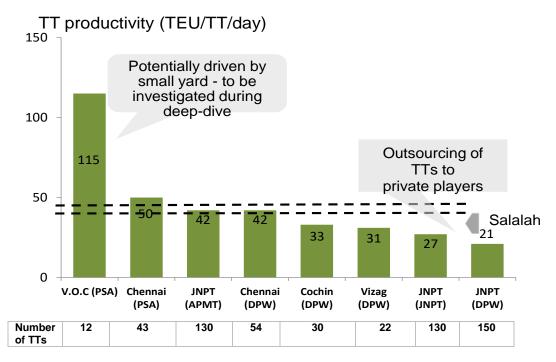
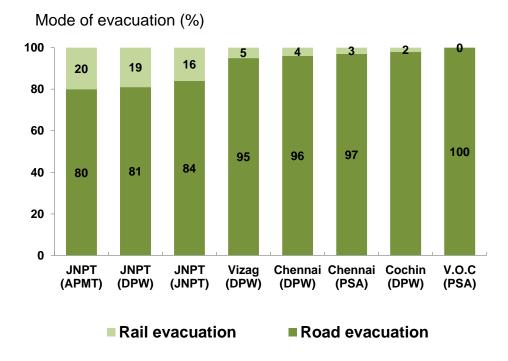



Figure 4.1.12: TT Productivity

- TT productivity is another factor contributing to productivity at berth / terminal. In comparison to international ports, most of the Indian ports had lower TT productivity in terms of number of TEUs per TT per day.
- However, by outsourcing of TTs to private players, PSA terminal at V.O.C. port achieved TT productivity as high as 115 TEUs per TT per day.
- TT productivity ranged between 42 to 50 for terminals like DPW, Chennai; APMT, JNPT; PSA, Chennai.
- High number of TTs in the fleet may not increase TT productivity. For example, DPW at JNPT recorded TT productivity of 21 only despite having 150 TTs in the fleet. Similar picture emerged for the JNPT (own) terminal.

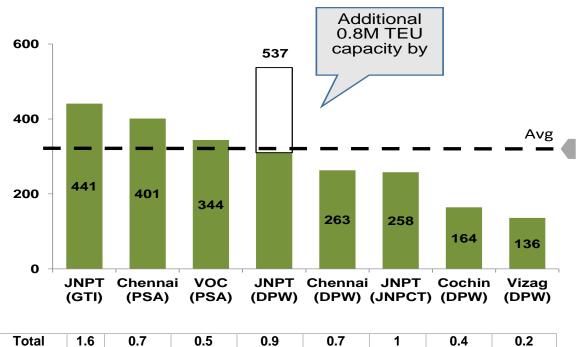
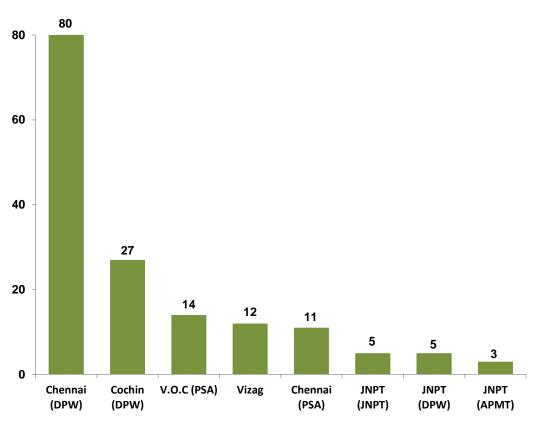

4.1.13 Evacuation of containers FY 2014-15

Figure 4.1.13: Mode of Evacuation

- Evacuation of containers by road is a major feature at Indian ports. 80% and above containers are moved by road for various terminals.
- For APMT terminal, 20% of containers moved by rail, which is the maximum figure among the terminals in India.
- For faster, cheaper and environment friendly evacuation of containers, railway mode may be encouraged and railway connectivity to Dry ports may be explored.

4.1.14 Gate lane productivity FY 2014-15

Throughput per lane per day(in TEU)



Total Traffic (mn)TEU	1.6	0.7	0.5	0.9	0.7	1	0.4	0.2
Total Lanes	10	5	4	8	8	11	6	4

Figure 4.1.14 Throughput per Lane per Day

- It is generally believed that more lanes are required for higher volume of traffic passing through gate. However, the same is not found to be true for JNPT (own); DPW, Cochin; DPW, Vizag.
- Average throughput per lane per day was highest for GTI terminal at JNPT and lowest at DPW terminal at Vizag.
- Average throughput per lane per day at the level of 340 TEUs was exceeded at GTI terminal at JNPT and PSA terminal at Chennai.

4.1.15 Truck turnaround time FY 2014-15

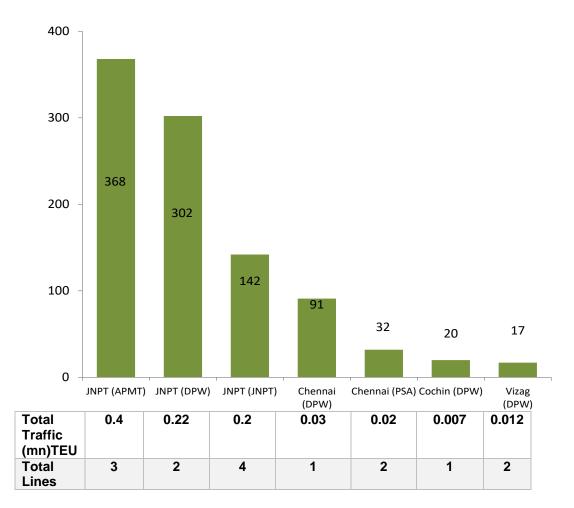
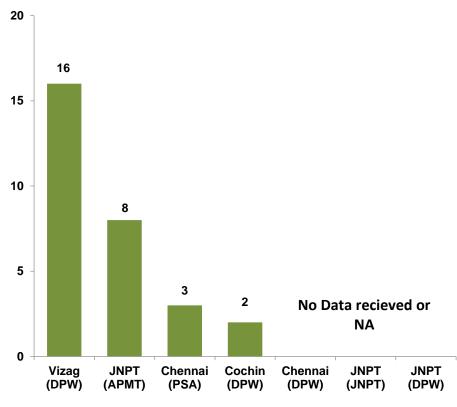

Road turnaround time (hours)

Figure 4.1.15: Road Turnaround Time

Observations:

• Road turnaround time at Indian ports was low (less than or equal to 5 hours) for three terminals. For other terminals, road turnaround time was on higher side (11 to 14 hours). However, road turnaround time was as high as 80 hours at DPW, Chennai followed by 27 hours at cochin.

4.1.16 Variation in rail line productivity between JNPT terminals FY 2014-15



Rail throughput/day/rail line (TEUs)

Figure 4.1.16: Rail throughput/day/rail line (TEUs)

- Rail line productivity in terms of number of TEUs moved through rail per day per line was greater than 300 TEUs for DPW, JNPT and APMT, JNPT. These are the two terminals where evacuation by railway mode was 19% to 20% of total container traffic.
- Rail line productivity was on lower side for other terminals like DPW, Vizag recording only 17 TEUs moved through rail per day per line followed by DPW at Cochin port.
- The productivity is likely to increase with increase in percentage of evacuation through rail and associated modernization of railway infrastructure.

4.1.17 Rail turnaround time for container terminals in India

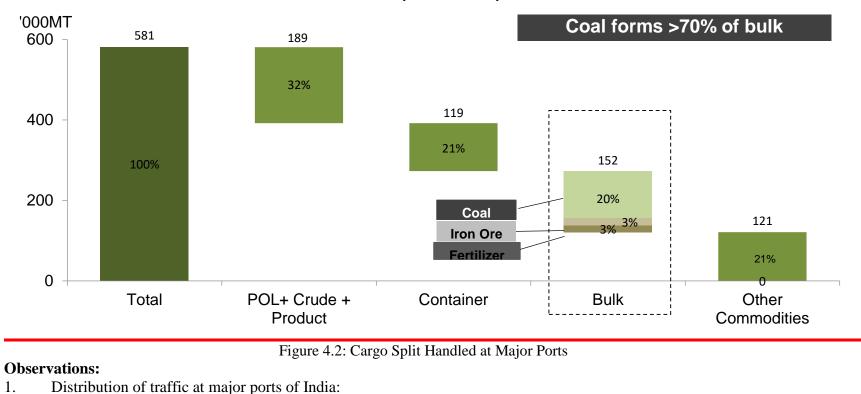

Rail turnaround time (hours)

Figure 4.1.17: Rail Turnaround Time

- Rail turnaround time at terminals depends on various factors like area of railway yard, density of wagons, etc.
- Rail turnaround time at terminals of Indian ports ranged between 2 hours (at DPW, Cochin) to 16 hours (at DPW, Vishakhapatnam).
- APMT terminal at JNPT with 20% share of evacuation through registered rail turnaround time at the level of 8 hours only.

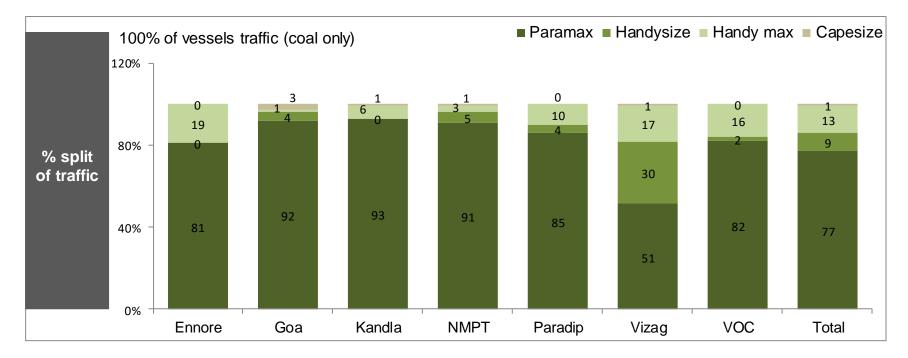
4.2 Dry Bulk Terminals

For comparing Dry bulk fertilizer cargo those ports were bulk fertilizer traffic constituted 3% or more of overall bulk fertilizer traffic across 12 major ports

Cargo split handled at major ports (2014 - 2015)

1. 2201 ~

•	Liquid Bulk Cargo	-	32%;	Container	-	21%
•	Break Bulk	-	21%;	Dry Bulk Cargo	-	26%


2. Paradip, Ennore and Vizag together handled 81 million tonnes of coal which constitute 60% of total coal traffic

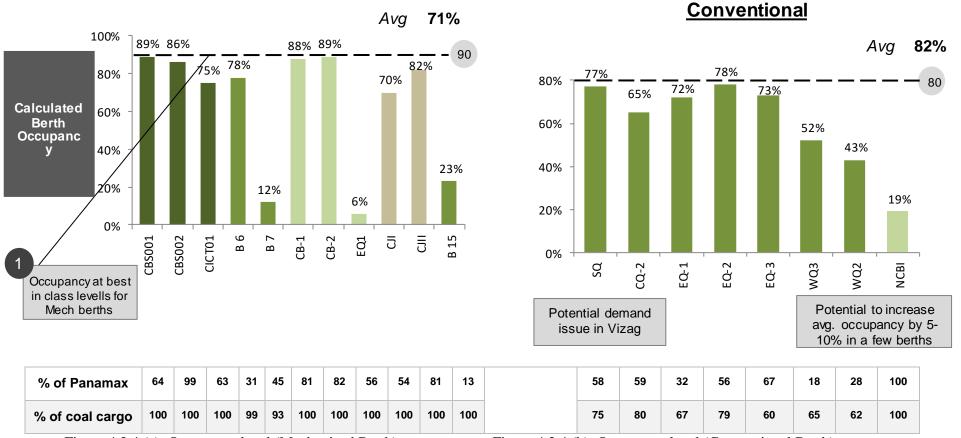
4.2.1 Distribution of coal traffic handled by the major ports FY 2014-15

Figure 4.2.1: Distribution of coal traffic

- 1. Paradip, Ennore and Vizag together handled 60% of total coal traffic
- 2. Highest coal traffic handled by Paradip.

4.2.2 Distribution of size of coal vessels calls across major ports FY 2014-15

	Average draft	10 – 13.5	12 – 14	9.1 – 16.5	9.5 – 14	11 – 14.5	10 – 17	8.6- 12.8	
Ð	Capesize	0	74,393	101,785	21,000	32,985	110,666	0	87,714
age cel	Handy max	44,598	35,805	37,508	31,916	35,006	34,577	41,324	38,233
/er	Handysize	0	10,006	0	14,714	14,639	18,936	6,869	17,629
Ϋ́Α	Panamax	62,287	66,844	46,905	53,789	54,985	40,546	51,305	53,796


Figure 4.2.2: Distribution of size of coal vessels calls

- For handling coal at Indian ports, Panamax vessels are most frequent (77%) followed by Handy max vessels (13%)
- No capesize vessel brought coal to Paradip port which has highest coal traffic

4.2.3 Benchmarking Procedures:

For 'like to like' benchmarking, details of procedures adopted including pre-treatment of data, normalization and benchmarking standards are given in the table below:

Metrics used for	Metric standardized and redefined	Data analysis /	Normalization basis
benchmarking		consistency check	
Capacity utilization	 <u>Definition 1:</u> Actual throughput delivered / max throughput possible with 100% occupancy at best demonstrated productivity (%) <u>Definition 2:</u> Actual throughput delivered / maximum possible output with 100% occupancy at benchmark productivity (%) 	Best demonstrated performance calculated at each berth to calculate the max possible capacity	<u>Commodity:</u> Only berths with majority Coal traffic (> 60%) considered
Berth occupancy	 <u>Original Definition:</u> No. of days when berth was occupied by a vessel <u>Revised Definition:</u> No. of hours when berth was occupied by a vessel 	Calculation built up using all entries in vessel logs	<u>Mechanical and Conventional</u> berth benchmarked separately <u>Commodity</u> : Only berths with majority Coal traffic (>60%) considered
Berth productivity	Definition: Metric tonnes of coal handled per berth hour (working + idle time)	Only coal entries taken in case multi purpose berth	Vessel: Panamax, capesize vessels calculated separately Adjusted for share of coal traffic handled
NWT at berth	Definition: No. of hours at berth when no loading/unloading operations were performed on the vessel	Time at berth disaggregated, only idle time at berth taken	Mechanical and Conventional berths benchmarked separately
WT at berth	<u>Definition:</u> No. of operational hours at berth (loading + unloading)	Only operational time at berth considered	Mechanical and Conventional berth benchmarked separately
Tal	ble 4.3.1: Data clean up, re-analysis and normalization d	one to ensure 'like to like	

4.2.4 Occupancy levels for Mechanized and Conventional Berths

Mechanical

Figure 4.2.4 (a): Occupancy level (Mechanized Berth)

Figure 4.2.4 (b): Occupancy level (Conventional Berth)

2

- Most berths operating at high occupancy levels 1.
- Further improvement scope exists in conventional berths, specially Vizag 2.

4.2.5 Productivity across berths

Mechanical

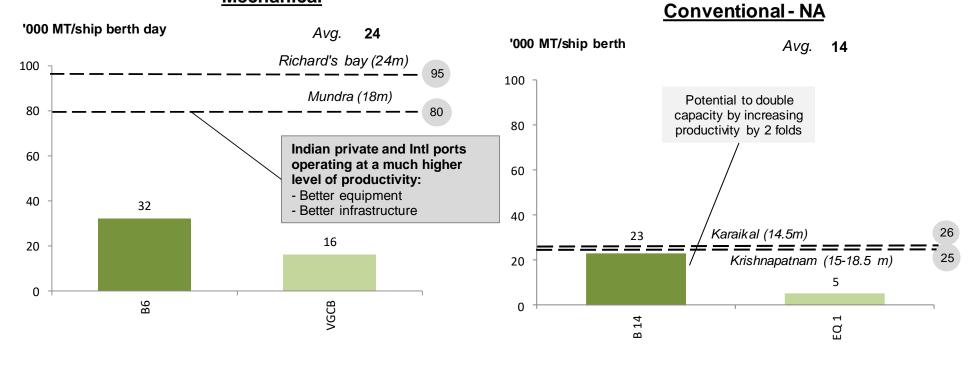
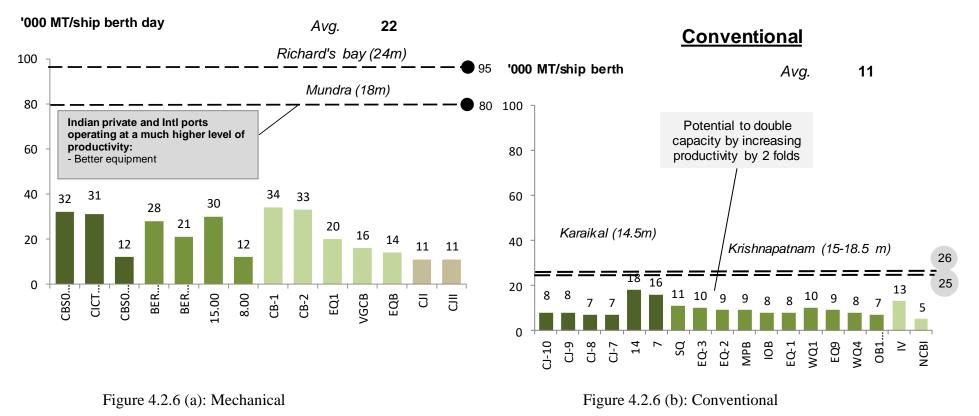


Figure 4.2.5 (a): Productivity across berth (Mechanical)


Figure 4.2.5 (b): Productivity across berth (Conventional)

- 1. Berth Productivity were significantly below benchmarks, especially for Mechanized berths
- 2. Majority of berths were below Indian and International benchmarks

4.2.6 Productivity of Panamax vessel

Only Panamax vessels (77% of coal carrying vessels across ports)

Mechanical

Observation:

Productivity of coal carriers of Panamax size at major ports of India were much lower in comparison to International level and also in comparison to Indian private ports. The same is true for mechanical as well as conventional berths.

Ports	Current coal volume (MMT)	Current capacity utilization (%)	Current calculated Occupancy (%)	Current Productivity (MT/Ship berth day)	BDP Productivity (MT/Ship berth day	Benchmark productivity ('000 MT/Ship berth day)	Incremental annual throughput (MMT)
Ennore	24	71%	83%	24,715	30,698	~80 (M)	9
Paradip	35	60% ⁵	77%	15,426	20,242	~25 (C) ~80 (M)	24
Vizag	16	40% ⁵	34%	12,360	24,074	~25 (C) ~80 (M)	18
VOC	13	54%	57%	10,450	16,250	~25 (C) ~80 (M)	10
Mormugao	9	31%	45%	24,021	39,798	~25 (C) ~80 (M)	20
New Mangalore	7	37%	57%	24,006	30,823	~25 (C) ~80 (M)	15
		Table 4.2	.7: Berths handling	g >60% coal traffic	: (2014-15)		

4.2.7 Potential improvements in case of adaptation of 'best demonstrated performance'

Potential to double capacities in most ports if benchmark levels can be reached

- Improving productivity to achieve the benchmark productivity level alone can result in 96 MMT of incremental coal traffic from existing traffic of 104 MMT at major ports of India.
- Ports may chalk out plan to increase about 100% capacity of handling coal by achieving benchmark productivity.

4.3 Fertilizer Terminals

For comparison, ports which handled at least 3% of total fertilizer traffic of all major ports were considered

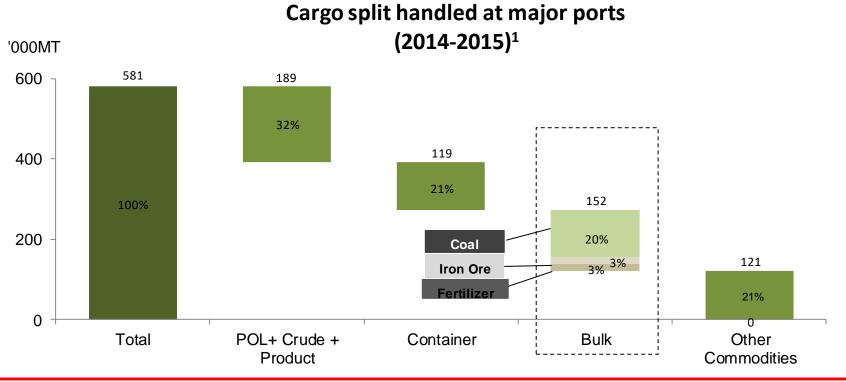
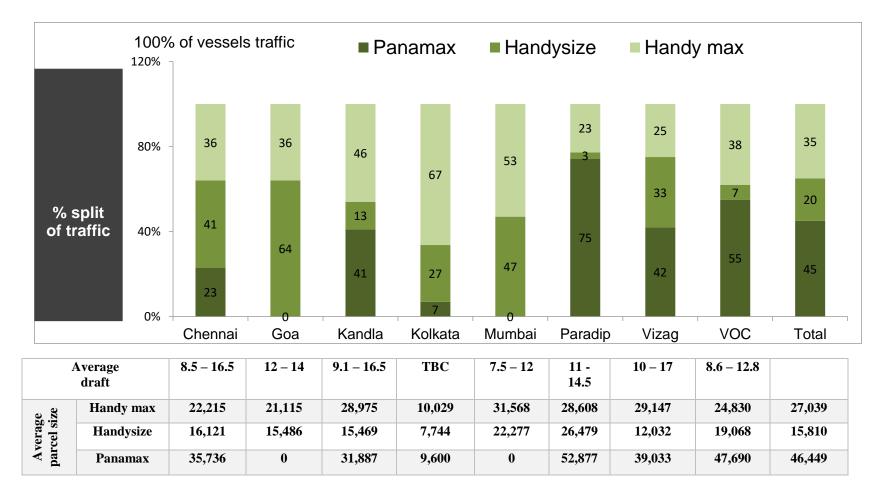



Figure 4.3: Cargo Split Handled at Major Ports

4.3.1 Panamax class constitutes ~45% of all dry bulk fertilizer vessel calls

Figure 4.3.1: Percentage of Split Traffic dry bulk fertilizer vessel calls

Observations: Panamax vessels are the most frequent vessels used to transport fertilizer at Indian ports, followed by Handy max vessels.

4.3.2 Berths handling for dry fertilizer running

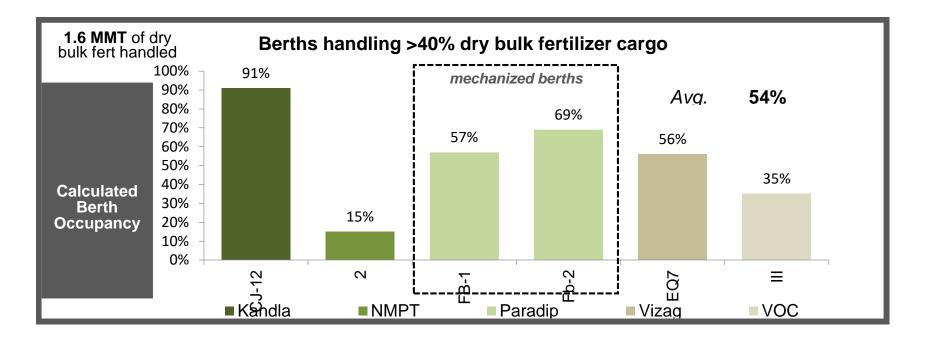


Figure 4.3.2: Berths handling more than 40% Dry Bulk Fertilizer Cargo FY 2014-15

Observations: Occupancy of berths handling at least 40% dry bulk fertilizer ranged between 15% to 91% with average being at the level of 54%.

4.3.3 Productivity of Dry bulk fertilizer

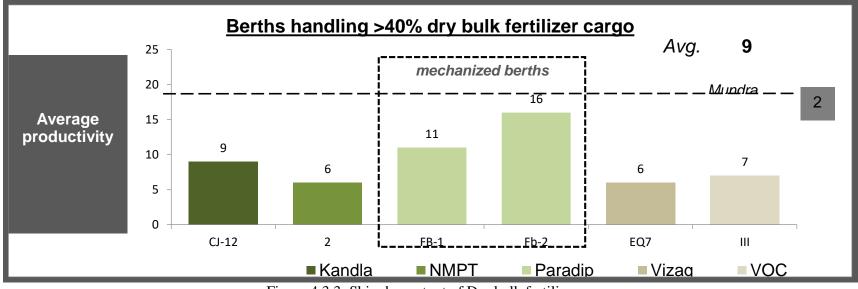
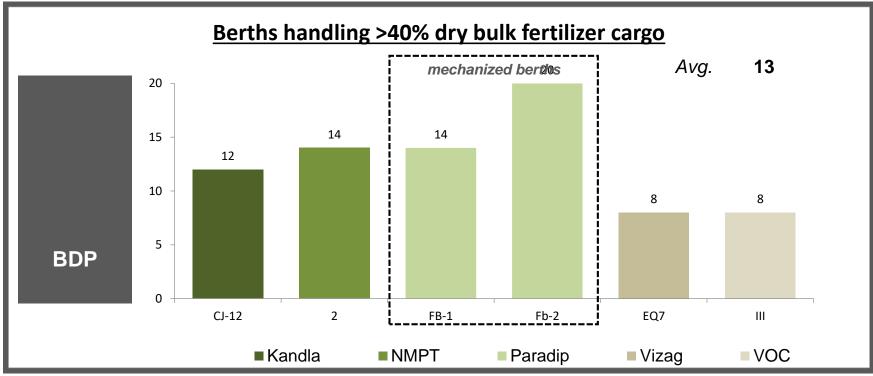



Figure 4.3.3: Ship day output of Dry bulk fertilizer

- Productivity of Dry Bulk fertilizer in terms of output per day ranged between 6000 tonnes to 16,000 tonnes with average being 9,000 tonnes.
- No berth of major ports could achieve average productivity of Dry Bulk fertilizer which was registered by Mundra port.

4.3.4 Large scope for improvement as avg. BDP is 13000 MT/day

Figure 4.3.4: Berths handling more than 40% Dry Bulk Fertilizer Cargo

4.3.5 Low capacity utilization for Dry Bulk Fertilizer Cargo

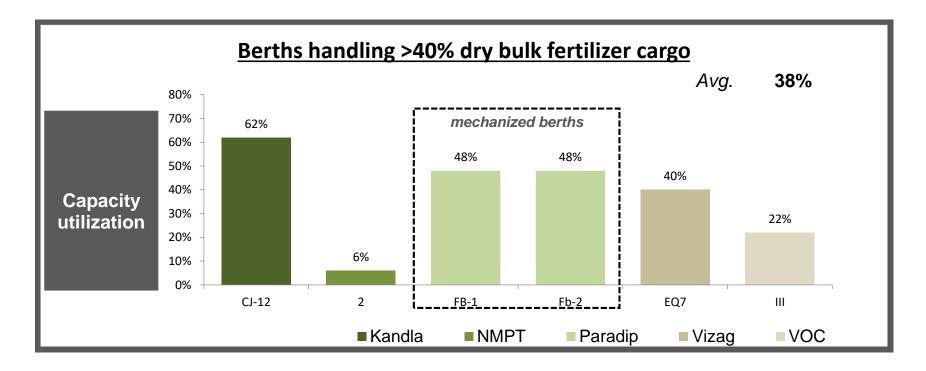
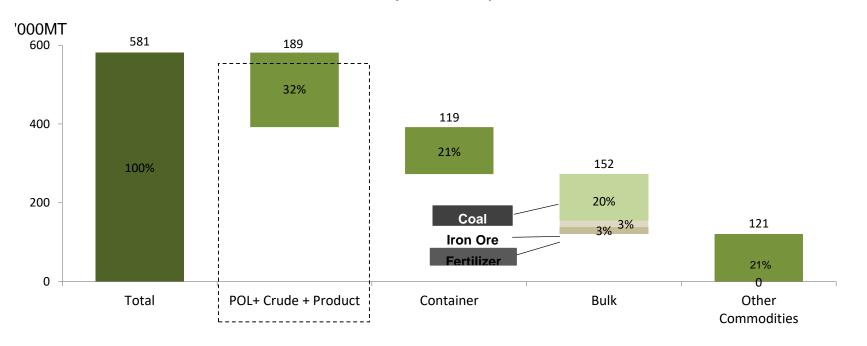
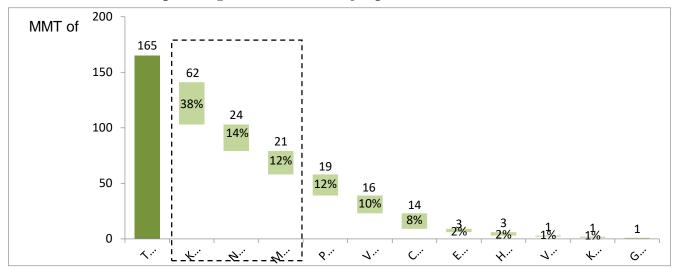



Figure 4.3.5: Berths handling more than 40% Dry Bulk Fertilizer Cargo

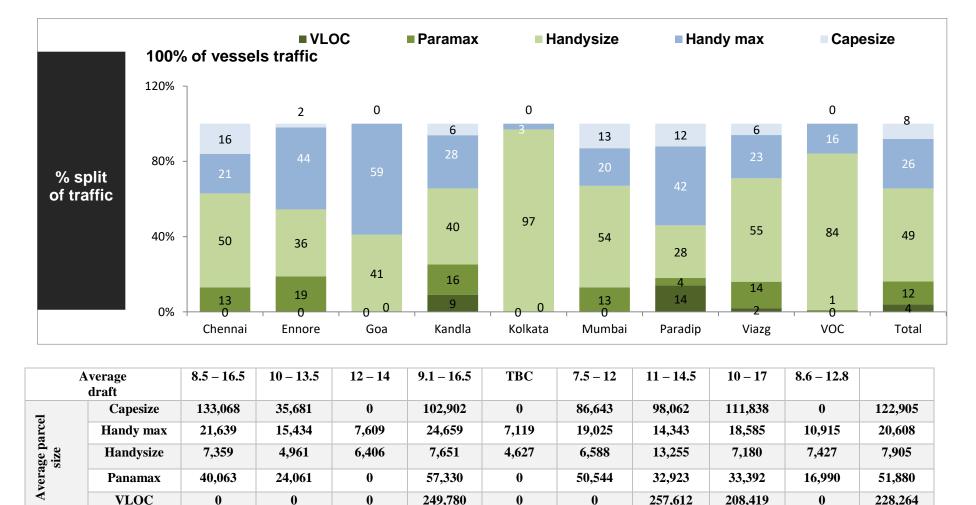
- Capacity utilization of berths handling at least 40% Dry Bulk fertilizer ranged between 6% to 62% with average being 38%.
- Existing capacity may be increased significantly by achieving benchmark output per berth day. Higher capacity utilization coupled with improved productivity may lead to significant volume of incremental traffic.


4.4 POL

Liquid cargo 32% of overall traffic across 12 major ports FY 2014-15

Cargo split handled at major ports (2014-2015)

Figure 4.4: Cargo split handled at major ports



4.4.1 Distribution of Liquid cargo traffic across major ports FY 2014-15

# of berths handling liquid cargo	7	6	6	1	5	7	1	-	1	5	1
Considered for analysis	\checkmark	Data not clarified	\checkmark	\checkmark	\checkmark						

Figure 4.4.1:Major Port distribution of liquid cargo

- 1. Kandla, NMPT and Mumbai together handled around 60% of the liquid cargo by the major ports
- 2. Liquid bulk traffic was highest at kandla

4.4.2 Handymax class constitutes ~50% of all liquid vessel calls

VLOC

0

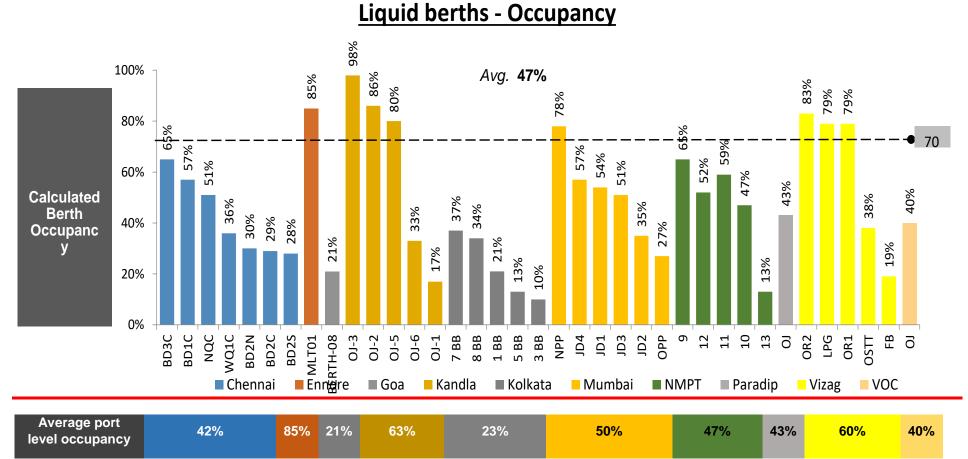
0

0

Figure 4.4.2: Percentage of split traffic

249,780

0

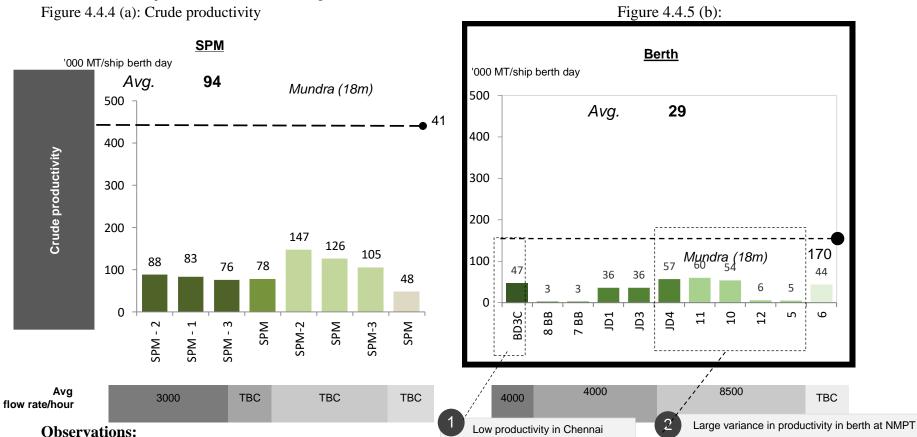

0

257,612

208,419

0

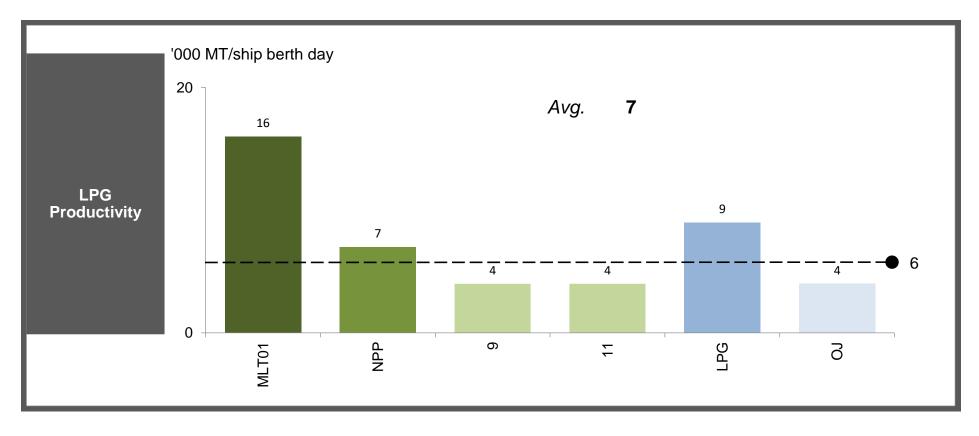
228,264



4.4.3 Liquid berth occupancy

Figure 4.4.3: Liquid berths - Occupancy

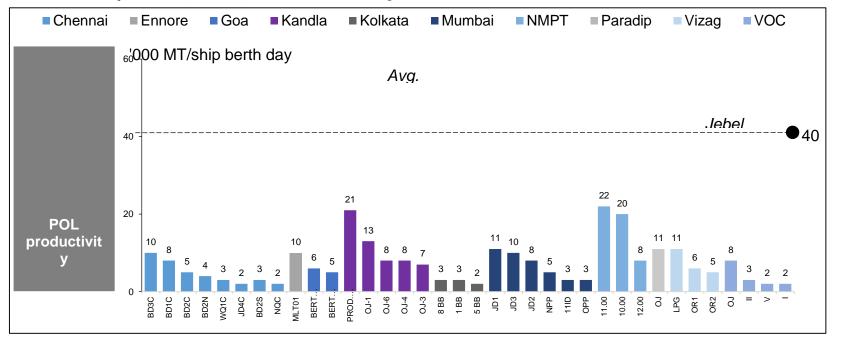
Observations:


- Average occupancy of berths handling Liquid Cargo at various ports was 47%. However, various ports registered different occupancy levels ranging between 21% at Goa to 85% at Ennore.
- Liquid berth operating at low occupancy levels further scope for improvement
- Occupancy of berths handling Liquid Cargo varied for each port. Maximum variation is observed for Kandla port where occupancy level ranged between 17% to 98%.

4.4.4 Productivity of POL (Crude) at Major Ports FY 2014-15

• Ship berth day output at SPMs of major ports (Average 94,000 tonnes) was much less in comparison to the level achieved at Mundra port (414,000 tonnes).

- Similarly, output per ship berth day for Liquid Bulk at various berth of major ports at the level of 29,000 tonnes was much less than 170,000 tonnes registered by Mundra port.
- Variance of output per ship berth day for Liquid Bulk was maximum for NMPT.
- Possibilities of pipeline up-gradation and better storage facilities may be explored.


4.4.5 Productivity of LPG across berths of Major Ports FY 2014-15

Avg flow rate	1200	TBC	350	TBC	159	
Figure 4.45 · I DC Productivity						

Figure 4.4.5: LPG Productivity

Observations:

- Average ship berth day output for LPG at various major ports ranged between 4,000 tonnes to 16,000 tonnes with average at the level of 7,000 tonnes.
- Possibilities of pipeline up-gradation and better infrastructure facilities may be explored.

4.4.6 Productivity of POL (Product) across berths of Major Ports in 2014-15

Avg flow rate	1300	2100	500	700	твс	твс	1200	твс	твс	170
Best in class					2100					

Figure 4.4.6: POL Productivity & Avg flow rate

Observations:

- Average ship berth day output for POL at various berths of major ports showed large variation. Minimum and maximum productivity registered were 2,000 tonnes and 22,000 tonnes respectively. Even the maximum productivity is much less in comparison to 40,000 tonnes at Jabel Ali port.
- Improvement in productivity could lead to increase of capacity.
- Possibilities of pipeline up-gradation and better infrastructure facilities may be explored.

4.4.7 Productivity across berth significantly below benchmarks (IV)

Some ports require pipeline upgradation

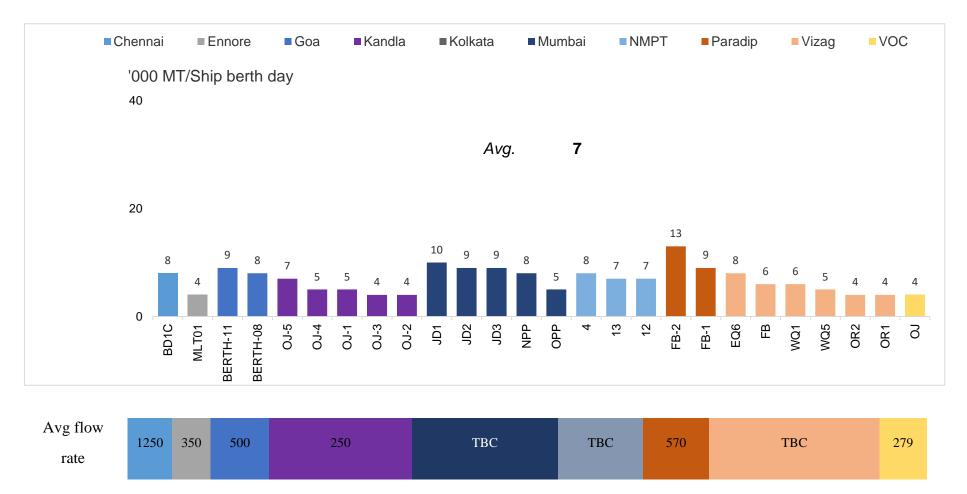


Figure 4.4.7 Productivity & Avg flow rate (other Liquids)

	With existing infrastructure – consistent performance							
Ports	Current Liquid volume (MMT)	Current calculated Occupancy (%)	Current capacity utilization (%)	Current Productivity (MT/ day)	BDP Productivity (MT/ day)	Incremental annual throughput (MMT)		
Chennai	14	42%	42%	68,328	89,296	9		
Ennore	3	85%	53%	10,743	17,171	1		
Goa	1	21%	28%	5,376	8,603	1		
Kandla	62	86%	35%	305,094	482,432	61		
Kolkata	1	23%	14%	13,242	23,018	5		
Mumbai	22	50%	31%	110,130	193,101	27		
NMPT	24	41%	25%	159,206	261,822	43		
Paradip	19	43%	15%	284,628	355,415	72		
Vizag	16	60%	24%	117,575	189,248	32		
VOC	1	40%	44%	4,301	8,594	1		

4.4.8 Potential to double volumes by replicating 'best demonstrated performance' consistently

Observations: Improving productivity to achieve the benchmark productivity level alone can result in incremental traffic of 252 MMT of Liquid Bulk traffic from existing traffic of 163 MMT.

4.5 Bulk Storage and Evacuation

Storage & evacuation data not regularly maintained in standardized formats

Metrics	Data Source	Vizag	Paradip	Kandla	Cochin	Morm -ugao	Ennore	Tuticorin	Kolkata	Mumbai	New Mangalore	Chennai
Storage Area by commodity	Storage maps/ allocation registers	•	•	~	~	√	X	X	X	X	X	X
Trucks TAT	N/A in most ports, observation studies	Not maintained	Not maintained	Not maintained	\checkmark	X	X	X	X	X	X	X
Rakes TAT	Rail indents of ports, N/A in some ports	\checkmark	\checkmark	Not maintained	\checkmark	X	X	X	X	X	X	X

Data capabilities for tracking of bulk storage & evacuation to be covered as part of capability & maturity assessment

Storage & evacuation metrics to be addressed as part of deep-dive wherever applicable

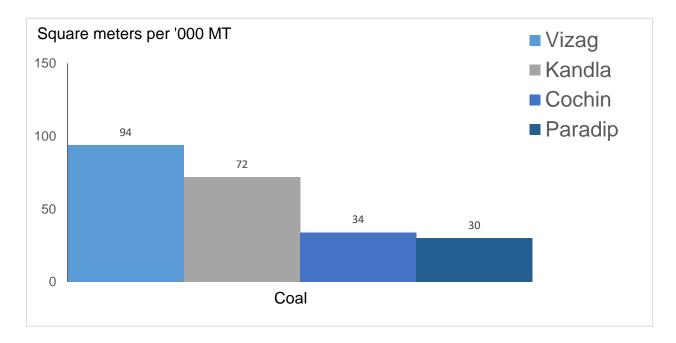
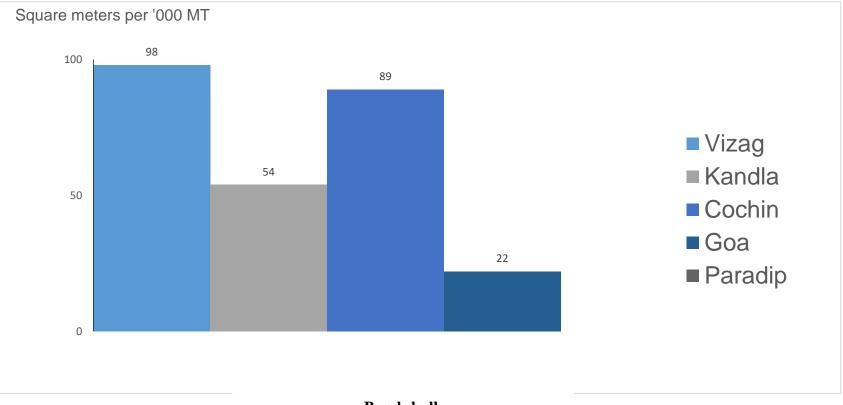
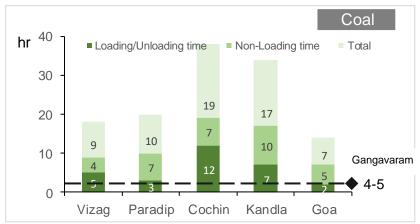


Figure 4.5.1 (a): Coal storage allocation across deep-dive ports


Dry Bulk

Other dry bulk


Figure 4.5.1 (b): Dry Bulk storage allocation across deep-dive ports

Break Bulk

Break-bulk

Figure 4.5.1 (c): Break bulk storage allocation across deep-dive ports

Mechanized loading gives private ports and edge

4.5.2 Rake turn-around times higher than private ports

Figure 4.5.2 (a): TAT for rake loading across deep-dive ports - Coal

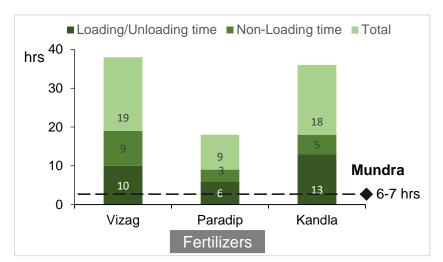
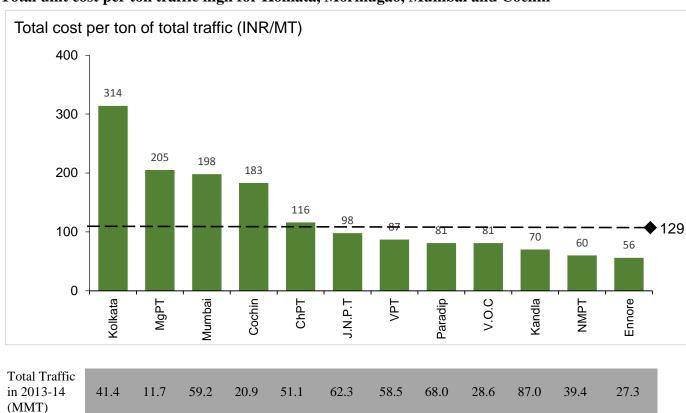


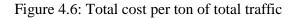
Figure 4.5.2 (b): TAT for rake loading across deep-dive ports - Fertilizers

Observations:

2

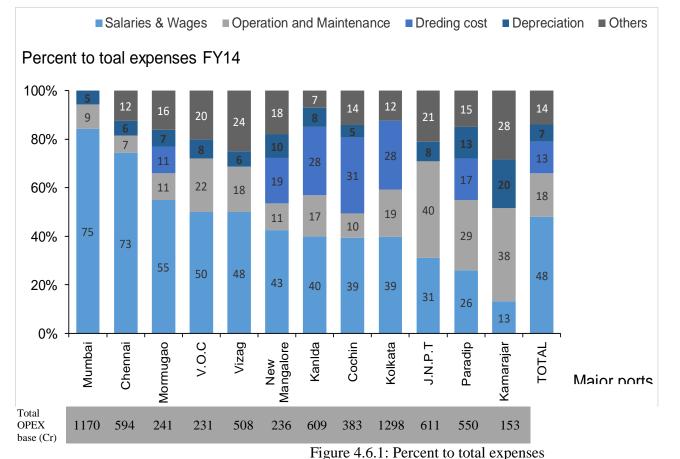

High waiting times drives longer TAT in major ports

Longer TAT times makes ports less competitive than other private ports for rake availabilities



Mechanized loading in private ports allows for lower TATs

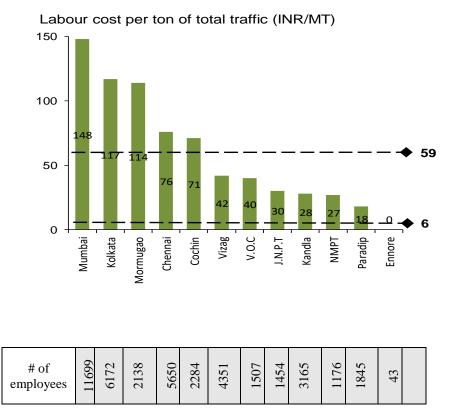
4.6 Port Cost Benchmark



Total unit cost per ton traffic high for Kolkata, Mormugao, Mumbai and Cochin

Observations:

• Cost per ton of cargo is highest for traditional ports with high manpower strength Kolkata, followed by MGPT, MbPT, Cochin and Chennai.



Observations:

- Expenditure on salaries & wages 48% of total expenditure of all major ports, highest being Mumbai, followed by Chennai and Mormugao.
- Operation and maintenance expenditure (excluding salaries & wages) is only 18%, highest being JNPT followed by Kamrajar port and Paradip. Dredging cost constitute 13% of total expenditure of all major ports, highest being Cochin, followed by Kolkata and Kandla.

4.6.2 Labou	r cost is nighest in	legacy ports such as Mumb	bal, Kolkata and Goa	

High labour cost per ton of traffic at	Cochin, Mormugao and Kandla with high
Mumbai, Kolkata and Mormugao	levels of non-cargo handling labour

Share of total workforce

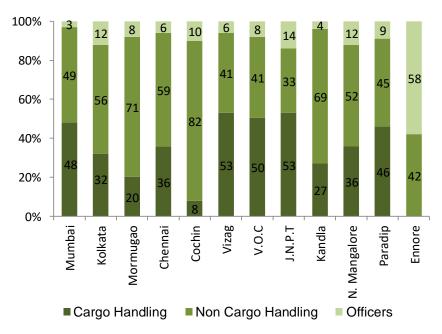
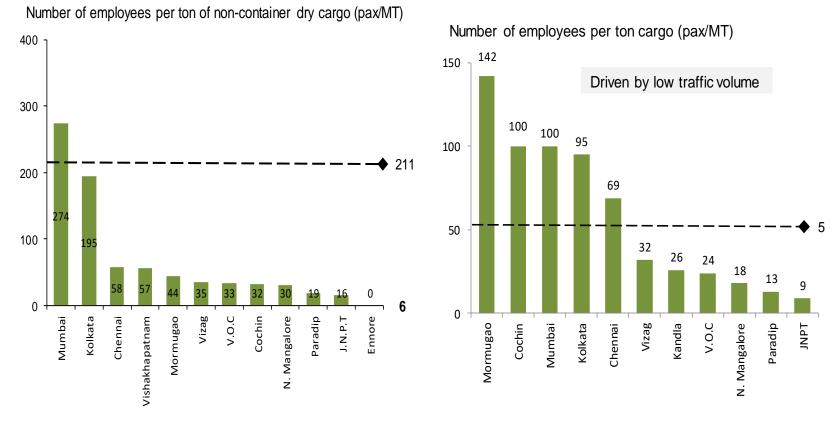



Figure 4.6.2 (a): Labour cost per ton of total traffic

Figure 4.6.2(b): Share of total workforce

- **Observations:**
 - Labour cost per tonne of cargo is very much on higher side for legacy ports like MbPT, KoPT, MGPT, CoPT & Chennai.
 - Non-cargo handling constitute around 50% and above of total workforce for most of the ports except JNPT, VPT, VOC.

4.6.3 Number of cargo and non cargo handling employees per MT

Indication of surplus cargo handling labour in Kolkata and Mumbai

Many legacy ports also with high levels of non-cargo handling labour

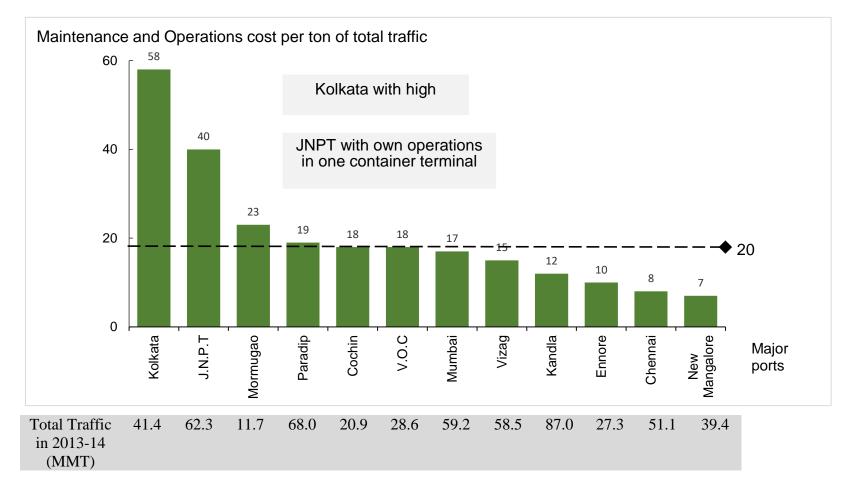
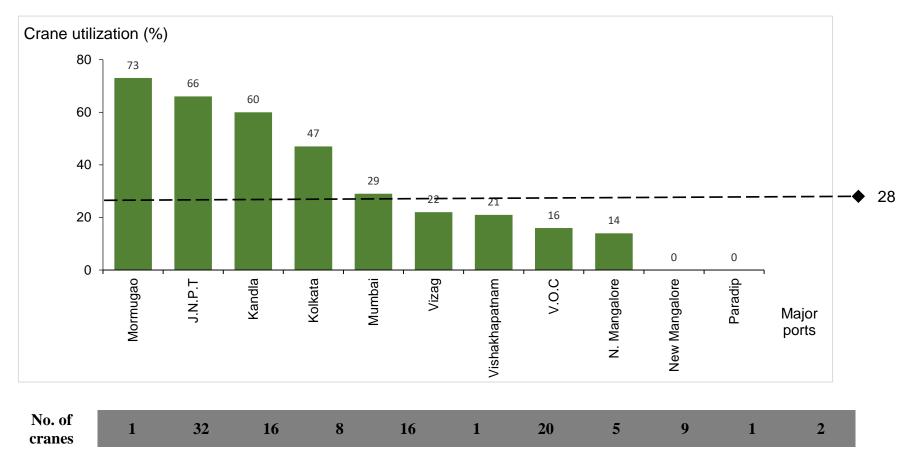
Figure 4.6.3 (a): No of employees per ton of non container dry cargo

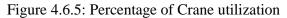
Observations:

Mumbai port with highest workforce has highest number of employees per tonne of non-container dry cargo. Surplus cargo handling labour are there at MbPT and KoPT. Disproportionate no. of employees and traffic volume, resulted in highest no. of employees per tonne of cargo at older ports, highest being MGPT.

Figure 4.6.3 (b): No of employees per ton cargo

4.6.4 Maintenance & Operations cost per unit traffic


Figure 4.6.4: Maintenance and Operations cost per ton of total traffic

Observations: Highest operation & maintenance expenditure at JNPT and low volume of traffic and large number of equipment at KoPT made the two ports having over 40% O&M cost per ton of traffic.

4.6.5 Port crane utilization high in Mormugao, J.N.P.T and Kandla

Low utilization of port berth cranes across several ports

Observations: Crane utilization was low (<-29%) for most of the ports. Moderate utilization is reported for Kolkata. Mormugao, JNPT and Kandla registered better utilization percentage (60% to 73%).

CHAPTER V – ANALYSIS (OBJECTIVE 2) (Deep-Dive Analysis)

5.1 Jawaharlal Nehru Port Trust

5.1.1 Port performance dashboard – JNPT

Bucket	Metric	Commodity	Best in class Benchmark	Baseline	1 Yr Target
Overall port performance	Avg. vessel turnaround time (hours)	Container	24 ¹	37	30 ⁵
Berth productivity	QC productivity (moves/hr)	Container	30 ²	17	25
	RTGC moves per hour	Container	15 ³	6	10
Yard	Yard throughout (TEU per Ha)	Container	$25,000^4$	24,000	25,000
Evacuation	Truck gate processing time (min)	Container	23	91	46

1. Singapore benchmark for mainline vessels used; assumptions for normalization – package size of 2,000 TEU, QC productivity of 30 moves per hour, 3 quay cranes employed per vessel, 4 hours of non-working time due to customs rummaging, pilotage, repos of containers. 2. Singapore benchmark for QC cranes. 3. Singapore benchmarks for RTGCs; assumption for normalization; 2 RTGCs employed per crane for vessel operation (1 RTGC employed for yard operation). 4. Based on global benchmark – for an annual traffic of 1 Mn TEU 40 ha of yard space is assigned. 5. Calculated basis QC productivity improvement of 25 moves/hr.

5.1.2 Summary of suggestions – JNPT

#	Suggestions	Metric	FY 15 baseline	Target	Oper. Surplus Increase (INR cr)	Capex avoidance (INR cr)
JNPT 1.1	Reduce shift change losses to improve QC productivity	Time lost b/w shift changes	60 min	15 min	25	-
JNPT 1.2	Increase twin-lift ration	Twin lift ration	25%	38%	15	-
JNPT 1.3	Redesign operator incentive scheme	Moves/working hour	-	-	20	-
JNPT 1.4	Improve QC productivity through dual cycling	Dual cycles/ BD moves	-	-	12	-
JNPT 2.1	Dynamic deployment of RTGCs based on actual demand	RTGC moves/hr	6	10	6	-
JNPT 2.2	Ensure 100% yard integrity through real- time update of container location by RTGC operators	Incorrect location %	0.3	0.01	4	-
JNPT 2.3	Acquire additional RTGCs	RTGC/ QC ratio	1.9	3	4	-
# of suggestions identified = 7 Operating surplus increase = 86 cr Capex avoidance = NA						

5.1.3 JNPT Reduce shift change losses to improve QC productivity

Suggestions Overview

Suggestions summary	Key action steps
Loss of quay crane productivity observed around shift change (~1 hour) Improve the shift change process to minimize the productivity losses	Start monitoring performance at shift changes systematically down to individual quay crane level
 Ensure work ends no earlier before scheduled shift ending Bus for next shift staff reports before previous shift ends Shorten the staff allocation for next shift Move next shift staff to equipment on time 	• Shift-in-charge of previous and next shift to track and monitor the actual time loss during every shift change; and report on daily basis to Deputy Mgr

Ownership		Financial Impact	Tracking metrics		
Initiative owner :	Traffic Manager	Operating surplus improvement :	Metric to be tracked -		
Other stakeholders :	Shift-in-charge	25 cr	Time lost shift changes		

5.1.4 JNPT Increase twin-lift ratio

Suggestions Overview

Suggestions summary	Key action steps
Twin-lifting can boost crane productivity for terminals where 20' container constitute a large share of traffic (60-70% for JNPCT)	Conduct twin-lift leakage analysis at vessel level Starting from Week 21, for each vessel <u>Planning team</u>: track twin-lift
 Current twin-lift ratio is ~25% and there is potential to increase the twin-lifts of 20ft containers below 25ft through Improve planning to optimize the twin-lift opportunities Ensure execution according to plan with minimum leakage 	 ratio planned, separated by export & import Shift-in-charge: track the execution leakage of twin-lift and reasons and the actual twin-lift ratio executed, separated by load & discharge Report to initiative team per vessel basis for review

Ownership		Financial Impact	Tracking metrics	
Initiative owner :	Traffic Manager	Operating surplus improvement :	Metric to be tracked -	
Other stakeholders :	Head, Planning	15 cr	Twin lift ratio	

5.1.5 JNPT Redesign operation incentive scheme

Suggestions Overview	rview	0	estions	Sugg
----------------------	-------	---	---------	------

Key action steps
Track individual quay crane operator performance & attendance for 1-2 months to finalize the key incentive
parameters (e.g. minimum monthly moves)
 Individual quay crane operator productivity (moves per hour)
 Total number of moves performed Actual # of hours worked / absent
Engage union to propose the new incentive scheme
Pilot the new incentive scheme for 3 months before roll-out

Ownership		Financial Impact	Tracking metrics
Initiative owner :	Dy. Chairman	Operating surplus improvement :	Metric to be tracked
Other stakeholders :	Traffic Manager	20 cr	

5.1.6 JNPT Redesign operation incentive scheme

Suggestions	Overview

Suggestions summary	Key action steps
JNPT is currently not employing dual cycling	Immediate steps
 Significant potential to employ dual cycling given the large gateway traffic and parcel sizes Has been successfully employed at GTI 	 Procure and install advanced NAVIS modules that provide support for dual cycling Identify metrics for tracking, recording and reporting dual cycling performance
Introduce dual cycling among QC and TT's	Medium-term
 Advanced loading plans to smooth differences between loads and discharges across stacks Better yard side planning Service based TT dispatching 	 Enable smooth flow of TT between import and export yard Create loading plans that allow QC dual cycling Employ service based TT dispatching

Ownership		Financial Impact	Tracking metrics	
Initiative owner :	Head, Planning	Operating surplus improvement :	Metric to be tracked -	
Other stakeholders :	Traffic Manager	12 cr	Dual cycles/ QC moves	

5.1.7 JNPT Dynamic deployment of RTGCs based on actual demand

Suggestions Overview	
Suggestion summary	Key action steps
JNPT RTGC utilization rate is lower (high idle time) than GTI despite of equipment shortage	Immediate steps
 Fixed deployment of 2 RTGCs in the export yard for export in-take for every shift despite actual in-gate volume Separation of Import / Export yards prevent RTGC pooling 	 Deploy the RTGCs for export intake based on the in-gate volume and proximity to the CY location Medium-term
 Improve RTGC deployment through Dynamic deployment of RTGCs to rebalance the equipment based on actual demand Monitor idle RTGCs and develop deployment strategy 	 Set up operation control tower, CCTVs in the yard and dedicate equipment dispatchers to monitor the RTGC idle time Improve yard layout to allow pooling of RTGCs across Import & Export yards

0	ownership	Financial Impact	Tracking metrics
Initiative owner :	Head, Planning	Operating surplus improvement : -	Metric to be tracked -
Other stakeholders :	Traffic Manager	6 cr	RTGC moves/hr

5.1.8 JNPT Ensure 100% yard integrity through real-time update of container location by RTGC operators <u>Suggestions Overview</u>

Suggestion summary	Key action steps
 ~30% containers are not in the planned location Planning not able to optimize the stacking Low RTGC productivity due to time taken to search containers High cancellation of pickup line tickets due to wrong location Ensure container location has 100% integrity Require real-time update of container location by RTGC operators (where RDT is available) Assign housekeeping jobs to clean up the wrong location 	 Immediate steps Enforce RTGC operators to update container location in real-time through RDT Discuss with IT to explore system solution to track # of containers not in the planned yard location and any failed or late RDT update Assign housekeeping job to clean up / prepare yard (e.g. consolidate minor stacks)

Ownership		Financial Impact	Tracking metrics
Initiative owner :	Head, Planning	Operating surplus improvement : -	Metric to be tracked -
Other stakeholders :	Traffic Manager	4 cr	Incorrect location %

5.1.9 JNPT Acquire additional RTGCs

Suggestions Overview

Suggestion summary	Key action steps	
 Current number of RTGCs is insufficient to handle targeted increase in QC productivity RTGC to QC ratio is very low for JNPT (1.9 as against 4 at GTI) No. of RTGCs insufficient even at the targeted RTGC productivity level of 10 GMPH Acquire additional RTGCs would need to be acquired assuming a RTGC productivity increase to 10 GMPH Can be either purchased or hired on contract 	 Immediate steps Finalize the mode of acquiring additional RTGCs-purchase or hire Release the tender for purchase or hiring of additional RTGC Identify the external vendor Provide targets dates to the vendor for completion of the deployment of additional RTGCs 	
Ownership	Financial Impact	Tracking metrics
Initiative owner : Dy. Chairman		Metric to be tracked

Other stakeholders : Traffic Manager

Operating surplus improvement : 4 cr

RTGC/ QC ratio

-

Metric to be tracked

5.2 Paradip Port Trust

5.2.1 Port performance dashboard – PPT

Bucket	Metric	Commodity	Best in class Benchmark	Baseline	1 Yr Target
	Avg. vessel turnaround time (hours)	Coal – Conventional	70 ¹	360	144
Overall port performance	Avg. vessel turnaround time (hours)	Coal – Mechanized	36 ²	97	42
	Avg. vessel turnaround time (hours)	POL	36 ³	83	50
	Gross productivity (gross MT/ day)	Coal – Conventional	$20,000^4$	9,772	13,500
Berth productivity	Gross productivity (gross MT/ day)	Coal – Mechanized	66,000 ⁵	32,880	55,000
	Discharge rate (MT per hour)	POL	3500	2,167	2,500
	Yard throughput (MT per sq. m)	Coal - Conventional	NA	33	40
Yard					
	Yard throughout (MT per sq. m)	Coal - Mechanized	250 ⁶	172	230
Evacuation	Rake turnaround time (hours)	-	5.0	9.6	5.0

1. Average coal parcel size at conventional berths in Paradip = 50,000. Best in class productivity for full vessel = 20,000 (80% of 25,000 MT for Cape at Krishnapatnam port). Pre Berthing detention of 6 hours, other non working time including pilotage customs check etc at ~4 hours. 2. Panamax capable berth handling parcel size of ~55,000 MT. At panama parcel size, loading time would be ~30 hours. Additional PBD + other non working time = ~6 hours. 3. Average productivity of ~2,500 MT / hour (varying by cargo type). Average Parcel size at Paradip = 75,000. Berth time = 30 hours. Additional 6 hours of time for non working time. 4. Gross productivity of 20,000 MT for cape vessels). 5. Average productivity of unloading 7,500 MT berths = 100,000 MT. Adjusting for equipment type and operation (Unloading ~20% lower than loading), target productivity of 66,667 MT.

5.2.2 Summary of suggestions – PPT

#	Suggestions	Metric	FY 15 baseline	Target	Op. Surplus Increase (INR cr)	Capex avoidance (INR cr)
PPT 1.1	Modification of existing berthing policy and setup of penal berth charges linked to productivity	MT / hr	1.370	2,500	45	-
PPT 1.2	Generate additional demand	mn MT / month	1.8	3.0	90	-
PPT 2.1	Use IHP for export coal cargo and handle Haldia top-up vessels and smaller players	MT / month	0	375,000	40	-
PPT 3.1	Rationalisation of existing plots in MCHP and development of additional land (if required)	MTPA / sq.m + Impl. time for new land	172	230	27	-
PPT 3.2	Improve RRS monitoring to improve mntc. and reduce rake TRT Upgrade coal loading system at MCL	Rake TRT	2.25	1.75	41	-
PPT 4.1	Operate 8 HMCs across EQ 1-3, CQ1-2 berths to upgrade productivity	# of HMCs	4	8	36	-
PPT 5.1	Develop additional storage capacity and full rake sidings for conventional operations	Sq. m	0	200,000	24	_
# of suggestions identified = 7 Operating surplus increase = 303 cr Capex avoidance = NA						

5.2.3 PPT Modification of existing berthing policy and setup of penal berth charges linked to productivity norms

Suggestions Overview

Suggestions summary	Key action steps
Productivity norms promoting higher productivity will drive end customers to increase vessel productivity rate.	Priority berthing rules productivity norms and penal charges to be informed and aligned with all customers
Prioritized berthing for high productive vessels to drive improved performance.	 Detailed norms for next 2 years New berthing norms finalization and launch

Ownership		Financial Impact	Tracking metrics
Initiative owner :	Traffic Manager	Operating surplus improvement :	Metric to be tracked -
Other stakeholders : CM	E	45 cr	Gross MT / day

5.2.4 PPT Generate additional demand for thermal coal from existing and new customers

Suggestions Overview

Suggestions summary	Key action steps
	Identify end customers for thermal coal
Improvement of productivity will release	
occupancy at MCHP which will require additional	
volumes from customers	Discuss with end customer to attract cargo
Tangedco / NTECL / NTPLAPGENCO	from customers
 KPCL Other customers	Key customers to target include APGENCO, MhGenCo, GujGenCo

	Ownership	Financial Impact	Tracking metrics
Initiative owner :	Dy. Chairman	Operating surplus improvement :	Metric to be tracked -
Other stakeholders :	Traffic Manager	90 cr	mn MT / month

5.2.5 PPT Use IHP for export coal cargo and handle Haldia top-up vessels and smaller players

Suggestions Overview

Suggestions summary	Key action steps	
	Discuss and along with end customers on need to handle cargo at IHP	
 Use of IHP for handling thermal coal Link IHP with low productive vessels Link 3 mMT coal cargo for TANGEDCO / NTECL Link Haldia volumes with IHP Transfer smaller volume (< 1 mMT) cargo from MCHP to IHP 	Setup appropriate pricing structure to make handling cost equivalent across MCHP and IHP Setup productivity norms and berthing policy at IHP	
Ownership	Financial Impact	Tracking metrics
Initiative owner : Dy. Chairman	Operating surplus improvement :	Metric to be tracked
Other stakeholders : Traffic Manager	40 cr	MT / month

MT / month

Suggestions summary	Key action steps
 Drive MCHP land rationalization to increase productivity 	Throughput levels defined for entire land parcel
 Land allocation done based on average throughput achieved by customer with 	New players to be allocated land based on norm of 250 MTPA / sq. mts
smaller players to be shifted to IHP	DPR for developing additional land parcel followed by tender for contracting out the
 Additional land parcel may be required to be developed to handle excess volumes Depends on customer profile and 	required project
volume from existing players	Program monitoring of construction activities

5.2.6 PPT Rationalisation of existing plots in MCHP and development of additional land

(Ownership	Financial Impact	Tracking metrics
Initiative owner :	Traffic Manager	Operating surplus improvement :	Metric to be tracked -
Other stakeholders :	CE, CME	27 cr	MTPA / sq. m

Suggestions Overvi

5.2.7 PPT Improve RRS monitoring to reduce rake TRT

Suggestions Overview

Suggestions summary	Key action steps
 Improve monitoring at MCHP receiving station to reduce turnaround time Improve railway track maintenance Potential need to hire double locos for rake movement on merry go round Upgrade and maintain auto signalling system for MCHP Upgrade of MCL end coal handling system (under construction by MCL) 	 Setup team to regularly monitor and track performance Regular track maintenance and cleaning to reduce slippage and speed loss for rakes Alignment on use of double locos to increase speed of rakes within ports Maintain auto-signalling system for MCHP Liaising with MCL to track progress on coal loading system for rakes

Ownership	Financial Impact	Tracking metrics
Initiative owner : CME	Operating surplus improvement :	Metric to be tracked -
Other stakeholders : CE, Traffic Manager	41 cr through additional capacity unlock	Rake TRT (hours)

5.2.8 PPT Operate 8 HMCs across EQ 1-3, CQ 1-2 berths to upgrade productivity

Suggestions Overview

Suggestie	ons summary	Key action steps	
• Add 4 new HM0 productivity	Cs across berths to increase	Commission new HMCs for operations	
Ow	nership	Financial Impact	Tracking metrics
Initiative owner :	Traffic Manager	Operating surplus improvement :	Metric to be tracked -

of HMCs

36 cr

5.2.9 PPT Develop additional storage capacity and full rake sidings for conventional operations

Suggestions Overview

Suggestions summary	Key action steps
• Developing new siding plots to ease volume	• Identify plot area for development
storage on existing plots and accommodate growing cargo volumes	• Float tender for clearing and land development and siding construction

	Ownership	Financial Impact	Tracking metrics
Initiative owner :	CE	Operating surplus improvement :	Metric to be tracked -
Other stakeholders :	Traffic Manager	24 cr	Addn. storage area

5.3 Cochin Port Trust

5.3.1 Port performance dashboard – CoPT

Bucket	Metric	Commodity	Best in class Benchmark	Baseline	1 Yr Target
	Avg. vessel turnaround time (hours) [pre-berth waiting time (hours)]	Container	241	26 [18]	24 [18]
Overall port performance	Avg. vassal turnaround time (hours)				
	Avg. vessel turnaround time (hours) [pre-berth waiting time (hours)]	POL	36	44 [20]	38 [20]
Berth	QC productivity [berth productivity] (moves/hr)	Container	30 ²	27	27
productivity	Discharge rate (MT per hour)	POL	4400	3600	3600
	RTGC moves per hour	Container	15	11	11
Yard	Yard throughout (TEU per Ha)	Container	NA	9,000	9,000
Evacuation	Rake turnaround time (hours)	Container	5.0		10
1. Average parcel size of 1000 TEU's, assuming a crane productivity of 30 moves per hour witch 2 cranes deployed and PBD and other NWT of 6 hours. 2. Average POL productivity of 40,000 MT per day at Jebel Ali.					

5.3.2 Summary of suggestions – CoPT

#	Suggestions	Metric	FY 15 baseline	Target	Op. Surplus Increase (INR cr)	Capex avoidanc e (INR cr)
CoPT 1.1	Incentivize and increase reliability of rail movement of containers between Coimbatore and Cochin	Traffic from Coimbatore (TEUs)	0	40,000	5	0
CoPT 1.2	Reduce checkpoint delays for containers moving by road from Coimbatore to Cochin	Traffic from Coimbatore (TEUs)	0	_ 50,000		0
CoPT 1.3	Relaxation of cabotage on coastal goods – bulk and containers	Mainline services	2	4	2	0
CoPT 1.4	Reduce nautical depth maintained to 13.5m	Dredging Cost	~120 cr	~100 – 120 cr	0 – 20 (conditional on draft of future mainline services)	0
CoPT 2.1	Develop coastal movement of rice & wheat from North India with FCI and 3 rd party logistics players	Food-grain vol	0.1 Mn MT	1 Mn MT	8	0
CoPT 2.2	Attract fertilizer imports through investment in mechanized bagging plant	Fertilizer vol	40k MT	400k MT	2	0
CoPT 3.1	Set up POL quality testing facility at the berth to reduce non-working time for imports		9,100	10,300	0	100
# of suggestions identified = 7 Operating surplus increase = 17-37 cr Capex avoidance = 100						

5.3.3 CoPT Pilot for improving rail connectivity from Coimbatore to ICTT <u>Suggestions Overview</u>

 Large market in Coimbatore can be tapped through rail Reliability and low cost key customer requirements Pilot outline : Guaranteed service of 2-4 trains per 6 months Rake schedule aligned with mainline vessel schedule Incentives on THC and rail traffic by DP world and CONCOR Higher volume to increase absolute profits for CONCOR 	 Pilot program finalization and agreement from DP World and CONCOR on key pilot parameters Rail tariff reduction by CONCOR THC incentive by DP World Set up BD team jointly with DP World to attract customers from Coimbatore region to ICTT via rail Pilot kick-off with 3 rakes a week; ongoing monitoring of volumes achieved 	
 Port authority to make-good loss contribution to CONCOR v-s-a-vis current rate and profit Maximum downside of ~1.3 cr for Nil volume increase 	Ongoing interaction with CHAs and liners to further reduce freight rate given higher parcel sizes	
Ownership	Financial Impact	Tracking metrics
Initiative owner : Traffic Manager	Operating surplus improvement : 5 cr	Metric to be tracked - Traffic from Coimbatore (TEUs)

Suggestions summary	Key action steps	
	Recommendation to Ministry for regulatory changes	
High cost of road transport from Coimbatore to Cochin resulting in traffic being diverted to Tuticorin Port	 Proposals for automation of checks at inter-state check-post Drive through weigh- bride OCR for scanning container seal vehicle 	
Potential to reduce delays and costs through technology and process improvements solutions	 registration number Credit system for payment of penalties on excess weight Revisit truck weight limits for OD containers 	
 Technology to minimise cycle time for various checks Negotiation of trucker's union rates based on reduced time per trip 	Recommendations for engaging with unions	
	• Negotiate lower trucking rates with truckers union	
Ownership	Financial Impact	Tracking metrics
	Operating surplus improvement :	Metric to be tracked -

5 cr (jointly with initiative 1.1)

Traffic from Coimbatore (TEUs)

5.3.4 CoPT Requirements for easing the delays and costs for road transport to ICTT Suggestions Overview

Initiative owner :

TM

5.3.5 CoPT Proposal for extended cabotage relaxation for coastal cargo

Suggestions Overview

	Key action steps	
ow parcel sizes make calls at Cochin nviable for mainline vessels	Recommendations to the Ministry of Shipping on extension of cabotage waiver	
• Volumes limited to oversees gateway cargo of Cochin's primary hinterland otential to attract more mainline services	Identify liners with existing services passing Cochin Port without a call	
 providing larger traffic potential Coastal traffic of ~60,000 TEUs per annum is currently not available to foreign vessels due to cabotage 	Liaise with liners/vessel agents to demonstrate benefit of increased volume potential	
• Relaxation of cabotage on coastal on coastal containers can make calls at Cochin more economical	• Attract additional mainline service potentially a Far East service, with the added benefit of coastal volumes at Cochin	
Ownership	Financial Impact	Tracking metrics

Initiative owner :	Chairman	Operating surplus improvement :	Metric to be tracked -	
initiative owner .	Chanman	2 cr	Mainline services	

5.3.6 CoPT Mechanization to attract FCI food-gain traffic from North India/ Andhra Pradesh

Suggestions Overview	
Suggestions summary	Key action steps
High volumes of food-grain being transported to Kerala by rail; coastal movement costlier than rail today	Engage FCI to secure minimum yearly volume commitments to facilitate investments
 Coastal transport 9% costlier than rail due to high labor handling and bagging cost in Cochin Potential to attract 1.6 million tonnes of FCI food grains for Kerala's consumption 	Contract with vessel agents to charter and deploy coastal bulk service
 Food grains to be transported from North India to Kandla / JNPT via rail and then to be transferred to Cochin via sea 	Setup a mechanized berth for efficient handling of food grains with minimum labor involvement
• Bulk transport will provide a cost saving of 10% over rail	Contract with 3PL player to setup silos for storage on behalf of FCI

Ownershi	p	Financial Impact Tracking metri	
Initiative owner :	TM	Operating surplus improvement :	Metric to be tracked -
mitiative owner.	1 101	8 cr	Food-grain vol (Mn MT)

5.3.7 CoPT Mechanized bagging plant to attract fertilizer imports

Suggestions Overview		
Suggestions summary	Key action steps	
High VRC and labor handling costs make Cochin an unattractive port for fertilizer imports	Setup a business development team to identify and attract fertilizer imports	
 VRC is ~2x of Tuticorin and NMPT Slow handling adds to cost by increasing berth hire charges 	Benchmark the vessel related charges borne by importers at	
Potential to attract 400 thousand MT of imports by mechanizing handling and reducing VRC	different ports and reduce VRC accordingly	
• Labor handling to be eliminated by establishing conveyor belts and mechanized bagging	Setup mechanized bagging plant for quicker unloading and discharge with minimum labor involvement	

Ownership		Financial Impact	Tracking metrics
Initiative owner :	TM	Operating surplus improvement :	Metric to be tracked -
initiative owner.	1 101	2 cr	Fertilizer vol (Mn MT)

5.3.8 CoPT Enable BPCL to set up POL quality testing facility within port premises

Suggestions summary	Key action steps	
 Reduction in idle time at POL berths on account of quality testing of POL imports Currently, testing done in BPCL refinery (~17km from the berth) leading to time lost in transit through the city. Enable BPCL to setup testing facility within port to reduce city transit time Savings in time of about ~2 hours per import vessel Productivity to increase by 500 MT/day Reduction in berth occupancy by 4 percentage points 	 Facilitate land allocation and usage Setting up of amenities like electricity lines etc Monitor BPCL implementation of project: Align milestones for setting up testing facility with refinery expansion timelines Progress on setting up of equipment in lab Monitoring of idle time at berth on account of quality testing Incentivize HPCL and IOCL to minimize idle time by using BPCL lab for testing 	
Ownership	Financial Impact	Tracking metrics
Initiative owner:Mgr – Oil JettyOther stakeholders:Shift-in-charge	<i>Operating surplus improvement :</i> 0 cr	Metric to be tracked - Berth productivity (MT per ship-berth day)

5.4 Chennai Port Trust

5.4.1 Port performance dashboard – CHPT

Bucket	Metric	Commodity	Best in class Benchmark	Baselin e	1 Yr Target
Overall port performanc e	Avg. vessel turnaround time (hours) Avg. vessel turnaround time (hours)	Container POL	32 ¹ 43 ² [-]	38 84 [19]	36 52 [6] ⁶
Berth productivity	QC productivity [berth productivity] (moves/hr) Discharge rate (MT per hour)	Container POL	30 ³ 7000	25 2700	25 ⁷ 7000 ⁶
Yard	RTGC moves per hour Yard throughout (TEU per Ha)	Container Container	15 ⁴ NA	10 45,000 ⁷	12 34,000 ⁸
Evacuation	Truck gate processing time (hours)	Container	1	6.1	3.5

1. Singapore benchmark for mainline vessels used; assumptions of normalization- package size of 2,500 TEU, QC productivity of 30 moves per hour, 3 quay cranes employed per vessel, 4 hours of non-working time due to customs rummaging, pilotage, repos of containers 2. Achievable discharge rate of ~2,700 MT/hour (varying by cargo type). Average Parcel size at Chennai= 1,00,000. Berth time = 37 hours. Additional 6 hours of time for non working time. 3. Singapore benchmark for QC cranes. 4. Singapore benchmark for RTGCs; assumptions for normalization: 2 RTGCs employed per crane for vessel operation (1 RTGC employed for yard operation). 5. Based on global benchmark-for an annual traffic of 1 Mn TEU 40 ha of yard space is assigned. Calculated basis QC productivity improvement of 25 moves/hr. 6. To be achieved post up-gradation of pipeline; to be completed by 2017. 7. Current level is optimal given occupancy is low at ~50%. Calculated for DPW terminal; yard space is adequate for PSA terminal. 8. Yard throughput to improve on assigning new yard space area to DPW terminal. 9. Measured for container terminal gates.

5.4.2 Summary of suggestions – CHPT

#	Suggestions	Metric	FY 15 baseline	Target	Op. Surplus Increase	Capex avoidance
CHPT 1.1	Monitor & incentivise yard productivity of private terminals	Yard throughput	80 trailers/hr	120 trailers/hr	0	-
CHPT 1.2	Provide additional yard space to DPW	# of ground slots	3940	4400	0	-
CHPT 1.3	Frontload pre-gate processing & entry of trailer details to CFS	Surveyor verification	365 sec	300 sec	0	-
CHPT 1.4	Automate container verification by installing cameras	Surveyor verification	120 sec	80 sec	0	-
CHPT 1.5	Discount charges on rake operations for Bangalore ICD	Vol. of rail evacuated	0.07 Mn TEU	0.5 Mn TEU	0	-
CHPT 2.1	Facilitate construction of new POL- products pipeline between Chennai and Ennore storage areas	POL product traffic vol	3 Mn MT	5 Mn MT	9	-
CHPT 3.1	Match Chennai port charges to Krishnapatnam for edible oil	Port charges per MT	INR 132	INR 97	2	-
CHPT 3.2	Start edible oil rakes between Chennai and Madurai	# of rakes per month	0	8	1	-
CHPT 4.1	Attract fertilizer imports through investment in mechanized bagging plant	-	-	-	2	-
# of sugges	stions identified = 9 Operating surpl	us increase =	14 cr	Cap	ex avoidance =	= NA

5.4.3 CHPT Monitor and incentivise yard productivity of private terminals

Suggestions Suggestions summary	Key action steps	
	Create a joint team of port and terminal to monitor yard throughput	
Port to monitor & incentivise yard productivity	• Team to comprise of ATM and GM of operations from the terminals	
 Implement system for monitoring critical yard performance metrics – trailer throughput & gate closure times Leverage new TAMP guidelines to investigate if tariff incentives can be given based on yard productivity 	Create MIS for monitoring gate closure times and trailer throughput per hour	
	Formulate tariff structure to provide productivity based incentives under TAMP guidelines	

Ownership		Financial Impact	Tracking metrics	
Initiative owner :	Traffic	Operating surplus improvement :	Metric to be tracked -	
Manager		(~50 cr value protection through traffic	X7 1/ 1 /1 1 /	
Other stakeholders:	Terminal CEOs	retention)	Yard trailer throughput	

5.4.4 CHPT Provide additional yard space to DPW

Suggestions summary	Key action steps
Current yard space availability for DPW is low	Finalize land parcel to be handed over to DPW
• No buffer yard available (~17 Ha of yard space; highest slot density among all Indian terminals)	Finalize changes to agreement (if required)
 Additional yard space available adjacent to the terminal Option 1: Space provided by altering current Concession 	 Add higher productivity/ minimum guaranteed traffic norms
 Option 2: Space swapped with DPW's existing land parcel near CFS 	Clear land parcel to be handed over to DPW of existing infra – roads, buildings

Ownershi	р	Financial Impact	Tracking metrics
Initiative owner :	Chairman	Operating surplus improvement :	Metric to be tracked -
Other stakeholders:		NIL	# of CCTPL ground slots

5.4.5 CHPT Frontload pre-gate processing & entry of trailer details to CFS

Suggestions summary	Key action steps
Pre-gate processing & entering of container details happen at terminal gate	
• Pre-gate takes ~ 120 sec	Align with CFS on completing pre- gate information entry at the CFS itself
Process can be moved to CFS	itsen
 CFS to enter all details of container and trailer CFS to share the information with the terminal Only verification of details like container, trailer no. will be verified at 	Co-ordinate between the CFS & terminals to ensure information sharing on container, trailer details

Owners	hip	Financial Impact	Tracking metrics
Initiative owner :	Traffic Manager	Operating surplus improvement :	Metric to be tracked -
Other stakeholders:		NIL	Gate processing time

5.4.6 CHPT Automate container verification by installing cameras

Suggestions Overview	
Suggestions summary	Key action steps
Surveyor verifies the container, container seal at the terminal gate	
• Surveyor verification takes ~120 sec	Align with the customs on use of camera system for container verification
Entire verification process can be automated by installation of camera system	Identify vendor(s) for installation of
 The camera to capture image of the container in multiple angles The images will be compared to repository of images real time 	camera system

Owner	rship	Financial Impact	Tracking metrics
Initiative owner :	Traffic Manager	Operating surplus improvement :	Metric to be tracked -
Other stakeholders:		NIL	Surveyor verification time

Suggestions summary	Key action steps	
ogistics cost of rail higher than road for		
Sangalore ICD		
	Align with CONCOR on passing on	
 ~INR 2,500 per container difference in logistics cost 	benefits of waiver of port charges to	
in logistics cost	end customer	
Additional charges on CONCOR for		
 unning rakes from Bangalore to be waived Port charges – service charge, haulage charge etc. Railway charges – congestion 	Take up with railways for waiver of port congestion surcharge on CONCOR for Chennai port	

5.4.7 CHPT Discount charges on rake operations for Bangalore ICD Suggestions Overview

Owner	ship	Financial Impact	Tracking metrics
Initiative owner :	Traffic Manager	Operating surplus improvement :	Metric to be tracked -
Other stakeholders:		NIL	Evacuation through rail

5.4.8 CHPT Facilitate construction of new POL-products pipeline

Suggestions Overview Suggestions summary	Key action steps
Chennai likely to lose POL product cargo to Ennore due to shifting of storage spaces near Ennore	Align with Ministry & Ennore port on potential pipeline development
 Ennore does not have adequate capacity Long vessel TAT in Ennore due to POL vessels 	Pitch to all potential investors (IOCL, BPCL, HPCL)
Develop a POL product pipeline from Chennai port to the storage facilities	Facilitate environmental & land clearances

Ownership		Financial Impact	Tracking metrics
Initiative owner :	Chairman	Operating surplus improvement :	Metric to be tracked
Other stakeholders:		9 cr	

5.4.9 CHPT Reduce the port charges at Chennai to match the prices at Krishnapatnam for edible oil

Suggestions summary	Key action steps
Krishnapatnam's port charges for edible oil ~Rs 35 per MT lower	
 Krishnapatnam benchmarks port charges against Chennai's charges 	Set up team for benchmarking port charges with competitors
Reduce port charges – benchmark against Krishnapatnam's charges	

Ownership		Financial Impact	Tracking metrics
Initiative owner :	Traffic Manager	Operating surplus improvement :	Metric to be tracked -
Other stakeholders:		2 cr	Port charges for edible oil

5.4.10 CHPT Start edible oil rakes between Chennai and Madurai

Suggestions Overview	
Suggestions summary	Key action steps
At present, edible oil volumes for Madurai cluster factories is handles by VOC	Bring customers on board for running the rake
 Run edible oil rakes to Madurai Would provide Chennai with a cost advantage as VOC does not have rail connectivity 	Take necessary approvals from railways & customs for running the rake

Ownership		Financial Impact	Tracking metrics
Initiative owner :	Traffic Manager	Operating surplus improvement :	Metric to be tracked -
Other stakeholders:		1 cr	# of edible oil rakes

5.4.11 CHPT Facilitate investment in mechanized fertilizer bagging plant

Suggestions summary	Key action steps
 Chennai port has a volume share of <10% of hinterland fertilizer import Private ports have higher productivity due to mechanized handling 	Bring customer on board for usage & potential investment in bagging plant
Develop mechanized bagging plant through private investment	Provide shed on a long lease for construction of the plant
 Attract investment in fertilizer bagging facility 	

Ownership		Financial Impact	Tracking metrics	
Initiative owner :	Traffic Manager	Operating surplus improvement :	Metric to be tracked -	
Other stakeholders:		2 cr	# of edible oil rakes	

5.5 Vishakhapatnam Port Trust

5.5.1 Port performance dashboard – VPT

Bucket	Metric	Commodity	Best in class Benchmark	Baseline	1 Yr Target
	Avg. vessel turnaround time (hours)	Coal – conventional	70^{1}	218	90
Overall port	Avg. vessel turnaround time (hours)	Coal – Mechanized	45^{2}	238	84
performance	Avg. vessel turnaround time (hours)	Container	24	36	24
	Avg. vessel turnaround time (hours)	POL	24 ³	139	72
Berth productivity	Gross productivity (gross MT/day)	Coal – conventional	$18,000^4$	7,180	13,500
	Gross Productivity (gross MT/day)	Coal – Mechanized	100,000 ⁵	15,756	40,000
	QC productivity [berth productivity] (moves/hr)	Container	100	43	100
	Discharge rate (MT per hour)	POL	2500	1,022	1,500
	Yard throughout (MT per sq. m)	Coal – conventional	NA	11	20
	Yard throughout (MT per sq. m)	Coal – Mechanized	100 ⁶	53	70
Yard	RTGC moves per hour	Container	30	24	27
	Yard throughout ('000 TEU per Ha)	Container	24	37	40
Evacuation	Rake turnaround time (hours)	-	5.0	13.6	5.0

1. Average coal parcel size at conventional berths in Vizag = 44,000. Best in class productivity for full vessel = 18,000 (Post lighterage operation of panama vessel). Pre berthing detention of 6 hours, other non working time including pilotage customs check etc at ~4 hours. 2. Current average parcel size of ~63,000 MT. Cape capable berth should operate at 100,000 MT/ day. For a 150,000 MT vessel, time should be 1.5 days. Additional PBD + other non working time = ~9 hours. 3. Average productivity of ~2,500 MT/hour (varying by cargo type). Average parcel size at Paradip = 75,000. Berth time = 30 hours. Additional 6 hours of time for non working time. 4. Gross productivity of 18,000 MT (post lighterage panama operations). 5. Average productivity of unloading 7,500 MT berths = 100,000 MT. 6. Berth and equipment capable of handling ~18 MMT.Total land after reallocation = ~180,000 sq. m. Hence, expected yard throughput of 100 MT/ sq. m.

5.5.2 Summary of suggestions – VPT

#	Suggestions	Metric	FY 15 baseline	Target	Op. Surplus Increase (INR cr)	Capex avoidance (INR cr)
VPT 1.1	Set up new Business Development team to convert customers for VPT	Volumes from new customers	0	2 mn	19	-
VPT 1.2	Reconfigure cargo handling volumes of existing customers along S. Central railway from low to high productive berths	# of rakes in South Central Railway	1100	1300	5	-
VPT 2.1	Allocate additional land to high productive berths to drive higher productivity	Timeline for implementation	NA	NA	20	_
VPT 2.2	Revisit storage cost in PPP BOT to make them competitive	Timeline for implementation	NA	NA		
VPT 3.1	Setup dashboard and regularize weekly meetings to track performance. Subsequently use inputs to set productivity norms	Timeline for implementation	NA	NA	5	-
	# of suggestions = 5 Operating surplus increase = 40 cr Capex avoidance = NA					

5.5.3 VPT Setup new Business Development team to convert customers

a	• •
Suggestion	s ()verview
Duggebtion	

Suggestions summary	Key action steps	
	Setup new team	
 Setup a new Business Development team which will Actively reach out to potential customers Market the port facilities 	 Members include officers drawn from Traffic department, Account department Members with sales background to be included 	
• Liaise with stakeholders (PPP, Stevedores) and bring additional customers / volumes to the port	 Identify list of customers to be targeted Develop database of complete hinterland and potential customers Actively reach out to customers 	
Ownership	Financial Impact	Tracking metrics

Ownership		Financial Impact	Tracking metrics
Initiative owner :	Business Dev. Manager	Operating surplus improvement :	Metric to be tracked -
Other stakeholders:	Traffic Manager	10 cr	New customer volume

5.5.4 VPT Reconfigure cargo handling volumes of existing customers along S. Central Railway from low to high productive berths

Suggestions summary	Key action steps	
Increase average productivity of port by increasing share of cargo handled at high productive berths out of total cargo handled for the same customer	Identify list of customers handling coal at conventional and mechanized berths and end railway destination along S. Central Railway	
 Phase I focus on customers along S. Central Railway Phase II focus on other customers 	Pitch to customers net cost / ton and cargo evacuation performance across different berths	

(Ownership	Financial Impact	Tracking metrics
Initiative owner :	Business Dev. Manager	Operating surplus improvement :	Metric to be tracked -
Other stakeholders:	Traffic Manager	5 cr	Coal for conv / Coal for mech

5.5.5 VPT Allocate additional land to high productive berths to drive higher productivity

Suggestions summary	Key action steps
	Align with PPP BOT players on land requirement
	Seek legal opinion for interpreting contract clauses
Allocate additional land parcel to constrained high productive berths to increase productivity and free up port capacity	Identify land parcel of requisite size that can be provided
	Finalize financial conditions of handling land
	Prepare note to be shared with VPT Board and forwarded onwards to Secretary Ports for approval

0	wnership	Financial Impact	Tracking metrics
Initiative owner :	Civil Engineer	Operating surplus improvement :	Metric to be tracked -
Other stakeholders: BOT	Traffic Manager, PPP	20 cr	Timeline for implementation

5.5.6 VPT Revisit storage cost in PPP BOT to make them competitive

Key action steps
Identify procedural changes with TAMP to
identify appropriate way of changing
storage structure
Align storage cost changes to original
projected storage costs and with current operating conditions

Ownership		Financial Impact	Tracking metrics	
Initiative owner :	Civil Engineer	Operating surplus improvement :	Metric to be tracked -	
Other stakeholders:	Traffic Manager, PPP BOT	Support Rs 20 crs in VPT 2.1	Timeline for implementation	

5.5.7 VPT Setup dashboard and regularize weekly meetings to track performance. Subsequently use inputs to set productivity norms

Suggestions summary	Key action steps
Setup a dashboard monitoring system to track port performance at a weekly level	
Regularize meetings with key stakeholders with defined agenda to discuss performance and identify areas of further improvements	 Finalize dashboard metrics Firm up requirement specification Initiate development of dashboard with IT vendor Regularize fortnightly meeting cadence
Set productivity and performance norms and incorporate it as part of berthing policy	Identify productivity norms and change incorporate norms

Ownership		Financial Impact	Tracking metrics	
Initiative owner :	IT Director	Operating surplus improvement :	Metric to be tracked -	
Other stakeholders:	Traffic Manager	5 cr	Berth cargo productivity (e.g. Coal)	

5.6 Mumbai Port Trust

5.6.1 Port performance dashboard – MbPT

Bucket	Metric	Commodity	Best in class Benchmark	Baseline	1 Yr Target
	Avg. vessel turnaround time (hours)	Container	NA	194	-
Overall port	[pre-berth waiting time (hours)]			[41]	
performance					
	Avg. vessel turnaround time (hours)	POL		82	70
	[pre-berth waiting time (hours)]		36	[35]	[35]
Berth	QC productivity [berth productivity] (moves/hr)	Container	NA	-	-
productivity					
	Discharge rate (MT per hour)	POL	3500	3,500	4,100
Yard	Yard throughout (TEU per Ha)	Container	23	-	-
Evacuation	Gate in/out truck turnaround time (mins)	-	2	10	6

5.6.2 Summary of suggestions – MbPT

#	Suggestions	Metric	FY 15 baseline	Target	Op. Surplus	Capex avoidance
MbPT 1.1	Install quick release systems on berths	Mooring time per vessel	30 minutes	9 minutes	3	-
MbPT 1.2	Policy change to mandate usage of testing lab at JD	TAT for sample approval	45 minutes	30 minutes	3	-
MbPT 1.3	Bring JD 5 plans of creating tank farms forward and implement low performance penalties	Average flow rate	3200 T/hr crude & 400 T/hr other products	4100 T/hr crude & 800 T/hr other products	32	-
MbPT 4.1	Installation of higher capacity shore crane will help increase productivity by ~20%	Berth productivity	11 (ship crane) / 13 (gantry crane)	13 (ship crane), 16 (gantry)	4	-
MbPT 4.2	Use of 2 nd OCT berth for steel handling	Berth productivity	11 coils per hours	13 coils per hour	16	670
	# of suggestions identified = 5 Operating surplus increase = 58 cr Capex avoidance = 670				= 670	

5.6.3 MbPT Install quick release systems on berths

G 4.	<u> </u>
Suggestion	s Overview
Suggestion	

Suggestions summary	Key action steps
POL volume to go up by 33% on MbPT	
• Due to increase in capacity by BPCL, HPCL and increase in production by ONGC of Bombay high	
	Install quick release systems on all berths
Reduce high non-working time	on JD
• Significantly high non-working time currently due to inefficiencies in altfast and cast away	 Draft technical specifications QRS and required berth strengthening Float tender for QRS manufacturers Finalize 3rd party vendor and install them on all berths
Reduction of mooring time will lead to an increase in productivity by 6%	

• QRS will lead to reduction in mooring time by 70% per vessel

OwnershipFinancial ImpactTracking metricsInitiative owner :Traffic ManagerOperating surplus improvement :Metric to be tracked-Other stakeholders :Shift-in-charge3 crMooring time

5.6.4 MbPT Policy change to mandate usage of testing lab at JD <u>Suggestions Overview</u>

Suggestions summary	Key action steps	
 POL volume to go up by 33% on MbPT Due to increase in capacity by BPCL, HPCL and increase in production by ONGC of Bombay high 	Discussion with the stakeholders at HPCL, ONGC and IOCL to discuss the proposal for a testing facility at JD	
Reduce high clearance time due to delay in approval from testing lab	Proposal to set up a centralized/shared facility at JD – joint investment	
• BPCL has a testing lab at JD, however, ONGC and HPCL send the samples to pirpau	Agreement from all concerned parties for investment allocation and testing benchmarks	
Reduction of testing time will lead to an increase in productivity by 3%		
• Setting up testing lab at JD will reduce logistics time from JD to pirpau by 30 minutes per vessel	Allocate space/building for setting up lab at JD	
Ownership	Financial Impact	Tracking metrics
Initiative owner : Traffic Manager	Operating surplus improvement :	Metric to be tracked -
Other stakeholders : Shift-in-charge	2 cr	TAT sample approval

5.6.5 MbPT Bring JD 5 plans of creating tank farms forward and implement low performance penalties

Suggestions summary	Key action steps
Low flow rate in loading/unloading POL	Discuss the proposal of leasing tank farms and performance penalty with
• Tank farms on JD not operations	BPCL and HPCL
• Pressure loss due to 7.5 KM pipeline transfer	Issue circular for change in rates due to low performance penalty and effective applicable date
Low flow rate impacts working time and therefore overall productivity	Operationalizing tank farms
 Increase in flow rate will lead to an overall productivity increase by 25-30% Leasing out tank farms will lead to maintaining high pressure Low performance penalty will encourage 3rd parties to maintain high flow rate 	 Discuss terms and conditions of shared investment and leasing rates as well as performance penalty Seek relevant environmental approvals required Tender for 3rd party to create/install tank farms and finalise a vendor Construction and operationalization of tank farms
Ownershin	Financial Impact

Ownership		Financial Impact	
Initiative owner :	Traffic Manager	Operating surplus improvement :	
Other stakeholders :	Shift-in-charge	32 cr	

5.6.6 MbPT Installation of higher capacity shore crane will help increase productivity by ~20%

Suggestions summary	Key action steps
Install multi purpose gantry crane to increase productivity	Create a core team to oversee immediate
 Heavier capacity ~35.5 MT as Sufficient load bearing capacity, the berth already supported quay cranes 	crane installation
• Rail track already in place	- Increase in berth hire charges to be discussed/finalized by core team post
Increase berth hire charge for use of new cranes	crane installation
• Charge over the built in berth hire charge for quicker discharge	

Ownership		Financial Impact	Tracking metrics
Initiative owner :	CME/TM	Operating surplus improvement :	Metric to be tracked -
Other stakeholders :	Shift-in-charge	20 cr	Berth productivity

5.6.7 MbPT Use of 2nd OCT berth for steel handling to unlock additional capacity

a		\mathbf{O}	•
Sugge	stions	UV	erview

Suggestions summary	Key action steps
Short term – Use of ship/wharf crane to load steel directly on to the trailer	
• Converts point to spread load without disturbing berth's load bearing capacity	
 Short term – Use of steel plates fixed on berths to serve as coil "pads" Distribute coil load evenly on to berth Maximum no. of coils that can be safely placed will have to be clearly specified 	 Nominate a team to work out the technical details for implementation Work out timelines for steel plate installation at berth Commission test vessel call
Long Term – invest in OCT strengthening to handle additional load	

Ownership		Financial Impact	Tracking metrics
Initiative owner :	CME/TM	Operating surplus improvement :	Metric to be tracked -
Other stakeholders :	Shift-in-charge	20 cr	Berth productivity

5.7 Kandla Port Trust

5.7.1 Port performance dashboard – KPT

Bucket	Metric	Commodity	Best in class Benchmark	Baseline	1 Yr Target
	Avg. vessel turnaround time (hours)	Coal – Conventional	72 ¹	138	100
Overall port performance	Avg. vessel turnaround time (hours)	Coal – Mechanized	34 ²	135	60
	Avg. vessel turnaround time (hours)	POL	36	124	110
	[pre-berth waiting time (hours)] Gross productivity (gross MT/day)	Coal – Conventional	18000 ⁴	10000	12000
Berth productivity	Gross Productivity (gross MT/day)	Coal – Mechanized	75000 ⁵	16000	25000
	Discharge rate (MT per hour)	POL	3500	2200	3000
Evacuation	Rake turnaround time (hours)	Coal	6 ⁷	18	

1. Average coal parcel size at conventional berths in Kandla = 50,000. Best in class productivity for full vessel = 18,000 (Post lighterage operation of panama vessel). PBD and pilotage of ~6 hrs. 2. Current average parcel size of ~86,000 MT. Panamax/Minicape capable berth should operate at 75,000 MT/day. For a 86,000 MT vessel, time should be ~28 hrs. Additional PBD + pilotage = ~6 hrs. 4. Gross productivity of 18,000 MT (post lighterage operations). 5. Average productivity 75000 MTPD. 7. BDP for rake loading is ~ 6 hrs.

5.7.2 Summary of suggestions in KPT I/II

#	Suggestions	Metric	FY 15 baseline	Target	Op. Surplus Increase (INR cr)	Capex avoidance (INR cr)
КРТ 2.1	Increasing crane throughout by optimizing grab sizes to commodities	Crane productivity at CJ 1-5	10MT/lift	NA	5	0
КРТ 2.2	Bunching of TIL ELL cranes in fewer berths to increase crane density on the berths	Productivity at CJ 10	10,000MT	13,000MT	5	0
КРТ 2.3	Improving performance of own MHC by optimizing boom length and grab volume	13MT/lift	13MT/lift	17 MT/lift	5	0
КРТ 2.4	Increase crane density by adding 4 100T MHCs	Crane productivity of own MHC	8,500MT	12,000MT	50	0
KPT 3.1	Reduce tug fuel consumption	8,500MT	160 Ltr per hour	140 Ltr/Hr	3	0

Summary of suggestions in KPT II/II

#	Suggestions	Metric	FY 15 baseline	Target	Op. Surplus Increase (INR cr)	Capex avoidance (INR cr)
КРТ 3.2	Improve night navigation by using advanced navigational aids	% of movement at night	30%	45%	5	0
КРТ 3.3	Reducing fertilizer rake loading time by adding automated bag loader	Rake TAT	18 hrs	6 hrs	10	0
KPT 4.1	Increase overall dry bulk productivity by instituting berth productivity norms	Berth productivity for dry berths	7,300MT	9,000MT	5	0
КРТ 4.2	Reduce non-working time by instituting hot seat changes	Avg. shift break period/day	3 hrs/day	1 hr/day	15	0
KPT 4.3	Reduce non-working time changing shift schedule	Avg. break period/day	3 hrs/day	1.5 hr/day	10	0
KPT 4.4	Increase overall liquid productivity by instituting berth productivity norms	Berth productivity for liquid berths	220 TPH	300 TPH	5	0
# of suggestions identified = 11 Operating surplus increase = 123 cr				cr	Capex avo	idance = NA

5.7.3 KPT Increasing crane throughput by optimizing grab sizes to commodities

Suggestions summary	Key action steps
Grabs need to be optimized to the densities of the major commodities handled	 Identify optimal grab sized basis commodities Float tenders Issue POs Create a usage chart showing ideal grabs to be used for each commodity types
Currently only one size grabs are used for all ELL cranes regardless of the material handled	 5. Set up process to change the grabs during the pre-commencement time of a ship to match with her cargo type 6. Review performance periodically

Ownership	Financial Impact	Tracking metrics
Initiative owner : CME	Operating surplus improvement :	Metric to be tracked -
Other stakeholders : Traffic dept	5 cr	Crane productivity at CJ 1-5

5.7.4 KPT Bunching of TIL ELL cranes in fewer berths to increase crane density on the berths

Suggestions summary	Key action steps
 Currently, 25T TIL cranes are located in cargo berths 9,10. However, these berths are strong and can be made more productive by adding 100T mobile harbor cranes. Option to be explored: Consolidate 3 TIL cranes in CJ-10 and free up CJ-9 for 100T MHCs 	 Assess feasibility of changing track gauge of the cranes Finalize the option Shift the crane

Ownership	Financial Impact	Tracking metrics
Initiative owner : CME	Operating surplus improvement :	Metric to be tracked -
Other stakeholders : Traffic & Civil	5 cr	Berth productivity at CJ-10

5.7.5 KPT Improving performance of own MHC by optimizing boom length and grab volume

Suggestions summary	Key action steps
Currently, the two Italgru MHCs operate with	
18cbm grab making them similar in effect to	1. Finalize the minimum distance at
25T ELL cranes which use 16 cbm grabs	which the MHC can be loaded
	2. Identify the key commodities to be handled by MHCs
To optimize the performance of the MHCs, the following needs to be done :	 Design the optimal grab sizes Get concurrence from the OEM for grab change
• Place the MHC at the minimum possible	5. Float tender
distance from the waterfront	6. Issue PO
 Design grabs for the actual lifting radius Optimize grabs for the commodities handled 	 Review performance improvement periodically

Ownership	Financial Impact	Tracking metrics
Initiative owner : CME	Operating surplus improvement :	Metric to be tracked -
Other stakeholders : Traffic & Civil	5 cr	Crane productivity of own MHCs

5.7.6 KPT Increase crane density by adding 4 100T MHCs

Suggestions summary	Key action steps	
One of the key reasons behind lower productivity of berths in Kandla is low crane capacity. To improve the productivity and to bridge the gap with completion, it is proposed to add 4 100+ ton mobile harbor cranes to two berths between berths 6 & 10 (CJ 6 expected to be operational within a year). It is further proposed that the cranes be introduced under PPP model with suitable business safe guards	 Finalize berths where 100 T MHCs need to be added Finalize PPP terms by leveraging the models followed at Vizag (enforcing mandatory use of MHCs for the berths where they are allocated) Put in place parity pricing for own 63 T MHCs, ELL cranes of deep draft berths if any (as per decision from initiative # 3) Float PPP tender & award contract Monitor performance improvement 	

Ownership	Financial Impact	Tracking metrics
Initiative owner : CME	Operating surplus improvement :	Metric to be tracked -
Other stakeholders : Traffic & Civil	50 cr	Crane productivity of own MHCs

5.7.7 KPT Reduce tug fuel consumption

Suggestions Overview

Suggestions summary	Key action steps	
 Tug fuel costs ~30cr annually. Following results in high fuel consumption: 1. No contractual obligation for hired tugs to meet a set norm (not captured in the contract, though used for bid evaluation) 2. Fuel usage is not monitored daily 3. Actions that will reduce tug fuel cost are rarely enforced Own Tags consume more fuel due to age of the tags. Shifting movements needs lesser fuel compared to sailing, thus own tags should be used for shifting 	 Add corrigendum to tug hire contracts with fuel consumption norm Install flow meters in hired tugs (enforce in hired tugs during contract renewal) Institute process to track fuel consumption daily Maintain records of engine maintenance, hull cleaning and propeller cleaning for hired tugs; enforce corrective measures whenever fuel consumption goes beyond norm 	

Ownership		
Initiative owner :	DC	
Other stakeholders	5:	

Financial Impact

Operating surplus improvement :

3 cr

Tracking metrics

Metric to be tracked -

Avg. fuel consumption/hr

5.7.8 KPT Improve night navigation by using advanced navigational aids

Suggestions summary	Key action steps
 Only buoys are used as navigation aid. At night, pilot has to navigate just by looking at the buoys. These move around causing uncertainty in identifying channel boundary resulting in lesser % of movements at night compared to day. It is proposed to adopt a tablet based navigation system that pilots can plug into the AIS of the ships. This will reduce dependence of the buoys for night navigation and will improve safety & % of night movements. 	 Finalize the scope of project Float tender Issue PO & award contract Conduct training for pilots on using the new system

Ownership	Financial Impact	Tracking metrics
Initiative owner : DC	Operating surplus improvement :	Metric to be tracked -
Other stakeholders :	5 cr	% of movements at night

5.7.9 KPT Reducing fertilizer rake loading time by adding automated bag loader

Suggestions summary	Key action steps
 Currently the siding KPT is considered private costing Rs 10-15 more/ ton resulting in fertilizer cargo being loaded outside. This takes ~18hrs vs competition TAT of ~6 hrs. causing low rake availability The siding within KPT must be converted to public siding a sin other major ports KPT needs to set up a fertilizer bag loading plant next to the fertilizer bagging plants on PPP basis Existing fertilizer bagging plants may be connected to this plant through moveable conveyor belts as is feasible 	 Coordinate with rail ministry to convert the private siding within KPT into public siding Design the proposed rake loading plant Float tender Issue contract

Ownership	Financial Impact	Tracking metrics	
Initiative owner : CE	Operating surplus improvement :	Metric to be tracked -	
Other stakeholders :	10 cr	Fertilizer rake TAT	

5.7.10 KPT Increase overall dry bulk productivity by instituting berth productivity norms

Suggestions summary	Key action steps
 Upgrade norms for cargo berths for planned equipment upgradation 2 govt cargo else 12KTPD productivity & 1 for coastal cargo else 10KTPD productivity Project cargo providing ad-valorem wharfage to be admitted under 24 hr priority group, else 12KTPD productivity 1 berth for 12KTPD productivity (up from 10) & 1 berth for 10KTPD productivity (up from 6) 3 berths on first come first serve mode with a 	 Issue proposal for berth hire change Align with port users Issue circular notifying the change Enforce the new norms
minimum productivity of 500KT (up from 300KT) for all commodities except timber (300KT for timber due to safety issue)	

Ownership	Financial Impact	Tracking metrics	
Initiative owner : TM	Operating surplus improvement :	Metric to be tracked -	
Other stakeholders :	5 cr	Avg. berth productivity	

5.7.11 KPT Reduce non-working time by instituting hot seat changes

Suggestions summary	Key action steps
Currently, the shift change time takes between 30 min to 1 hour; however, this can be resolved by instituting hot seat shift change	 Finalize the plan with unions (to add 30 min to shifts/ give one hour over time) Move the proposal Issue circular notifying the change Enforce and track the hot seat changes

Ownership	Financial Impact	Tracking metrics		
Initiative owner : TM	Operating surplus improvement :	Metric to be tracked -		
Other stakeholders : ME	15 cr	Avg. shift break period		

5.7.12 KPT Reduce non working time by changing shift schedule

Suggestions Overview

Suggestions summary	Key action steps
Currently, KPT operates under 3 shifts whose timings are as given below:	
• First shift – 8 AM to 4 PM, Second shift – 4 PM to 12 AM, Third shift – 12 AM to 8 AM	 Finalize the plan with unions Move the proposal Issue circular notifying the
The issue is that the lunch and dinner breaks come in between and 30 min breaks extend to 1- 1.5 hours	change to labor commissioner, other stakeholders4. Change timings of bus to match with the shifts
 By realigning the shifts as per standard practice (6 AM – 2 PM, 2 PM – 10 PM, 10 PM – 6 AM), the extra break time can be reduced 	5. Enforce the shift time change

Ownership		
Initiative owner :	Secretary	Operatin
Other stakeholders :	TM, CME	10 cr

Financial Impact

Operating surplus improvement :

Tracking metrics

Metric to be tracked -

Avg. break duration

5.7.13 KPT Increase overall liquid productivity by instituting berth productivity norms

Suggestions	Overview
Duggebtions	010111011

Suggestions summary	Key action steps
 The productivity of liquid berths at KPT is lower than benchmarks and BDP at KPT due to the incentive structure which does not create pressure for the customers to empty vessels at maximum possible rate Establish norm at 300 TPH; ship will be unberthed and moved to the back of the queue if doesn't meet the norm for 2 shifts One berth to be dedicated to edible oil ships and awarded to the ship promising maximum productivity 	 Finalize the plan with unions Move the proposal Issue circular notifying the change to labor commissioner, other stakeholders Change timings of bus to match with the shifts Enforce the shift time change

Ownership	Financial Impact	Tracking metrics	
Initiative owner : TM	Operating surplus improvement :	Metric to be tracked -	
Other stakeholders :	5 cr	Berth period for liquid berths	

5.8 Kolkata Port Trust

5.8.1 Port performance dashboard - KOPT

Bucket	Metric	Commodity	Best in class Benchmark	Baseline	1 Yr Target
		Coal – Conventional	55 ¹	96	60
	Avg. vessel turnaround time (hours)	Coal – Mechanized	37 ²	67	45
	Avg. vessel turnaround time (hours)				
Overall port performance	Avg. vessel turnaround time (hours) [pre-berthing waiting time (hours)] Avg. vessel turnaround time (hours)	Container (with/without HMC)	34 ³	62/77	55/65
	[pre-berthing waiting time (hours)]	POL	36	49	49
	Gross productivity (gross MT/day)		180005	10000	13000
		Coal – Conventional	52000^{6}	12200	25000
Berth productivity	Gross Productivity (gross MT/day) QC productivity [berth productivity] (moves/hr)	Coal – Mechanized Container (with/without HMC) POL	100 ⁷	23	25
	Discharge rate (MT per hour)	101	3500	3330	3330
Yard	RTGC moves per hour	Container	109	7	10
	Rake turnaround time (hours)	-	7^{10}	22	14

1. Average coal parcel size at conventional berths in Haldia = 20,000. Best in class productivity for full vessel = 18,000 (Post lighterage operation). PBD and pilotage of ~6 hrs. 2. Current average parcel size of ~20,000 MT. Handymax capable berth should operate at ~52,000 MT/day. Additional PBD + pilotage = ~28 hrs to adjust for long approach channel. 3. Average parcel size at Kolkata = ~650 TEUs. PBD + Pilotage = ~28 hrs, adjusted for long approach channel and Indian BDP = ~ 100 TEUs/Hr. 5. Gross productivity of 18,000 MT (post lighterage operations). 6. Handymax capable berths should operate at ~52,000 MT/day. 7. BDP is ~100 moves/Hr for Indian pvt ports. 9. BDP is ~10 moves. 10. BDP is ~1-2 hrs. Adjusted for Concor inspection at Kolkata junction.

Op.

5.8.2 Summary of suggestions in KoPT

#	Suggestions	Metric	FY 15 baseline	Target	Op. Surplus Increase	Capex Avoidance
					(INR cr)	
KoPT 1.1	Increase crane density at berths 2,8 by adding HMCs, hardstand 100 sqm behind to add storage capacity	Berth productivity	4500 TPD	13000 TPD	30	-
KoPT 1.2	Increase crane density at berths 2,8 by adding HMCs, hardstand 150 sqm behind to add storage capacity	Berth productivity	4500 TPD	13000 TPD	30	-
KoPT 1.3	Reduce non-working time by reducing shift change time, marine wait time	NWT/ship (conv. Dry)	21 hrs	15 hrs	20	-
KoPT 1.4	Increase capacity of mechanized coal export berth 4, use excess capacity for coastal imports if exports do not pick up	TPH at berth IV	750 TPH	1500 TPH	20	-
KoPT 2.1	Making transloading option attractive by reducing overall cost and creating a combined package	Transloading tonnage	0	5MMT	5	-
KoPT 3.1	Increase container handling capacity by adding HMC to berth 3 in KDS, NSD	Average berth productivity	16 TEUs/Hr	25 TEUs/Hr	5	-
KoPT 3.2	Reduce NWT by instituting hot seat changes and reducing marine wait time	Avg. time lost in shift break and due to marine delays	4 Hrs/day	1.5 Hr/day	6	-

Summary of suggestions in KoPT (2/2)

#	Suggestions	Metric	FY 15 baseline	Target	Op. Surplus Increase (INR cr)	Capex Avoidance
KoPT 4.1	Improvement of truck traffic during night by facilitating night payment and customs clearance	% of truck movement at night	30%	45%	NA	-
KoPT 4.2	Reduce rake turnaround time at KDS by improving railway infrastructure	% of TEUs transferred by rake	6%	15%	NA	-
KoPT 5.1	Reduce dredging cost by encouraging contractors to deploy techniques to improve dredger's dredging time and by using Eden channel as primary channel for navigation	Cost Reduction	350 Cr	150 Cr	200	-
KoPT 6.1	Reduce loco hiring cost by relocating 2 good quality locos to from KDS to HDC instead of leasing new ones	Cost reduction	24	19	5	-
KoPT 6.2	Reduce tug operation cost at HDC by scrapping own tugs and replacing them by hired tugs	Cost reduction	59 Cr	49 Cr	8	-
KoPT 6.3	Reduce security cost at KDS by reducing security cover for areas with lower activity	Cost reduction	31 Cr	27 Cr	3	-
# of sugges	stions identified = 13 Operating surplus in	acrease = 332 cr	(Capex avoidan	nce = NA	

5.8.3 KOPT HMC for berths 2,8; hardstand 56 sqm

Suggestions Overview

Suggestions summary	Key action steps
Currently only berths 4A, 4B and 12 have mobile harbor cranes. The volume within the impounded dock can be increased to 34MMT till the gate capacity is hit and further by 3MMT by moving edible oil ships outside the gate. Currently berth productivity is limiting the volume at Haldia and hence it is proposed to add MHCs to berths 2,8,9 and 13. Adding MHCs to berths 2,8 with hardstanding of 100K sqm land behind berth 8 is phase 1. HDC, KoPT has already initiated the process.	 Issue work order for hardstanding of 100000 sqm behind berths 8,9 Establish berth norm of 13,000 tpd once the cranes are commissioned

$\mathbf{\Omega}$	
Own	ership

Initiative owner :

Other stakeholders : Shift-in-charge

Financial Impact

Operating surplus improvement :

30 cr

Tracking metrics

Metric to be tracked -

Berth productivity

5.8.4 KOPT HMC for berths 9, 13; hardstand 150 sqm

Suggestions Overview

Suggestions summary	
Currently only berths 4A, 4B and 12 have	
mobile harbor cranes. The volume within	
the impounded dock can be increased to	
34MMT till the gate capacity is hit and	
further by 3MMT by moving edible oil	
ships outside the gate. Currently berth	
productivity is limiting the volume at	
Haldia and hence it is proposed to add	
MHCs to berths 2,8,9 and 13. Adding	
MHCs to berths 9, 13 with hardstanding of	
100K sqm land behind berth 13 is phase 2.	

Key action steps

- Issue tender to add cranes to berths 9, 13 and to hardstand 1L sqm behind berth 13
- 2. Finalize tender, issue LOI
- 3. Commission cranes as per LOI issued
- 4. Issue work order for hardstanding of 100000 sqm behind berths 13
- 5. Establish berth norm of 13,000 tpd once the cranes are commissioned

Ownership

Initiative owner :

Other stakeholders : Shift-in-charge

Financial Impact

Operating surplus improvement :

30 cr

Tracking metrics

Metric to be tracked -

Berth productivity

5.8.5 KOPT Reduce non-working time by reducing shift change time, marine wait time Suggestions Overview

Suggestions summary	Key action steps
Currently a ship spends ~3 days at conventional berths during which ~21	
hrs (30%) is non working time	 Measure ship-wise non working time under different segments
 Principal components of NWT are: Shift time change (14 hrs) Waiting for tide (6 hrs) 	 Define hot seat change and productivity norm policies Align with stakeholders Roll out policies Convert berths 5, 6, 7 into waiting berths in a phased
Proposal is to reduce both these components using 3 steps:	manner6. Institute anticipatory vessel calls
 Institute hot seat changes for crane operators Enforce less time wastage in ground 	 Procure 2 30T tugs for shifting operation alone
 2. Enforce less time wastage in ground operations by instituting norms 3. Reduce marine waiting time 	

Ownership	Financial Impact	Tracking metrics
Initiative owner : GM - Traffic	Operating surplus improvement :	Metric to be tracked -
Other stakeholders : GM – Marine	20 cr	NWT/ship

5.8.6 KOPT Increase capacity of mechanized coal export berth 4

Suggestions Overview				
Suggestions summary	Key action steps			
Currently, mechanized coal berth, berth 4 operates at 750 TPH (FY 15 baseline). With the addition of new stacker reclaimer, there is potential to increase this further to 1500 TPH. To do this, it is recommended that productivity norm be instituted with necessary penalty conditions.	 Set berth productivity norm Align with stakeholders Roll out policies 			
Once the productivity of the berth is increased, the spare capacity can be used either to export further coal or to import coastal cargo				

Ownership	Financial Impact	Tracking metrics	
Initiative owner : GM –	Operating surplus improvement :	Metric to be tracked -	
Engineering	15 cr	TPH at berth 4	

234

5.8.7 KOPT Making transloading option attractive by reducing overall cost and creating a combined package Suggestions Overview

Suggestions summary	Key action steps
End to end cost to customer with transloading at Haldia currently works out to ~ Rs 2200/ton compared to Rs 1800/ton via Dhamra and ~Rs 2000/ton via Paradip	 Contract out two berths within dock with lower handling cost
The key drivers are:1. High transloading cost (Rs 550/ton)2. High shore operations cost (Rs 400/ton)	 Tie in outside terminal 2 with transloading once that becomes operations Provide on priority berthing for transloading daughter vessels at these berths
Due to high cost, it is expected that while Haldia may get traffic due to current congestion at all east coast ports, it will lose share considerably once Dhamra phase 2 comes up	 Create joint package for transloading so that customer needs only to make one payment for ship to rake operations

Ownership	Financial Impact	
Initiative owner : GM – A	dministration	Operating surplus improvement: 24 cr

Tracking metrics

Metric to be tracked -

Transloading tonnage

5.8.8 KOPT Increase container handling capacity by adding HMC to berth 3 in KDC, NSD

Suggestions summary	Key action steps
Currently, KDS has a total container handling capacity of 6.5L TEUs. As per the projection, this limit is expected to be hit by 2016-17. Hence increase of container capacity becomes necessary. Addition of HMC to NSD 3 is proposed to increase handling capacity by 0.6L TEU	 Issue tender for having HMC at NSD 3 with right of first refusal to BKCT Demolish shed behind NSD23 Award contract

Ownership	Financial Impact	Tracking metrics
Initiative owner : CME	Operating surplus improvement :	Metric to be tracked -
Other stakeholders : CE	5 cr	Berth productivity

5.8.9 KOPT Reduce NWT by instituting hot seat changes and reducing marine wait time

Suggestions summary	Key action steps
Hot seat changes need to be introduced for BKCT, stevedores and marine staff to reduce NWT during recess and shift change	 Implement hot seat changes with BKCT and Marine department Implement hot seat changes with private stevedores Effective communication between Traffic and Marine dept for prompt shifting by using non working berths and waiting buoys and immediate response from Marine dept

Ownership	Financial Impact	Tracking metrics
Initiative owner : TM & HM	Operating surplus improvement :	Metric to be tracked -
Other stakeholders :	6 cr	Avg. berth productivity

5.8.10 KOPT Improvement of truck traffic during night by facilitating night payment and customs clearance

Suggestions summary	Key action steps
Provide 24/7 customs clearance and payment of port charges facility to ensure equal distribution	 Speak with customs to provide night shift Implement night shift for port staff to collect port charges or a 24/7 complete e-payment facility

Ownership	Financial Impact	Tracking metrics
Initiative owner : TM Other stakeholders :	Operating surplus improvement : NA	Metric to be tracked - % of trucks moving out at night

5.8.10 KOPT Reduce rake turnaround time at KDS by improving railway infrastructure

Suggestions summary	Key action steps
	1. Initiate contract with PSA for rail mounted gantry crane
Reduce rake TAT ~40% by improving rail infrastructure through installing gantry crane,	2. Level surface around rake loading area
providing additional loco and maintenance of yard sidings	3. Install gantry for loading at both sidings simultaneously
yard sidings	4. Provide additional loco (transferred from Haldia)
	5. Maintenance of EJC yard

Owner	rship	Financial Impact	Tracking metrics
Initiative owner :	CE & CME	Operating surplus improvement :	Metric to be tracked -
Other stakeholders :		NA	% of TEUs moved by rakes

5.8.11 KOPT Dredging cost reduction

Suggestions summary	Key action steps
 KoPT incurs expenditure of ~INR 385 Cr, pa for maintenance dredging of Haldia approach channel. The dredging is primarily at two bars – Auckland (70% of dredging) and Jellingham (30% of dredging). To reduce the cost of dredging, two initiatives are proposed : Use barge loading mechanism to improve utilization of the dredger Adopt Eden channel to circumvent Auckland channel 	 Operationalization of Eden channel Define pilot boarding plan for Eden channel during rough weather Study the impact of stoppage of dredging at lower Auckland bar Stop dredging at upper part of lower Auckland bar Issuance of contract that will be attractive to international dredging companies

	Ownership	Financial Impact	Tracking metrics
Initiative owner : GM - Administration	Operating surplus improvement :	Metric to be tracked -	
	200 cr	Dredging cost run rate	

5.8.14 KOPT Reduce loco hiring cost by relocating 2 good quality locos to from KDS to HDC

Suggestions Overview	
----------------------	--

Suggestions summary	Key action steps
 Currently, KDS uses 2 WDS6 type locomotives hired from RITES on lease contract including maintenance 2 year contract starting May 2015 with 85% guaranteed availability at INR ~5Cr per annum HDC has 12 own engines available in Haldia with a maximum of 6 engines used per shift 	 Shift 1 BHEL and 1 SAN locos from HDC to KDS Issue tender for operation and maintenance of the locos Award contract Discontinue RITES contract
Shifting of 2 engines from Haldia to Kolkata proposed to save on hire costs in the medium term	

Ownership	Financial Impact	Tracking metrics
Initiative owner : Sr. Dy. TM, Railways	Operating surplus improvement :	Metric to be tracked - Rail cost
Other stakeholders :GM-Engineering, HDC		Kun cost

5.8.12 KOPT Reduce tug operation cost at HDC by scrapping own tugs and replacing them by hired tugs

Suggestions Overview

Suggestions summary	Key action steps
 HDC has 9 tugs of which 7 tugs presently which have passed economic life. It is proposed that tugs be hired instead of purchased for replacement. This can result in two streams of saving : Reduction in number of tugs: 8 hired tugs sufficient to run operations for current vol. (1 for HOJI, 2 each for HOJI and 3 for dock operations) instead of 9. Reduction in operating cost: Savings in overtime, maintenance cost etc by converting 6 port owned tugs to hired ones 	 Create plan to phase out tugs Issue tender for hired tugs Award contract Scrap existing tender

0	wnership
Initiative owner :	GM Marine, Haldia

Financial Impact

Operating surplus improvement :

Tracking metrics

Metric to be tracked -

Cost reduction

5.8.13 KOPT Reduce security cost at KDS by reducing security cover for areas with lower activity <u>Suggestions Overview</u>

Suggestions summary	Key action steps
Currently, KoPT spends ~31 Cr on CISF security. This is based on the survey that was done in 2004. Analysis of past deployment data reveals that the actual deployment is different and varies between 75% to 85% of strength needed as per the survey. Further, the activities at several parts of the docks have reduced thus reducing security need. In view of this, KoPT needs to initiate a resurvey and aim to reduce atleast 70 personnel.	 Initiate security resurvey Issue notice to CISF to reduce manning basis survey Add manpower to port security organization to man area taken over from CISF Deploy PSO in the non-CISF area

Financial Impact

Operating surplus improvement :

Tracking metrics

Metric to be tracked -

of CISF staff

Initiative owner : Security Advisor

5.9 VOC Port Trust

5.9.1 Port performance dashboard – VOCPT

Bucket	Metric	Commodity	Best in class Benchmark	Baseline	1 Yr Target
Overall port performance	Avg. vessel turnaround time (hours) Avg. vessel turnaround time (hours) Avg. vessel turnaround time (hours) [pre-berth waiting time (hours)] Avg. vessel turnaround time (hours) [pre-berth waiting time (hours)]	Coal – Conventional Coal – Mechanized Container POL	63 ¹ 36 ² 23 ³ 36	454 [89] 171 [18] 41 [7] 114 [22]	300 [50] 120 [18] 41 [7] 114 [22]
Berth productivity	Gross productivity (gross MT/day) Gross Productivity (gross MT/day) QC productivity [berth productivity] (moves / hr) Discharge rate (MT / hour)	Coal – Conventional Coal – Mechanized Container POL	45,000 ⁴ 75,000 ⁵ 30 3500	18,000 11,000 21 2000	28,000 15,000 21 2000
Yard	Yard throughput (MT / sq. m) Yard throughput (MT / sq. m) RTGC moves per hour Yard throughput (TEU per Ha)	Coal – Conventional Coal – Mechanized Container Container	NA 15 25000	13.8 Evacuation directly to TNEB's y 12 84,000	13.8 ard 12 84,000
Evacuation	Truck turnaround time (hours) Rake turnaround time (hours)	-	NA NA		

1. Average coal parcel size at conventional berths in VOC = 55,000. Best in class productivity for full vessel = 25,000. Pre berthing detention of 6 hours, other non working time including pilotage customs check etc at ~4 hrs. 2. Panamax capable berth handling parcel size of ~55,000 MT. Loading time would be ~30 hrs. Additional PBD + other non working time = ~10 hrs. 3. Average parcel size of 1000 TEU's, assuming a crane productivity of 30 moves per hour with 2 cranes deployed and PBD and other NWT of 6 hours. 4. Assuming 2 cranes of grab size of 125 MT, cycle time of 4 minutes, Grab efficiency of 60% (Top cargo only) and NWT of ~6 hrs/day. 5. Assuming 2 cranes of grab size of 125 MT, cycle time of 2 minutes, Grab efficiency of 50% and NWT of ~4 hrs/day. 6. Average POL productivity of 40,000 MT per day at Jebel Ali.

5.9.2 Summary of suggestions in VOCPT

#	Suggestions	Metric	FY 15 baseline	Target	Op. Surplus Increase (INR cr)	Capex avoidance (INR cr)
VOC 1.1	Incorporate specific productivity norms in berthing policy	Berth productivity at Berth IX (MT/day)	~18,000	28,000	~9 Cr	-
VOC 1.2	Installation of MHCs at berths III and IV	Berth productivity at Berths III & IV (MT/day)	~11,000	17,000	~10 Cr	-
VOC 1.3	Mechanization of evacuation on berth IX	Berth evacuation (MT/day)	~12,000	25,000	Nil (~9 Cr enabled)	-
VOC 2.1	Consolidation and improvement of spare capacity on TNEB berths	Productivity on CJ I & II (MT/day)	~11,000	28,000	~65 Cr	-
VOC 2.2	Short-term agreement with DBGT for us of berth VIII for copper concentrate vessels	Cu. conc. volume on berth VIII (Mn MTPA)	~0	0.3	~6 Cr	-
# (of suggestions identified = 5 O	perating surplus inc	crease = ~99	cr	Capex avoidanc	$\mathbf{r} \mathbf{e} = \mathbf{N} \mathbf{A}$

5.9.3 VOC Incorporate specific productivity norms in berthing policy

Suggestions summary	Key action steps
 High pre-berthing delay at Berth IX for vessels requiring 12.8m draft Imperative to increase productivity in order to unlock additional capacity to and absorb increasing demand 	Amendment of berthing policy to include performance parameters and norms
Currently, two MHCs are available at berth IX but utilization is low	 Minimum berth productivity of 28,000 MT/day to be achieved on coal at berth IX Berth IX to be available only for 3 shifts per vessel by which time
 Productivity can be improved from ~18,000 to 25,000 MT/day through deployment of two MHCs on each vessel 	 draft is required to be below 10.4m. Vessel to be subsequently shifted to berths III & IV Two MHCs to remain available at berth IX to facilitate achievement
No formal performance parameters are mentioned in the berthing policy	of

Ownership	Financial Impact	Tracking metrics
Initiative owner : Traffic Manager	Operating surplus improvement : 9 cr	Metric to be tracked - Berth productivity on berth IX (MT per ship- berth day)

5.9.4 VOC Installation of MHCs at berths III and IV

Suggestions Overview

Suggestions summary	Key action steps
	Tender for two additional MHCs on PPP basis
 Low productivity at berths III and IV due to high reliance on vessel gear Productivity of ~11,000 per day at each berth 	• Ensure compliance with current agreement with Imcola i.e. minimum 70% utilization of MHCs at berth IX
 Potential to unlock capacity of ~1.6 Mn MT through use of 100 MT capacity MHCs Inability to handle gearless vessels at berths III & IV 	 Fix tariff for use of new MHCs Tariff per ton handled to be set No levy for notional gangs to be considered
• Bottleneck at berth IX due to 100% discharge of cargo from gearless vessels at berth IX alone	Sale of existing wharf cranes of low capacity as scrap Update berthing policy to prescribe minimum productivity norms at berths III & IV

Ownership	
Initiative owner :	CME

Financial Impact

Operating surplus improvement :

10 cr

Tracking metrics

Metric to be tracked -Berth productivity on berth III & IV (MT per ship-berth day)

5.9.5 VOC Mechanization of evacuation at berth IX Suggestions Overview

Suggestions summary	Key action steps
Current evacuation rate of ~17,000 MT/day, matching the discharge rate at the berth	Tender to be floated and awarded for mechanization of evacuation at berth IX
 Discharge rate is poised to increase ~50% to 25,000 MT/day Evacuation rate required to increase to prevent congestion on the berth Congestion on the berth would potential hamper the movement of MHCs and slow down the discharge rate 	 Construction of conveyor belts for a distance of ~3km between berth and coal yard Design capacity of ~2,000 MT/hour 4-5 hoppers required for ship to shore operations

Ownership		Financial Impact	Tracking metrics	
Initiative owner :	CME	Operating surplus improvement :	Metric to be tracked -	
Other stakeholders:	Shift-in-charge	0 cr	Berth evacuation (MT/day)	

5.9.6 VOC Consolidation and improvement of spare capacity on TNEB berths Suggestions Overview

Suggestions Suggestions summary	Key action steps
 Low productivity at CJ I & II currently, due to reliance on vessel gear as well as limitation of demand Adequate area for installing shore cranes not available TNEB daily requirement of coal is ~18-22k per day; productivity of both berths maintained at an average of ~11,000 MT/day to align with daily intake requirement 	 Engage with TNEB to re-negotiate terms of agreement for ownership and operation of CJ I & II Explain value proposition for TNEB and quantify potential savings in logistics cost Construct branch-out conveyor to connect CJ I to Port's existing coal yard
Potential to maximise capacity of the berths through overhaul of infrastructure and re- structuring of agreement with TNEB to handle additional volumes of coal	Sequential strengthening and widening of CJ I & II and installation of two MHCs on each

Ownership		Financial Impact	Tracking metrics		
Initiative owner :	Chairman	Operating surplus improvement :	Metric to be tracked -		
Other stakeholders:	Shift-in-charge	32 cr	Berth productivity on berths CJ I & II (MT per ship-berth day)		

5.9.7 VOC Short-term agreement with DBGT for us of berth VIII for copper concentrate vessels

Suggestions Overview

Suggestions summary	Key action steps
Low berth occupancy of ~55% on DBGT berth no. VIII	Negotiate short-term agreement for use of berth VIII based on pre-agreed
 Envisioned as container berth Low volumes attracted in the absence of quay cranes scheduled to arrive by end of 2016 Deep draft berth with 12.8m draft available Potential to use spare capacity to ease bottleneck	 parameters Permissible cargo i.e. copper concentrate (proposed) Customers identified Tariff and revenue share Operating norms Productivity norms
at berth IX in the short termHandling of non-container cargo at berth	Execute contract with DBGT to utilize
 VIII to free up capacity at berth IX To be used until quay cranes are delivered 	berth VIII for general port cargo

Ownership	Financial Impact	Tracking metrics		
Initiative owner :Traffic ManagerOther stakeholders :Shift-in-charge	Operating surplus improvement : 6 cr	Metric to be tracked - Copper concentrate handled at berth VIII (Mn MT per annum)		

5.10 Mormugao Port Trust

5.10.1 Port performance dashboard – MPT

Bucket	Metric	Commodity	Best in class Benchmark	Baseline	1 Yr Target
	Avg. vessel turnaround time (hours)	Coal – Mechanized	45^{1}	1446	80
Overall port performance	Avg. vessel turnaround time (hours)	Container	12^{2}	25	16 ⁷
	[pre-berthing waiting time (hours)]		[0]	[6]	[2]
		Coal –			
	Gross productivity (gross MT/day)	Mechanized	75,000 ³	$27,550^{6}$	33,000
Berth productivity					
F	HMC productivity (moves/hr)	Container	25^{4}	13	18
	Yard throughput (MT / sq. m)	Coal – Mechanized	1000 ⁵	810 ⁶	1000
Yard					
	Yard throughput (TEU per Ha)	Container	Common yard shared between container and general cargo		
Evacuation	Truck gate processing time (min)	-	23	50 ⁸	23
	Rake turnaround time (hours)	-	Constrained by rake availability due to single rail line connecting the port		

1. Assumption: Panamax capable berth handling parcel size of \sim 50,000 MT/day; current average parcel size of \sim 75,000 MT. For a Panamax vessel time should be 1.5 days. Additional PBD + other non working time = \sim 9 hrs. 2. Assumptions package size of 300 TEU, HMC productivity of 25 moves per hour (Ko{PT benchmark), 2 hrs of non-working time due to customs rummaging pilotage, repos of containers. 3. Average productivity of unloading 7,500 MT berths = 75,000 for panama vessels. 4. Benchmark from PSA operated HMC in Kolkata Port. 5. Evacuation capacity is 10MT (avg. 8.5 rakes/day), total coal storage land = 10,000 sqm at JSW. Hence, expected yard throughput of 1000 MT/ sq. m. 6. Constrained by evacuation capacity, storage space is 10,000 sq. m time. 8. Does not include parking time. loading/unloading time for trucks. only gate processes considered.

5.10.2 Summary of suggestions in MPT

#	Suggestions	Metric	FY 15 baseline	Target	Op. Surplus Increase (INR cr)	Capex avoidanc e (INR cr)
MPT 1.1	Implementation of hot seat shift change	Hrs	1.5	0.25	4	-
MPT	HMC operator performance	Cycles/hr	20	30	7	
1.2	improvement	Moves/hr	13	25	7	-
MPT 1.3	Addition of HMC on general cargo berths	# of HMCs	1	2	1.5	-
MPT 2.1	Enhance draft for JSW coal berth to increase cargo handling capacity	Draft (m)	14.5	19.8	25	-
MPT 2.2	Development of 10 MTPA new coal terminal	Timeline for implementation	-	-	100	-
MPT 3.1	SVRS announcement and redeployment of MOHP employees	Target # of VRS accepted	-	100	6	-
# of suggestions identified = 6 Operating surplus increase = 143.5 cr Capex avoidance = NA						

5.10.3 MPT Implement hot seat shift change for HMC

Suggestions Overview

Suggestions summary	Key action steps
 Loss of HMC crane productivity observed around shift change (~1-1.5 hour). Improvement required in shift change process to minimize the productivity losses Ensure work ends no earlier before scheduled shift ending Next shift staff reports before previous shift ends Move next shift staff to equipment on time 	 Booking through mobile/tab and transport arrangements for operators Start monitoring idle time at shift changes systematically Shift-in-charge of previous and next shift to track and monitor the actual time loss during every shift change; and report on daily basis to Sr. DTM

Ov	vnership	Financial Impact	Tracking metrics
T.: '.'	Traff - Managar	Operating surplus improvement :	Metric to be tracked -
Initiative owner :	Traffic Manager	4 cr	Time lost b/w shift changes

5.10.4 MPT Improve HMC operator performance Suggestions Overview

Suggestions summary	Key action steps
 HMC operator productivity performance is low compared to other major ports Operators are not motivated to perform better, as the current incentive scheme doesn't promote greater productivity Hence, the operators have to be trained by best performing operators from other major ports. Performance linked incentives have to be initiated. Operators performance has to be monitored on regular basis 	 Training from expert operators has to be provided Performance monitoring and feedback on regular basis Incentive based on performance scheme has to be introduced

Owr	nership	Financial Impact	Tracking metrics
Initiative owner :	Traffic Manager	Operating surplus improvement :	Metric to be tracked -
	Traffic Manager	7 cr	Cycles/hr, movevs/hr

5.10.5 MPT Addition of HMC on general cargo berths Suggestions Overview

Suggestions summary	Key action steps
 Currently one HMC is being shared between two general cargo berths >Berth productivity can be increased up to 30% by adding one HMC on GCBs 	• Commission new HMC for operations
Hence, one 100+ ton mobile harbor crane needs to be added to GCB berths. It is further proposed that the cranes be introduced under PPP model with suitable business guards.	 Mandatory usage of HMCs when available

Owne	rship	Financial Impact	Tracking metrics
Initiative owner :	CME/ Traffic	Operating surplus improvement :	Metric to be tracked -
initiative owner .	CME/ Hame	1.5 Cr (Value realization from HMC)	

5.10.6 MPT Enhance draft for JSW coal berth to increase cargo handling capacity Suggestions Overview

Suggestions summary	Key action steps
 JSW steel to import coal in capes. The current draft at their terminal in MPT can't support capes If draft is not changed, ~3.5 MTPA will be shifted to Krishnapatnam Hence the draft has to be increased at MPT to secure the current volume and gain more volume from JSW vijayanagara plant	 Receive bids for contract Award contract for capital dredging Capital dredging commencement Continue annual maintenance dredging

Ownership	Financial Impact	Tracking metrics
Initiative owner : CE	Operating surplus improvement :	Metric to be tracked -
	25 Cr	draft

5.10.7 MPT Development of 10 MTPA new coal terminal Suggestions Overview

Suggestions summary	Key action steps
Goa hinterland has rich pipeline of coal based industries – power plants & steel plants.	
• MoU are signed for ~8,000 MW power capacity and ~70 MTPA steel production	Complete master planFloat RFP for new terminal
Current coal handling capacity at MPT is not sufficient to cater to this future demand. Hence development of a new coal handling terminal has to be initiated after the rail line doubling	 Finalize bids, award contract Project construction, completion
has to be initiated after the rail line doubling bottlenecks are eliminated.	

	Ownership
Initiative owner :	CE

Financial Impact

Operating surplus improvement :

100 Cr

Tracking metrics

Metric to be tracked -

of trucks per day

5.10.8 MPT Doubling of MPT railway line to Hospet Suggestions Overview

Suggestions summary	Key action steps
 Current rail line handles up to 13.5 MTPA Future productivity by 2020 is up to 30 MTPA The current rail line doubling at MPT is essential for catering the volume demand of port in future. 	• Follow-up with ministry & railways on land acquisition for rail line doubling

Ownership	Financial Impact	Tracking metrics
Initiative owner : Chairman	Operating surplus improvement : Linked to new terminal development	Metric to be tracked - # of rakes per day

5.10.10 MPT SVRS announcement and redeployment of MOHP employees

Suggestions Overview

Suggestions summary	Key action steps
MOHC continue to be dysfunctional as mooring dolphins can handle the future iron ore export demand at MPT	• Estimate exact staff requirements for cost centres with high overtime
• 435 employees under MOHC payroll would be having no duties in future of which 165 retiring in next 5 years	 payments Applications to be invited from employees for redeployment & SVRS Don't include employees,
Hence, remaining 270 needs to be either redeployed to other departments to reduce over time or to be given SVRS.	 retiring in next 5 years, under either schemes Announcements of SVRS and selection of redeployment

Ownership	Financial Impact	Tracking metrics
Initiative owner : HODs	Operating surplus improvement : 6 Cr	Metric to be tracked - OT salary # of idle MOHC employees

5.11 New Mangalore Port Trust

5.11.1 Port performance dashboard – NMPT

Bucket	Metric	Commodity	Best in class Benchmark	Baseline	1 Yr Target
Overall port performance	Avg. vessel turnaround time (hours) Avg. vessel turnaround time (hours) Avg. vessel turnaround time (hours) [pre-berth waiting time (hours)] Avg. vessel turnaround time (hours) [pre-berth waiting time (hours)]	Coal – Conventional Coal – Mechanized Container POL	68 ¹ 36 ² 23 ³ 36	79 [15] 57 [17] 38 [1] 74 [24]	79 [15] 57 [17] 28 [1] 74 [24]
Berth productivity	Gross productivity (gross MT/day) Gross Productivity (gross MT/day) QC Productivity [berth productivity] (moves/hr) Discharge rate (MT per hour)	Coal – Conventional Coal – Mechanized Container POL	$45,000^4$ $75,000^5$ 30 1700	17,600 28,400 17 900	17,600 28,400 25 1000
Yard	Yard throughput (MT per sq. m) Yard throughput (MT per sq. m) Yard throughput (TEU per Ha)	Coal – Conventional Coal – Mechanized Container	100 240 25000	66 66 16,200	66 66 11,000
Evacuation	Truck turnaround time (hours) Rake turnaround time (hours)	-		NA NA	

1. Average coal parcel size at conventional berths in NMPT = 60,000. Best in class productivity for full vessel = 25,000. Pre berthing detention of 6 hours, other non working ime including pilotage, customs check etc at ~4 hours 2. Panamax capable berth handling parcel size of ~75,000 MT, loading time would be ~30 hours. Additional PBD + other non working time = ~10 hours. 3. Average parcel size of 1000 TEUs, assuming a crane productivity of 30 moves per hour witch 2 cranes deployed and PBD and other NWT of 6 hours. 4. Assuming 2 cranes of grab size of 125 MT, cycle time of 4 minutes, Grab efficiency of 60 % (Top cargo only) and NWT of ~6 hours per day. 5. Assuming 2 cranes of grab size 125 MT, Cycle time of 2 minutes, grab efficiency of 50% and NWT of ~4 hours per day. 6. Average POL productivity of 40,000 MT per day at Jebal Ali.

5.11.2 Summary of suggestions - NMPT

#	Suggestions	Metric	FY 15 baseline	Target		Op. Surplus Increase (INR cr)	Capex avoidance (INR cr)
NMPT 1.1	Increase container cargo by attracting customers from Mysore and adjoining areas	TEUs / year	~65k	145-175k		~18 crore	NA
NMPT 1.2	Improve service level for containers by increasing yard space, number of reach stackers and implementing yard planning	Moves / Hours	17	25			NA
NMPT 2.1	Setup an LNG terminal at NMPT on a PPP basis	LNG volumes	0	2 Mn MT		~30 crore	NA
NMPT 3.1	Setup a mechanized fertilizer handling berth with silo storage and a bagging plant	Mechanically handled fertilizer cargo	0	1 Mn		~4 crore	NA
NMPT 4.1	Reduce overtime costs by migrating to a three shift deployment for tugs, pilot launches and mooring boats	Overtime costs	~5 crore	~50 lakh		~3 crore	NA
#	of suggestions identified = 5 Opera	ting surplus incr	ease = 55 cr		Capex a	voidance = N	IA

5.11.3 NMPT Increase container cargo by attracting customers from Mysore and adjoining areas

Suggestions Overview

Suggestions summary	Key action steps
Attract containerized cargo from Mysore and adjoining area	Form a business development team to engage with customers
 Cargo from Mysore to gain logistics cost saving of ~10,000 Rs/TEU by shifting to NMPT Cargo currently transhipped at Colombo via Chennai NMPT is closer then Chennai by ~220 	Build a customer database Conduct trade meets at Mysore, Hassan, Bidadi
 Kms Simultaneously need to attract additional feeder operators 	 Communicate steps taken to improve container handling at NMPT Engage with feeder operators to start operations at NMPT

Ownersh	ip	Financial Impact	Tracking metrics
Initiative owner :	Traffic Manager	Operating surplus improvement :	Metric to be tracked -
Other stakeholders : NA		18 cr	TEUs / year

5.11.4 NMPT Improve service level for containers Suggestions Overview

Suggestions summary	Key action steps
Sub optional container handling infrastructure at NMPT	Install and MHC for handling containers (Decision to be based on adequate container volumes)
 Absence of a dedicated container berth and quay cranes limit productivity to 17 GMPH Absence of sufficient yard space and reach stackers Need to improve infrastructure and service level by increasing productivity to 25 GMPH 	Allocate 20,000 Sqm additional yard space Invite a private party to operate 3 additional reach stackers Implement yard planning by maintaining a centralized database

Ownership	Financial Impact	Tracking metrics
Initiative owner : Traffic Manager	Operating surplus improvement :	Metric to be tracked -
Other stakeholders : NA	18 cr (Enabled)	Moves per hour

5.11.5 NMPT Setup a LNG terminal at NMPT Suggestions Overview

Suggestions summary	Key action steps
Captive demand of 2 MMTPA of LNG in Mangalore	Push ONGC to complete feasibility study and provide a conclusive answer
 Demand from MRPL, OMPL, MCF, Tannir Bhavi Power plant and smart city ONGC has signed an MoU with port to 	• Demand timelines, milestones and financial commitment
conduct feasibility study	In absence of ONGC's interest, port to
 Port to demand a conclusive reply from ONGC with timelines 	conduct open bidding
• Port to conduct open bidding in absence of ONGC's interest	 Terminate MoU with ONGC Draft tender document and conduct bidding

Ownership	Financial Impact	Tracking metrics
Initiative owner : CE	Operating surplus improvement :	Metric to be tracked -
Other stakeholders : CE, TM	25 Cr	LNG Volume (MMTPA)

5.11.6 NMPT Setup a mechanized berth for handling fertilizer Suggestions Overview

Suggestions summary	Key action steps
Inefficiency in fertilizer handling due to double handling	Identify location to setup silos and bagging plants
 Fertilizer moves from berth to transit shed and then to outside godowns Lack of space for storage and bagging inside the port 	 Mechanize discharge Mechanized silos for storage Silos to discharge fertilizer into hoppers for bagging plants
• Mechanizing the handling by establishing ship offloaders, silos and mechanized bagging plant	Attract customers by marketing the reduced cost of handling
Ownership	Financial Impact

Initiative owner :CMEOther stakeholders :CE, TM

Operating surplus improvement :

4 Cr

Metric to be tracked -

Mech handled fertilizer (MMTPA)

5.11.7 NMPT Reduce overtime costs for marine equipment by migrating to three shift deployment <u>Suggestions Overview</u>

Suggestions summary	Key action steps
Migrate to a shift deployment for tugs, mooring boats an pilot launches	Outsource mooring activities to release manpower
 2 shift deployment leads to overtime payments for 4 hours per day to all mooring staff Outsourcing of mooring activities to release manpower for creating a third shift Deployment of one tug during night shifts 	 Migrate to a three shift deployment for tugs, pilot launches and mooring boats Deploy two tugs and pilot launches during day shifts and one each in the night shift

Ownership		
Initiative owner :	Dy. Conservator	
Other stakeholders :	Harbor Master	

Financial Impact

Operating surplus improvement :

4 Cr

Tracking metrics

Metric to be tracked -

Overtime costs

5.12 Kamarajar Port Trust

5.12.1 Port performance dashboard – KPL

Bucket	Metric	Commodity	Best in class Benchmark	Baseline	1 Yr Target
Overall port	Avg. vessel turnaround time (hours)	Coal – Mechanized	26 ¹	60	40
performance	Avg. vessel turnaround time (hours)	POL	36	39	33
	[pre-berth waiting time (hours)]				
Berth	Gross productivity (gross MT/day)	Coal – Mechanized	75,000 ³	28800	50000
productivity	Discharge rate (MT per hour)	POL	1700	410	820
Yard	Yard throughput (MT per sq. m)	Coal – Mechanized	70 ⁵	58	70
Evacuation	Truck turnaround time (hours)	NA			

1. Average coal parcel size at mechanical berths in Ennore = 60,000. Best in class productivity for full vessel = 75,000 TPD for a panamax. PBD and pilotage of ~6 hours. 3. Current average parcel size of ~60,000 MT. Panamax capable berth should operate at ~75,000 MT/day. 5. Berth and equipment capable of handling ~10 MMT. Total land after reallocation = ~144,000 sq. m. Hence, expected yard throughput of 100 MT / sq.m.

5.12.2 Summary of suggestions - KPL

#	Suggestions	Metric	FY 15 baseline	Target	Op. Surplus Increase (INR cr)	Capex avoidance (INR cr)
KPL 1.1	Improve productivity at existing coal terminals to increase cargo handling capacity and implement governance mechanism	Gross MT / hour	1,300	2,000	~40	NA
KPL 2.1	Requirement of additional cargo to fill capacity at Chettinad terminal	mn MT	9.2	13.0		
KPL 3.1	Modification of existing empty Iron Ore berth to handle coal and serve hinterland demand	Timeline for completion			~100	NA
KPL 4.1	Improve productivity at liquid terminal through reduction in pigging and sampling time	Gross MT / hour	412	800	~8	NA
# of suggestions identified = 4 Operating surplus increase = 148 cr Capex avoidance = NA					nnce = NA	

5.12.3 KPL Improve productivity at existing coal terminals to increase cargo handling capacity and implement governance mechanism <u>Suggestions Overview</u>

Suggestions summary	Key action steps
Setup port governance system	Roll out of new data recording templates
 Implement new data recording templates Setup of a governance forum to drive operational improvement 	Setup of data tracking team in KPL
 Setup audit function to look into terminal performance improvement Activate marketing function and integrate with terminal operations 	Operationalize monthly forum to drive port performance
Drive operational improvements:	Setup and define role of audit team
• Setup productivity norms and penal charges for as many berths as implementable	Roll out new productivity norms and penal berth charges

Ownership
Initiative owner :Director Operations & Traffic Manager
Other stakeholders : Terminal Operators

Financial Impact

Operating surplus improvement :

20 cr

Tracking metrics

Metric to be tracked -

Berth productivity

5.12.4 KPL Requirement of additional cargo to fill capacity at Chettinad terminal <u>Suggestions Overview</u>

Suggestions summary	Key action steps
Drive operational improvement:Pricing strategy to attract additional customers to KPL	Attract additional customer volumes

Ownership	Financial Impact	Tracking metrics	
Initiative owner : Traffic Manager	Operating surplus improvement :	Metric to be tracked -	
Other stakeholders : Terminal Operators	20 cr	MMT	

5.12.5 KPL Modification of existing empty Iron Ore berth to handle coal and serve hinterland demand <u>Suggestions Overview</u>

Suggestions summary	Key action steps	
Empty SICAL iron ore berth to be converted into import coal terminal	Tender of existing terminal and award of contract for modifying and operating new terminal	
	Commissioning of modified berth	
Ownership	Financial Impact	Tracking metrics
Initiative owner : Corporate Strategy Manager	Operating surplus improvement : 100 cr	Metric to be tracked - Timeline for completion

5.12.6 KPL Improve productivity at liquid terminal through reduction in pigging and sampling time <u>Suggestions Overview</u>

Suggestions summary	Key action steps
Reduction in sampling time and pigging time	Use of existing sampling laboratory with HPCL by all oil companies
through to reduce non working time and reduce overall TAT and increase productivity	Use of alternate pipeline network to reduce time loss per vessel due to pigging

Ownership	Financial Impact	Tracking metrics	
Initiative owner : Traffic Manager	Operating surplus improvement :	Metric to be tracked -	
Other stakeholders : Terminal Operators	8 cr	MT / hr	

CHAPTER VI - SUGGESTIONS AND CONCLUSIONS

This is stated that this research encompasses a unique exercise of exploring solutions after deep dive analysis into the real productivity issues in Major Ports by taking into consideration the aspirations of stakeholders and it is what distinguishes from other research studies. These solutions are vividly described under various heads.

6.1 Technology upgrade

(a) **Barge based dredging (Kolkata)** - The current navigation channel to Haldia Dock System passes through two major sand bars—Auckland and Jellingham, which currently limit the draft of the channel. The bars, which are currently at approximately 4.5m (Auckland) and 4m (Jellingham) below chart datum, need dredging around the year for maintenance. Barge based technology for dredging can be used at Jellingham bar. This technology, as per initial studies, can complement the two techniques that KoPT has already successfully deployed (side casting and short dumping) and result in substantial operational savings

(b) **Dual loading of vessels (Paradip)** - Dual loading will help in saving nonworking time of the vessel as the second idle berth is used for de-ballasting of vessels. Due to dual loading, more than 50% reduction in non-working time and 33% reduction in time spent at the berth for vessel could be achieved. Dual loading of vessels will help in lowering working time, Reduction in non-working time at berth due to lesser number / simultaneous hatch changes, Higher berth productivity for port could be achieved and savings for customer through reduced TRT.

(c) **Night navigation system** implementation (Kandla)- Currently, only buoys are used as navigation aid. During night, the pilot has to navigate just by looking

at the buoys. The buoys move around the mooring causing uncertainty in identifying channel boundary. This has resulted in lesser number of movements at night compared to day. It is therefore suggested to use Navigation aids to make night navigation easier and safer, thereby increasing the % of movements at night.

(d) **Quick release system** implementation (Mumbai) - the non-working time at Mumbai port is significantly higher in comparison to the 12 major ports in India. In order to reduce the mooring time, installation of 'Quick Release System' can be a potential solution. Benefits of installing quick release system (QRS) are - reduction in mooring time, reduction in overturning movement, reduction in mooring crew's exposure to risk, benefit for oil companies due to faster turnaround time for vessels and less labor and no tugs required in operations.

6.2 **Process optimization**

(a) **Evacuation time reduction** (JNPT) - The Vehicle Booking System is suggested to be implemented at JNPT as it will help streamline the flow of trailers in JNPT. In JNPT, moving export containers from CFS to Port gate takes 8-10 hours due to heavy congestion of trailers near the port gates. The high evacuation time results in increased logistic costs for customer and affects ease of doing business. Vehicle Booking System is designed to decrease the waiting time of trailers.

(b) Hot seat change implementation (JNPT, Kandla, Goa, Haldia etc) -Currently, the shift change time takes between 30 minutes to 1 hour per shift per day. However, this can be resolved by instituting hot seat shift change. It is proposed to implement hot seat changes by finalizing the plan with unions to add 30 minutes to each shift, or give one-hour overtime.

(c) **Hatch change optimization** (Paradip)- Absence of norms for number of hatch changes and draft checks results in little control over non-working time for the vessels. In order to improve berth performance, there is a need to put in place a stringent set of productivity norms and penal charges so as to optimize the hatch change.

(d) **Twin lift** optimization (JNPT) - Strong yard planning is recommended to support maximization of export twin-lift ratio. Twin-lifting can boost crane productivity for terminals where 20' container constitute a large share of traffic (60-70% for JNPCT). Current twin-lift ratio is ~25% and there is potential to increase the twin-lifts of 20ft containers below 25t through improved planning to optimize the twin-lift opportunities and ensuring execution according to plan with minimum leakage.

6.3 **Pricing & incentive alignment**

(a) Liquid norms in Kandla & JNPT - Currently, there is low incentive for customer tank farm operator to increase throughput because of the tariff structure. Incentive can be created through establishing targets for berth performance, and penal actions may be implemented if these performance targets are not achieved. Lack of incentives for customers in Kandla Port to discharge liquid cargo at the maximum rate had led to a situation where customers found it cheaper to store edible oil in a vessel than hire additional tank for storage. The norms at Kandla port were revised to incentivize faster discharge of liquid cargo. The norms made idle stay at berth costlier, encouraged sharing of pipelines and encouraged customers to shift to larger parcel sizes.

(b) **SoR** revision for to incentive HMC utilization (Paradip, Kandla) - Add new HMCs to lead to improved productivity of vessels. Productivity norms should be set to increase productivity and reduce non-working time. Norms have to be set for both HMC operations and vessel operations.

(c) **Trans-loading package** in Kolkata - Transloading option should be made attractive by reducing overall cost and creating a combined package. Transloading cost can be reduced by eliminating cargo loss by installation of weighbridge inside yard (already planned), reducing shore handling through licensing/ BOT-mechanized berths, combined discount from both JITF and port-end to be provided. It will be critical to map transloading to cheaper sub-contracted/BOT berth to ensure cost-effective transloading

(d) **Bulk productivity norms across ports** - Berth productivity norms for cargo berths needs to be upgraded per the planned equipment upgrade. These norms are necessary to ensure that the planned upgraded equipment is put to full use for achieving higher productivity.

6.4 Equipment upgrade

(a) **Cranes:** 20 new MHCs & 15 RTGCs – New MHCs and RTGCs need to be installed across ports to fully utilize the capacity at the berths.

(b) **Conveyor:** Upgrade agreed with captive customers (VOC, Ennore) – At VOC constructing a branch-out conveyor to handle non-TNEB coal evacuation to the port's storage yard can help in increasing productivity. At Ennore, the conveyor system at the NCTPS plant of Tangedco leads from the berth to the yard and then directly to the

co-located plant. The low conveyor discharge rate is leading to low berth productivity. Detailed on ground study of conveyor operations can led to identification of the key issues in the conveyor system. Initiatives can be formulated to optimize the conveyor operations.

(c) Grabs: New grabs procured to match crane capacities (Kandla) - Grab is a factor of the lifting capacity of the crane as well as density of the commodity. Optimal grab size will help lift maximum possible cargo in one movement. Optimizing grab size per respective commodity density will ensure maximum productivity for each commodity.

(d) **Dumpers**: ~300 additional dumpers (Paradip) - PPT does not have adequate dumpers to meet the higher productivity requirement of HMCs for evacuating cargo from wharf. Dumper evacuation from wharf to yard should match the HMC productivity rate. Considering the current TRT of trucks and different queue waiting times, 300 additional dumpers are proposed to be added.

6.5 Barge based dredging successfully piloted in Kolkata

KoPT established that a dredger can dredge with a normal barge moored alongside. The potential monetary impact of this initiative is about Rs 60-80 crores. This implementation of a cutting edge dredging scheme is a first in India, driven completely by Indian companies. The pilot has the potential of serving as an economic model for dredging inland waterways. The benefits of the study are as follows:

6.5 (a) Higher utilization of dredger

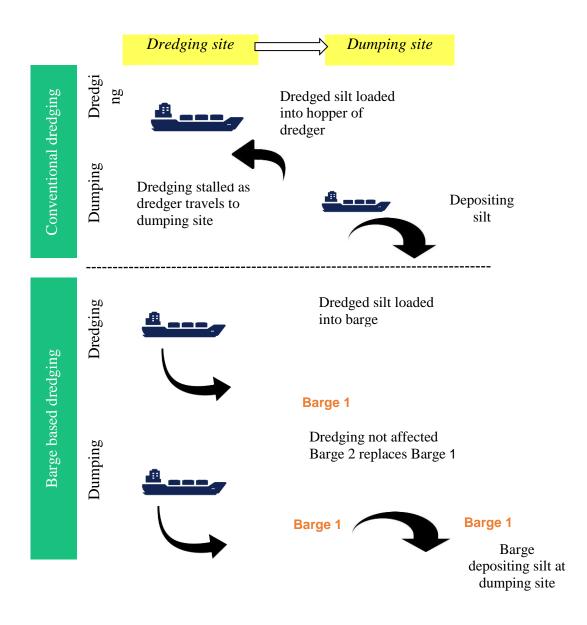


Figure 6.5 (a): Barges deployed for carrying dredged silt to dumping site

6.5 (b) Potential monetary impact of Rs 60-80 Cr

6.5 (c) Best in class dredging model used for the first time by Indian

companies- Collaboration between KoPT, DCI, IIT Madras & Ocean Sparkle

6.5 (d) Provides an economic model for dredging inland waterways

6.6 Dual-loading of ships implemented at Paradip resulting in achievement of 2X normal berth productivity:

Paradip port achieved record productivity levels of around 4,500 tonnes per hour through dual loading as compared to 2-2,500 tonnes per hour under normal operations. Due to dual loading, more than 50% reduction in nonworking time and 33% reduction in time spent at the berth for vessel could be achieved. The key features of the dual loading operations at Paradip are as follows:

6.6 (a) Utilization of ship loaders maximized through dual loading: During dual loading both loaders service one-ship simultaneously

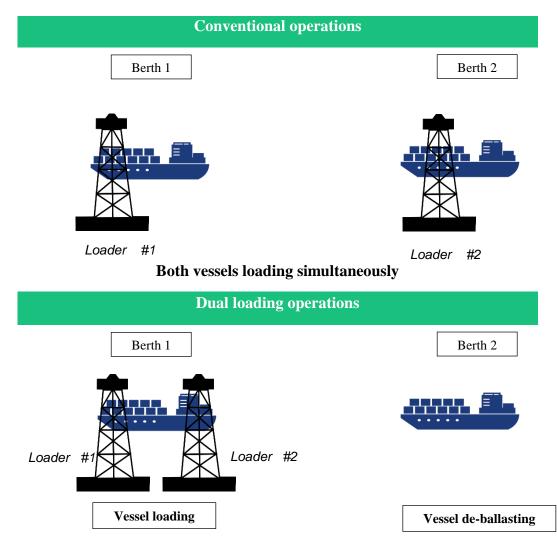


Figure 6.6 (a):Utilization of ship loaders maximized through dual loading

6.6 (b) There is Gross productivity of 4,233 tonnes per hr

6.6 (c) Reduction of non-working time by >50% at berth compared to other Panamax ships

6.6 (d) Reduction of ~33% in time spent at berth for vessel compared to other Panamax ships

6.7. Liquid norms designed in Kandla to encourage customers to shift to larger vessels

The productivity of liquid berths at KPT lower than benchmarks and BDP at KPT due to the incentive structure which does not create pressure for the customers to empty vessels at maximum possible rate. It is therefore proposed to establish norm at 300 TPH; ship will be unberthed and moved to the back of the queue if doesn't meet the norm for 2 shifts. One berth to be dedicated to edible oil ships and awarded to the ship promising maximum productivity

6.7 (a) Parcel size based norms drafted for Kandla Port are as given in the Figure 6.7

		Parcel size			
	Cargo	Cargo < 10K Tons	10 – 20K Tons	20 – 30K Tons	> 30K Tons
Disincentive Threshold			500		
(TPH)	Chemical	300		450	

Figure 6.7 (a): Parcel size based norms drafted for Kandla Port

6.7 (b) Penalty structure:

- Extra 3 hour slots penalized telescopically at 3X, 4X, 5X berth hire
- Clause for de-berthing after 12 hours

6.7 (c) >50% improvement due to norm rollout

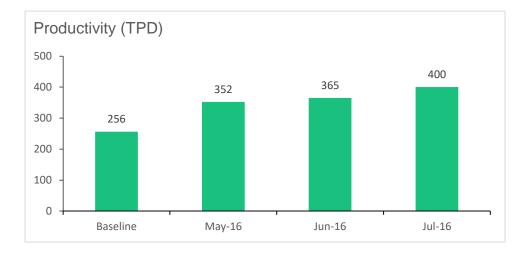


Figure 6.7 (c):>50% improvement due to norm rollout

6.8. JNPT evacuation initiatives showing improvements

The initiatives taken till date have shown improvement in evacuation time taken at JNPT, however, we need further efforts to reach near best-in-class benchmarks

6.8 (a) Initiatives undertaken to improve evacuation are:

Change in gate policy

• Container entry limited to maximum 4 days before day of vessel berthing -Change container intake duration from 5.5 days prior to vessel arrival to 4 days prior to vessel arrival to improve evacuation and reduce congestion. • Yard operations synchronized to ensure no vessel shutouts - Coordinate with all terminals to avoid undue gate shut outs and provide additional yard storage area to GTI to ensure minimization of gate shut-outs

Vehicle booking system

Architecture finalized; pilot rolled out - In JNPT, moving export containers from CFS to Port gate takes 8-10 hours due to heavy congestion of trailers near the port gates. The high evacuation time results in increased logistic costs for customer and affects ease of doing business. The pilot Vehicle Booking System was designed to decrease the waiting time of trailers. For factory stuffed containers, the terminal entry and parking entry time slot is to be booked before the container leaves for the port. The container is allowed inside the port only during the booked slot. Similar process is also followed for CFS stuffed containers. The Vehicle Booking System has helped streamline the flow of trailers in JNPT

6.8 (b) Parking yard creation

Yard to streamline truck flow into terminal gates and reduce queuing -Yard is required to be put in place for physical evacuation of un-cleared trucks so that they do not obstruct the path of trucks behind them in the queue. Yard and gate infrastructure is required to work in tandem with the berth, supporting a seamless flow of traffic from berth to gate. Hence, potential bottlenecks at yard and gate should be addressed to support the increased productivity at the berth.

6.8 (c) 27% reduction in border compliance time –

Border compliance time for export includes overall container handling time at the port from the time of entry till the vessel sailing. This export dwell time at JNPT has reduced by 26% to just 77 hours in June 2016 due to implementation of vehicle booking system and simplifying gate clearance processes.

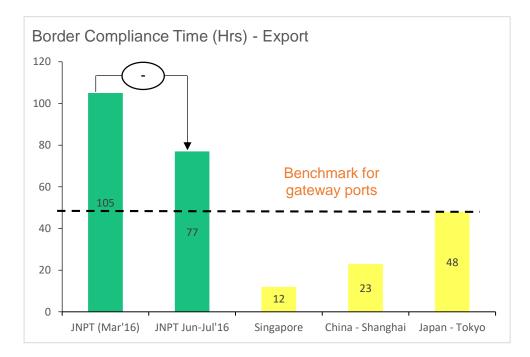


Figure 6.8 (c): 27% reduction in border compliance time

6.9 Likely Reduction Turnaround Times across ports

High turnaround time ultimately affects the customer who needs to bear higher vessel charter costs and working capital costs. This has severely undermined overall competitiveness of the ports. Reducing turnaround times would reduce costs for the customers thus benefiting the economy. This research focused on reducing vessel turnaround times in high occupancy berths. This has been achieved through a combination of productivity improvement, reduction in idle time and streamlining of vessel schedules. During the project period, the turnaround time across 8/10 Major Ports reduced significantly. Six of the Major Ports – VOC, Vizag, Haldia, Paradip, Kolkata & Kandla had turnaround time greater than 6 days. All of these six ports have successfully reduced their turnaround time by more 25%.

Vessel TAT (in days)	FY 15-16	FY 16-17	YTD FY 17-18	Reduction
VOC	8.1	5.5	4.3	47%
Vizag	6.1	3.8	3.7	40%
Haldia	7.5	7.8	5.1	32%
Paradip	7.5	4.5	5.2 (4.3)	31%
Kolkata	6.3	4.8	4.5	27%
Kandla	6.5	4.8	4.8	26%
Mumbai	3.9	4.5	3.2	17%
Ennore	4.5	7.0	3.9	13%
NMPT	2.6	2.8	2.4	8%
JNPT	2.0	2.0	2.0	2%
Cochin	2.2	2.3	2.2	2%
Chennai	2.5	2.5	2.8	-8%
Goa	3.5	5.3	7.5	-117%

Figure 6.9: Likely Reduction Turnaround Times across ports

6.9 (b) There would be Sharp jump in productivity across high occupancy berths-The benchmarking study of ports' performance identified significant scope for improvement in productivity levels. The average productivity for Major Ports was almost ~60% lower than the best in class benchmarks for conventional berths and ~120% lower in mechanized berths. The focus of the project was to unlock capacity in the high occupancy berths with significant cargo potential. The key capacity constrained berths were the mechanized and conventional coal handling berths in Paradip & Haldia, the edible oil berths and dry bulk berths in Kandla, the container terminal in JNPT. The productivity of conventional & mechanized coal berths in Haldia have improved by 95% and 58% respectively. The coal berths in Paradip have also witnessed improvement in excess of 40% in their productivity levels. The edible oil & chemical handling oil jetties in Kandla have improved productivity in excess of 70%.

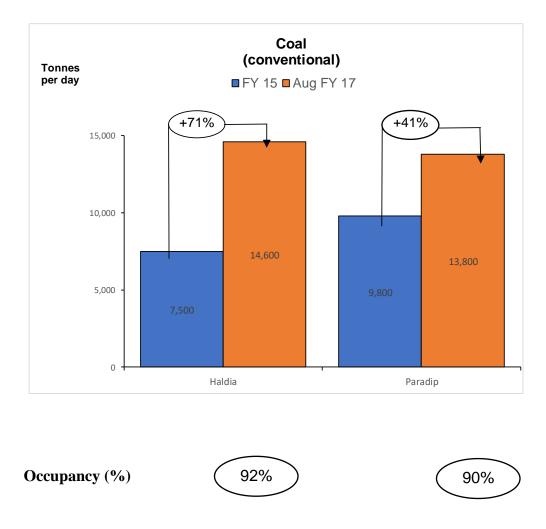


Figure 6.9 (b): There would be Sharp jumpin productivity across high occupancy berths

6.9 (c) Sharp jump in productivity across high occupancy berths

Figure 6.9 (c): Sharp jump in productivity across high occupancy berths

6.9 (d) Sharp jump in productivity across high occupancy berths- This study will able to unlock a capacity of around 80 MTPA so far across Major Ports solely through productivity improvement with minimum capital investment. Nearly all of this capacity unlock has come from capacity constrained berths in Major Ports. The key capacity constrained berths – dry bulk handling berths in Paradip, Kandla & Haldia, liquid handling berths in Kandla have witnessed capacity addition of 5 MTPA or more. The biggest chokepoint in Major Ports was in dry bulk handling berths in ports. These berths were suffering from a high occupancy of >80% and needed capacity unlock to service more cargo.

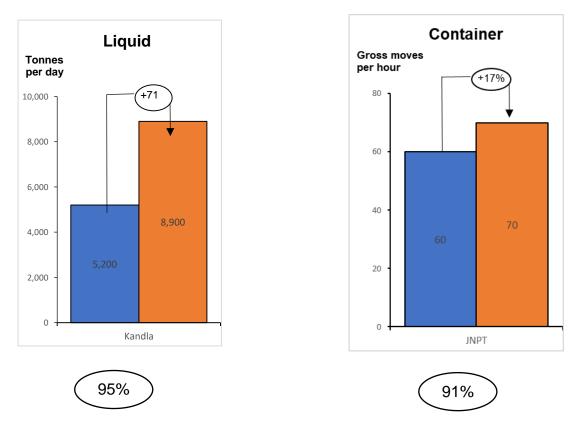


Figure 6.9 (d): Sharp jump in productivity across high occupancy berths

6.10 >Rs 3,500 Cr value creation

Impact of productivity improvement		Rationale for estimation of value created
(a)	~ 80 MTPA Capacity unlocked	Capacity unlock calculated basis port wise commodity wise improvement in productivity
(b)	~ Rs 650-700 Cr Annualised operating surplus	Additional operating surplus expected on utilization of ~80 MTPA of added capacity ¹ and savings in dredging cost (150cr)
(c)	>Rs 2000 cr Potential capex avoidance	Estimated capex required to develop new berths to handle ~80 MTPA of additional cargo ²
(d)	Rs 400-500 cr Logistic cost savings	Savings on vessel chartering costs due to lower vessel turnaround time ³
(e)	Rs 550-650 cr Inventory cost savings	Lower inventory holding & financing cost due to improved turnaround time for cargo ⁴

Figure 6.10: >Rs 3,500 Cr value creation

1. Assumption – INR 80 per MT revenue for ports from cargo handling with 80% capacity utilization. 2. Assumption: 80 MTPA capacity unlock avoids 7-8 new berth construction with Rs 300-350 capex required per berth. 3. Assumption: USD 4,000 per day of average charter rates for vessels; reduction in TAT to translate lower charter days requirement for customers. 4. Assumption: 10% cost of capital for funding working capital (inventory) incurred by customers

6.11. High value initiatives need to be completed in time - The berthing policy has been put into effect by the Ministry of Shipping. The Major Ports should ensure that berthing norms along with the incentives and penalties are effectively enforced. The ports would also need to revise the norms regularly based on the actual productivity achieved in the port.

S. No	Initiative	Current Status	Action required
1	Berthing policy implementation	- Berthing policy rolled out by Ministry	 Need successful rollout of berthing norms basis new policy Process for revising norms based on performance
2	Tangedco conveyor upgrade	- Conveyor upgrade in Ennore & VOC agreed with Tangedco	- Need to expedite tender process of Tangedco
3	Container evacuation implementation	- Solutions identified – Vehicle Booking System, Parking yard	 Need to implement KPIs for trade on evacuation performance Need to onboard customs & railways
4	Mormugao dredging project	- Dredging ongoing for Mormugao	- Need to expedite dredging (~45% dredging work completed)

Figure 6.11: High value initiatives need to be completed in time

6.12 Focus on mechanization of port berths to enhance port capacity-Mechanization of berths is an effective lever for unlocking capacity in the existing conventional berths in the Major Ports. The mechanization of berths includes installation of new cranes (MHCs, shore cranes) at berth and installation of new conveyor systems for evacuation. The non-mechanized berths with high occupancy or potential for attracting large cargo volumes were shortlisted for mechanization. Further, feasibility of mechanization was checked based on strength of berth, availability of yard space and evacuation. 28 berths across Major Ports have been identified for mechanization. The ports should expedite mechanization of the following berths.

L	ist of berths to	o be mechanized
Port Proposed		Status & next steps
	berths	
Paradip	EQ 1-3	Mechanization process on going
Vizag	EQ 6	Mechanization is in progress
	WQ 8,9	Port to take mechanization after EQ 6 is complete
Haldia	2,3	Port to put conveyor belts on the wo berths
VOC	CJ I, II	Installation of MHCs ongoing
NMPT	2	Port to start with fertilizer bagging plant initially and then to proceed to full scale mechanization as volume picks up
Ennore	SIOT 01	Tender awarded
Cochin	Q7	Berth allotted to M/s Malabar cements with agreement to mechanize berth for handling cement
	Q8/ Q9	Port to replace current 40T HMC with 100T HMC to provide better service for steel
Goa	10, 11	Port has initiated process of procurement of cranes
Chennai	JD2	Port to commence mechanization
	BD2	Port to go for full mechanization for fertilizers in phased manner
Kandla	CJ14	Port to certify on paper that full rake can be loaded at CJ 14 in case it is going ahead with CJ14 for fertilizer berth
	СЈ 6-9	Tender Process ongoing
Mumbai	OCT 1-2	Port to proceed with mechanization post resolution of the issue with concessionaire

6.13. Way forward: Few ideas to drive further efficiency unlock

Pricing is an important lever for ports to achieve higher volumes and productivity. Strategic use of pricing can help the ports balance multiple objectives secure sufficient returns for the port, ensure competitiveness of the port, optimally utilize assets by achieving high productivity.

Operations	Organization	Policy	IT
Timely implementation of recommendations (Rs 400 cr of pending value	Design a new organization to suit the new Land Lord operating model	Resolving current PPP Concessions and long term TAMP reform	Standardized and integrated ERP system across ports
Mechanization of 28 berths across Major Ports	Plug critical capability gaps – Business development, Pricing, Vendor management	Revision of MCA for PPP concessions	Upgradation of PCS systems
Successful Rollout of berthing norms basis new policy		Policy for Port land and Storage Charges	IT centre of Excellence in IPA/ Ports
Strategic Use of pricing (SoR) – to drive productivity and attract cargo			Move toward digital port – Adoption of latest IT tools & Technologies

Beyond capital projects

Figure 6.13: Way forward : Few ideas to drive further efficiency unlock Beyond capital projects

APPENDIX - Survey of Major Indian ports

Survey 1: To Rank Key Performance Metrics

Dear Sir/Madam,

Survey is being conducted to determine the important KPIs at various Major Ports of India and rank the same.

We estimate the survey to take approximately 10 minutes to complete.

Please be assured that we will ensure complete confidentiality. The survey is entirely anonymous, and results will be collated and used only in an aggregate form.

Thank you very much for your participation!

	Circle the following KPI in degree of importance as per your perception							
SrN	KPIs	Survey Scale: 1=Strongly Disagree 2=Disagree 3=Neutral 4=Agree 5=Strongly Agree					e	
1	Vessel turnaround time (days)		1	2	3	4	5	
2	Non-working time at berth (days)		1	2	3	4	5	
3	Berth output (MT per day)		1	2	3	4	5	
4	Berth utilization (%)		1	2	3	4	5	
5	Waiting time outside port (days)		1	2	3	4	5	
6	Equipment utilization (%)		1	2	3	4	5	
7	Quay crane/gang output (MT per shift		1	2	3	4	5	
8	Containers: Truck turnaround times		1	2	3	4	5	
9	Cargo dwell times		1	2	3	4	5	

10	Equipment maintenance cost per MT handled	1	2	3	4	5	
11	Maintenance dredging cost per m3 excavated	1	2	3	4	5	
12	Employees / MT handled	1	2	3	4	5	
13	Gang size per shift	1	2	3	4	5	
14	Fuel/energy cost per MT handled	1	2	3	4	5	
15	Containers: RTG moves per hour	1	2	3	4	5	
16	Containers: QC:RTG:Truck ratios	1	2	3	4	5	

Survey 2: Customer Satisfaction Survey

Dear Sir/Madam,

The survey is being conducted to assess the satisfaction level of the stakeholders and also to identify and prioritize areas of improvement for the port.

We estimate the survey to take approximately 30 minutes to complete.

Please be assured that we will ensure complete confidentiality. The survey is entirely anonymous, and results will be collated and used only in an aggregate form.

Thank you very much for your participation!

Section 1. Introduction

In this section we would like to understand your profile and overall experience while dealing with the port. Please answer the following information before you start this survey, and remember that all information will be handled completely anonymously.

1) Which of the following types of main port stakeholders do you work for (or have worked for in the past 2 years)

- a) Vessel operator
- b) Vessel handling agent
- c) Bulk cargo handling agent
- d) Container freight station
- e) Private berth operator, e.g. dedicated coal berth
- f) End user importer/ exporter
- g) None of above

Terminate if respondent selects option g.

2) Which of the following commodities represent your largest business interest at (Name) Port?

- a) Containers
- b) Dry bulk
- c) Liquid bulk
- d) Project Cargo

3) <u>Generally</u>, which of the following terminals do you work with? (Please select up to four terminals)

- a)
- b)
- c)
- d)

4) Apart from (Name) Port, do you frequently work with any other international port? Please mention up to three

- a)
- b)
- c)

5) What is your role in the company?

- a) Senior management, i.e. CEO, COO, VPs etc
- b) Operations
- c) Business development
- d) Others, please specify
- 6) How often does the port interact with you to resolve your issues?
 - a) Once a week
 - b) Once a fortnight
 - c) Once a month
 - d) Once a quarter
 - e) None of the above

7) How strongly do you believe that your overall business experience with port has improved in past six months?

- a) Strong improvement
- b) Somewhat improvement
- c) No improvement
- d) Somewhat deterioration
- e) Definitely deterioration

8) <u>Generally</u>, how do you access information about any changes/ new procedures/ clarifications in the port operating procedures?

- a) It is present over internet
- b) It is provided to me as hard copy
- c) I have to discuss with port officers
- d) I have to discuss with my colleagues
- e) I am generally not aware about any changes/ new procedures/ clarification

9) Do you believe that the port is trade friendly?

- a) Yes
- b) Probably yes
- c) Probably no
- d) No

10) What are the Top Two improvements required in port ecosystem (Including - terminal, port, transporter, CFS, CHA, Customs, Banks, Infrastructure, Law & Order, Skill, IT Systems OR any other related areas)?

1. 2.

11) What are the Top Two achievements of port ecosystem (Including - terminal, port, transporter, CFS, CHA, Customs, Banks, Infrastructure, Law & Order, Skill, IT Systems OR any other related areas)?

Section 2. Documentation

- 12) Does preparation and approval of EXIM documentation take a lot of time for you?a) No, it is fairly straight forward
 - b) It takes manageable time
 - c) Yes, it takes a lot of time
 - d) Not applicable

- 13) Generally, for a frequent exporter, how long does it take to prepare customs mandated documents?
 - a) <1 Day
 - b) 1-2 Days
 - c) 2-3 Days
 - d) 3-4 Days
 - e) 4 Days+
 - f) Not applicable for me
- 14) How long does it generally take to receive all customs approvals for export?
 - a) <1 Day
 - b) 1-2 Days
 - c) 2-3 Days
 - d) 3-4 Days
 - e) 4 Days+
 - f) Not applicable for me
- 15) Generally, for a frequent importer, how long does it take to prepare/collect customs mandated documents?
 - a) <1 Day
 - b) 1-2 Days
 - c) 2-3 Days
 - d) 3-4 Days
 - e) 4 Days+
 - f) Not applicable for me

16) How long does it generally take to receive all customs approvals for import?

- a) <1 Day
- b) 1-2 Days
- c) 2-3 Days
- d) 3-4 Days
- e) 4 Days+
- f) Not applicable for me
- 17) For the other international ports that you deal with, how long does it generally take to secure customs approval? Please provide up to three -

Name of Port	Document Approval time by Customs
	time by Customs
	(Hours)

- 18) Can you <u>collect</u>, <u>prepare</u> and <u>submit</u> export related customs documents electronically?
 - a) Mostly all the documents
 - b) Some of the documents
 - c) Rarely any document
 - d) Never, all documents are manually collected and prepared

- 19) Can you collect, prepare and submit port related documents electronically?
 - a) Mostly all the documents
 - b) Some of the documents
 - c) Rarely any document
 - d) Never, all documents are manually collected and prepared
- 20) How frequently do you have to manually transfer documents from shipping lines to customs and vice versa?
 - a) Always
 - b) Sometimes
 - c) Never
- 21) How frequently do you have to manually transfer documents from ports to customs and vice versa?
 - d) Always
 - e) Sometimes
 - f) Never
- 22) How frequently do you have to manually transfer documents from ports to shipping lines and vice versa?
 - g) Always
 - h) Sometimes
 - i) Never
- 23) Generally, which documents are manually processed? (Include documents submitted /approved /obtained manually by agencies or involving manual movement by handling agents/ other stakeholders)

Name of Agency	Manually Processed Documents			
Customs				
Port				
Shipping line				

- 24) How long does it take to prepare all documents required by shipping lines?
 - a) <1 Day
 - b) 1-2 Days
 - c) 2-3 Days
 - d) 3-4 Days
 - e) 4 Days+
 - f) Not applicable for me
- 25) How long does it take to prepare all documents required by shipping lines?
 - a) <1 Dayb) 1-2 Days
 - c) 2-3 Days
 - d) 3-4 Days
 - a) 4 Dava
 - e) 4 Days+

26) How can the Government improve documentation procedures/ approval?

Section 3. Cost

27) Are all handling charges, duties and taxes to import and export clearly understood and consistently levied?

- a) Clear and consistent
- b) Clear but not consistent
- c) Generally consistent, but I am not clear how to verify if I paid as per rules
- d) I am not clear and they are not consistent
- e) I do not manage EXIM cost related matters
- 28) Which of the following EXIM charges need further clarity?
 - a) Port charges
 - b) Customs duties
 - c) Other taxes
 - d) All EXIM charges are clearly understood
 - e) None of the above, please specify
- 29) Do you receive receipts for all expenses incurred for export/import transaction?
 - a) Yes
 - b) No
- 30) Do you receive receipts for all expenses incurred inside of port premises?
 - a) Yes
 - b) No

Section 4. Border handling time at Port

- 31) How long does it <u>generally</u> take for the truck to get into the port entry queue from the time it leaves CFS/ parking yard?
 - a) 1-2 Hours
 - b) 2-4 Hours
 - c) 4-6 Hours
 - d) 6 Hours +
 - e) I do not deal with truck movements in and out of the port
- 32) How long does it <u>generally</u> take for the truck to enter the port premises once it reaches the port gate queue
 - a) < 15 Minutes
 - b) 15 30 Minutes
 - c) 30 60 Minutes
 - d) 60 90 Minutes
 - e) 90 Minutes +
 - f) I do not deal with truck movements in and out of the port
- 33) What is the typical truck turnaround time in the port

- a) < 60 Minutes
- b) 60 90 Minutes
- c) 90–120 Minutes
- d) 120 180 Minutes
- e) 180 Minutes +
- f) I do not deal with truck movements in and out of the port
- 34) On a scale from most to least satisfied, please rate your <u>satisfaction level</u> of the following attributes with ports in general?

Scale from 1 to 5: 5 is the very satisfied and 1 is the very dissatisfied. Not applicable option also provided. [Depending on the importance of various capabilities selected above, the sequence and number of questions will vary]

Turnaround time

- How satisfied are you with pre-berthing delays?
- How satisfied are you with the vessel turnaround times at the port?
- 35) What is the typical vessel turnaround time for the other international ports that you deal with? Please provide up to three -

Name of Port	Most Frequently	Most	Turn Around
	Handled Cargo	Frequently	Time (Hours)
	Type for You	Handled Cargo	
		Size	

Section 5. Port operations

36) On a scale from most to least satisfied, please rate your **<u>satisfaction level</u>** of the following attributes with ports in general?

Scale from 1 to 5: 5 is the very satisfied and 1 is the very dissatisfied. Not applicable option also provided. [Depending on the importance of various capabilities selected above, the sequence and number of questions will vary]

Availability of berths suitable for your purposes

- How satisfied are you with the berths available at the port, incl. number and draft?
- How satisfied are you with the availability of berths upon arrival?
- How satisfied are you with the time it takes for the port to assign you a berth?

- How satisfied are you with the time it takes to evacuate your cargo from port?
- How satisfied are you with the time it takes for your cargo to reach to yard once it enters the port are?

Thank you very much for participating in the survey!

Please provide any other feedback that you may have for the port -

References

Adebanjo, D., Abbas, A., & Mann, R. (2010). An investigation of the adoption and implementation of benchmarking. *International Journal of Operations & Production Management*, *30*(11), 1140–1169. http://doi.org/10.1108/01443571011087369

Ajelabi, I., & Tang, Y. (2010). The Adoption of Benchmarking Principles for Project Management Performance Improvement. *International Journal of Public Sector Management*, 1(2), 1–8. Retrieved from http://airccse.org/journal/mpict/papers/1210ijmpict01.pdf

Al-Eraqi, A. S., Mustafa, A., & Khader, A. T. (2010). An extended DEA windows analysis: Middle East and East African seaports. *Journal of Economic Studies*, *37*(2), 208–218. http://doi.org/10.1108/01443581011043591

Andersen, B., & Moen, R. M. (1999). Integrating benchmarking and poor quality cost measurement for assisting the quality management work. *Benchmarking: An International Journal*, 6(4), 291–301. http://doi.org/10.1108/14635779910288541

Anderson, K., & McAdam, R. (2005). An empirical analysis of lead benchmarking and performance measurement: Guidance for qualitative research. *International Journal of Quality & Reliability Management*, 22(4), 354–375. http://doi.org/10.1108/02656710510591200

Anfindsen, O. J., Løvoll, G., & Mestl, T. (2012). Benchmarking of marine bunker fuel suppliers: the good, the bad, the ugly. *Benchmarking: An International Journal*, *19*(1), 109–125. <u>http://doi.org/10.1108/14635771211218399</u> artigo4.pdf. (n.d.).

Austin, L. M. (2005). Benchmarking to economic value added: The case of Airways Corporation of New Zealand Limited. *Benchmarking: An International Journal*, *12*(2), 138–150. http://doi.org/10.1108/14635770510593086

Bagchi, P. K. (1996a). Role of benchmarking as a competitive strategy: the logistics experience. *International Journal of Physical Distribution & Logistics Management*, 26, 4–22. http://doi.org/10.1108/09600039610113173

Bagchi, P. K. (1996b). Role of benchmarking as a competitive strategy: the logistics experience. *International Journal of Physical Distribution & Logistics Management*, 26(1), 4–22. http://doi.org/10.1108/09600039610113173

Bagchi, P. K., & Paik, S.-K. (2001). The role of public-private partnership in port information systems development. *International Journal of Public Sector Management*, *14*, 482–499. http://doi.org/10.1108/EUM000000005965

Bauer, J., Tanner, S. J., & Neely, A. (2004). Developing a performance measurement audit template - A benchmarking study. *Measuring Business Excellence*, 8(4), 17–25. http://doi.org/10.1108/13683040410569370

Benchmarking. (n.d.). Retrieved December 3, 2015, from http://www.adi.pt/docs/innoregio_benchmarking-en.pdf

Benchmarking, S. (2003). Speaker : Gordon Rankine CEng FICE MIStructE , Director Beckett Rankine Partnership , UK. *New York*, (February), 1–18.

Benchmarking South African Ports: container and automotive terminals Table of Contents 2 . Container benchmarking: global trends with container traffic 8 Figures and Tables. (2014).

Bergantino, A. S., & Musso, E. (2011). The role of external factors versus managerial ability in determining seaports' relative efficiency: An input-by-input analysis through a multi-step approach on a panel of Southern European Ports. *Maritime Economics & Logistics*, 121-141.

Bhanot, N., & Singh, H. (2014). Benchmarking the performance indicators of Indian Railway container business using data envelopment analysis. http://doi.org/10.1108/BIJ-05-2012-0031 Bhutta, K. S., & Huq, F. (1999). Benchmarking – best practices: an integrated approach. *Benchmarking: An International Journal*, 6(3), 254–268. http://doi.org/10.1108/14635779910289261

Björklund, M. (2010). Benchmarking tool for improved corporate social responsibility in purchasing. *Benchmarking: An International Journal*, *17*(3), 340–362. http://doi.org/10.1108/14635771080001427

Blanchard, C., Comm, C. L., & Mathaisel, D. F. X. (2008). Adding value to service providers: benchmarking Wal-Mart. *Benchmarking: An International Journal*, *15*(2), 166–177. http://doi.org/10.1108/14635770810864875

Boulter, L. (2003). Legal issues in benchmarking. *Benchmarking: An International Journal*, *10*(6), 528–537. http://doi.org/10.1108/14635770310505166

Briceño-garmendia, C., & Bofinger, H. C. (2015). OECS Ports An Efficiency and Performance Assessment, (January).

Cao, X. R. (2006). A Framework for Benchmarking Haptic Systems. Retrieved from http://www2.fas.sfu.ca/ftp/pub/cs/theses/2006/XiaoRuiCaoMSc.pdf

Cappelli, L., Guglielmetti, R., Mattia, G., Merli, R., & Renzi, M. F. (2011). Peer evaluation to develop benchmarking in the public sector. *Benchmarking: An International Journal*, *18*(4), 490–509. http://doi.org/10.1108/14635771111147605

Chambers, A. (2006). Assurance of performance. *Measuring Business Excellence*, 10(3), 41–55. http://doi.org/10.1108/13683040610685784

Chan, F. T. S., Chan, H. K., Lau, H. C. W., & Ip, R. W. L. (2006). An AHP approach in benchmarking logistics performance of the postal industry. *Benchmarking: An International Journal*, *13*, 636–661. http://doi.org/10.1108/14635770610709031

Chen, H.-L. (2005). A competence-based strategic management model factoring in key success factors and benchmarking. *Benchmarking: An International Journal*, *12*(4), 364–382. http://doi.org/10.1108/14635770510609033

Cheon, S. (2007). World port institutions and productivity. Zhurnal Eksperimental'noiITeoreticheskoiFiziki.Retrievedfromhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:No+Title#0

Chung, W., Hui, Y. V., & Lam, Y. M. (2006). Benchmarking the energy efficiency of commercial buildings. http://doi.org/10.1016/j.apenergy.2004.11.003

Chung, W. K. (2014). Benchmarking Singapore 's high-TQM maturity organisations.

Codling, B. S. (1997). Dynamics of best practice - a multidimensional perspective. *Benchmarking for Quality Management & Technology*, 4(2), 96–103. http://doi.org/10.1108/14635779710174936

Commission, E. (2013). Final Report, 1–186.

Cross, R., & Iqbal, A. (1995). Benchmarking: Theory and practice. Retrieved December 3, 2015, from http://www.aqa.ac.nz/sites/all/files/asq5.pdf

Cuadrado, M., Frasquet, M., & Cervera, A. (2004a). Benchmarking the port services: a customer oriented proposal. *Benchmarking: An International Journal*, *11*(3), 320–330. http://doi.org/10.1108/14635770410538781

Cuadrado, M., Frasquet, M., & Cervera, A. (2004b). Benchmarking the port services: a customer oriented proposal. *Benchmarking: An International Journal*, *11*(3), 320–330. http://doi.org/10.1108/14635770410538781

Danish Shipowners Association. (2014). Benchmark of Maritime Nations: A comparison of Denmark with Singapore and Hong Kong.

Dattakumar, R., & Jagadeesh, R. (2003). A review of literature on benchmarking.Benchmarking:AnInternationalJournal(Vol. 10).http://doi.org/10.1108/14635770310477744

Defoe, D. (2003). The Storm.

Deshpande, P. J., Yalcin, A., Zayas-Castro, J., & Herrera, L. E. (2007). Simulating less-than-truckload terminal operations. *Benchmarking: An International Journal*, *14*(1), 92–101. http://doi.org/http://dx.doi.org/10.1108/14635770710730955

Dias, J. C. Q., Azevedo, S. G., Ferreira, J., & Palma, S. F. (2009). A comparative benchmarking analysis of main Iberian container terminals: a DEA approach. *International Journal of Shipping and Transport Logistics*, *1*(3), 260–275. http://doi.org/10.1504/IJSTL.2009.027534

Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with performance profiles. http://doi.org/10.1007/s101070100263

Dubey, R., Singh, T., Samar Ali, S., Venkatesh, V. G., & K. Gupta, O. (2014). Exploring dimensions of firm competencies and their impact on performance. *Benchmarking*, *21*(6), 1003. http://doi.org/10.1108/BIJ-03-2013-0027

Ducruet, C., Itoh, H., & Merk, O. (2014). Time Efficiency at World Container Ports. *International Transport Forum Discussion Papers*, (2014-08). Retrieved from www.internationaltransportforum.org/jtrc/DiscussionPapers/jtrcpapers.html\nwww.internationaltransportforum.org

Elmuti, D., & Kathawala, Y. (1997). An overview of benchmarking process: a tool for continuous improvement and competitive advantage. *Benchmarking: An International Journal*, *4*(4), 229–243. http://doi.org/10.1108/14635779710195087

Erasmus, D. K., & Rotterdam, U. (2015). the Applicability of Data Envelopment Analysis To the Benchmarking of Container Terminals, (October).

Feng, M., Mangan, J., & Lalwani, C. (2012). Comparing port performance: Western European versus Eastern Asian ports. *International Journal of Physical Distribution & Logistics Management*, 42(5), 490–512. http://doi.org/10.1108/09600031211246537

Festel, G., & W??rmseher, M. (2014). *Benchmarking of energy and utility infrastructures in industrial parks. Journal of Cleaner Production* (Vol. 70). http://doi.org/10.1016/j.jclepro.2014.01.101

Fhoilsiu, A., Dhi, O., Alliance, T. S. U. N., Ranno, A. N., By, P., Stationery, T. H. E.,... Section, P. T. (2002). Report of the Public Service Benchmarking Body. *Personnel*,(June).

Fong, S. W., Cheng, E. W. L., & Ho, D. C. K. (1998). Benchmarking: a general reading for management practitioners. *Management Decision*, *36*(6), 407–418. http://doi.org/10.1108/00251749810223646

Freytag, P. V., & Hollensen, S. (2001). The process of benchmarking, benchlearning and benchaction. *The TQM Magazine*, *13*(1), 25–34. http://doi.org/10.1108/09544780110360624

Fry, J., Humphreys, I., & Francis, G. (2005). Benchmarking in civil aviation: some empirical evidence. *Benchmarking: An International Journal*, *12*(2), 125–137. http://doi.org/10.1108/14635770510593077

Fuchs, M., & Weiermair, K. (2004). Destination Benchmarking: An Indicator-System's Potential for Exploring Guest Satisfaction. *Journal of Travel Research*, 42(3), 212–225. http://doi.org/10.1177/0047287503258827

Fuente, J. D. La, Santiago, J., Román, A., Dumitrache, C., & Casasanto, D. (2014). When you think about it, your past is in front of you: How culture shapes spatial conceptions of time. *Psychological Science*, 25(9), 1682–1690. http://doi.org/10.1007/s13398-014-0173-7.2

Gammelgaard, B., Sornn-friese, H., Hansen, J., Jessen, M., & Larsen, M. (2013). Competencies in the Danish Maritime Cluster : A benchmarking-analysis.

Gebauer, H., Friedli, T., & Fleisch, E. (2006). Success factors for achieving high service revenues in manufacturing companies. *Benchmarking: An International Journal*, *13*(3), 374–386. http://doi.org/10.1108/14635770610668848

Goncharuk, A. G. (2008). Performance benchmarking in gas distribution industry. *Benchmarking:* An International Journal, 15(5), 548–559. http://doi.org/10.1108/14635770810903141 Griffin, A. (1997). PDMA Research on New Product Development Practices: Updating Trends and Benchmarking Best Practices. http://doi.org/10.1111/1540-5885.1460429

Grove, S. J., Fisk, R. P., Pickett, G. M., & Kangun, N. (1996). Going green in the service sector: Social responsibility issues, implications and implementation. http://doi.org/10.1108/03090569610118777

Haugland, S. A., Myrtveit, I., & Nygaard, A. (2007). Market orientation and performance in the service industry: A data envelopment analysis. *Journal of Business Research*, *60*(11), 1191–1197. http://doi.org/10.1016/j.jbusres.2007.03.005

Henderson-Smart, C., Winning, T., Gerzina, T., King, S., & Hyde, S. (2006). Benchmarking learning and teaching: Developing a method. *Quality Assurance in Education*, 14(2), 143–155. http://doi.org/10.1108/09684880610662024

Higher Education Statistics Agency. (2010). Benchmarking to improve efficiency Status Report. *Higher Education Statistics Agency*, (November).

Hilmola, O.-P. (2011). Benchmarking efficiency of public passenger transport in larger cities. *Benchmarking: An International Journal*, 18, 23–41. http://doi.org/10.1108/14635771111109805

Hinton, M., Francis, G., & Holloway, J. (2000). Best practice benchmarking in the UK.Benchmarking:AnInternationalJournal,7(1),52–61.http://doi.org/10.1108/14635770010314954

Holloway, J., & Hinton, M. (1908). Why Benchmark? Understanding the Process of Best Practice Benchmarking, 1–19.

http://www.tanzania.go.tz/egov_uploads/documents/ portsperformanceindicatorsandbenchmarks_sw.pdf. (n.d.). Islam, S., & Olsen, T. (2014). Truck-sharing challenges for hinterland trucking companies: A case of the empty container truck trips problem. Business Process Management Journal (Vol. 20). http://doi.org/10.1108/BPMJ-03-2013-0042

Jackson, N. (2001). Benchmarking in UK HE: an overview. *Quality Assurance in Education*, 9(4), 218–235. http://doi.org/10.1108/09684880110411955

Jaques, M., & Povey, B. (2007). Assessing the Changing Role, Attitudes and Knowledge of UK Business Advisors to the Benefits of Benchmarking and Benchmarking Tools. *Benchmarking: An International Journal*, *14*(5), 639–661. http://doi.org/10.1108/14635770710819308

Jeanette, R. (2008). Benchmarking in public procurement. *Benchmarking: An International Journal*, *15*(6), 782–793. http://doi.org/10.1108/14635770810915940

Jiang, B., & Li, J. (2009). DEA-based performance measurement of seaports in northeast Asia: Radial and non-radial approach. *Asian Journal of Shipping and Logistics*, 25(2), 219–236. http://doi.org/10.1016/S2092-5212(09)80003-5

Jim Wu, Y., & Lin, C. (2008a). National port competitiveness: implications for India.ManagementDecision,46(10),1482–1507.http://doi.org/10.1108/00251740810920001

Jim Wu, Y., & Lin, C. (2008b). National port competitiveness: implications for India.ManagementDecision,46(10),1482–1507.http://doi.org/10.1108/00251740810920001

Joo, S.-J., & L. Fowler, K. (2014). Exploring comparative efficiency and determinants of efficiency for major world airlines. *Benchmarking: An International Journal*, *21*(4), 675–687. http://doi.org/10.1108/BIJ-09-2012-0054

Kannan, V. (2010). Benchmarking the service quality of ocean container carriers using AHP. *Benchmarking: An International Journal*, *17*(5), 637–656. http://doi.org/10.1108/14635771011076416 Kannan, V., Bose, S. K., & Kannan, N. G. (2012). Improving the service quality of ocean container carriers: an Indian case study. *Benchmarking: An International Journal*, *19*(6), 709–729. http://doi.org/10.1108/14635771211284288

Kendall, K., & Sigma, S. (1999). Benchmarking from A to Z Benchmark (n.), (November). Retrieved from http://www.orau.gov/pbm/presentation/kendall.pdf

Kia, M., Shayan, E., & Ghotb, F. (2000). The importance of information technology in port terminal operations. *International Journal of Physical Distribution & Logistics Management*, *30*(3/4), 331–344. http://doi.org/10.1108/09600030010326118

Koster, M. B. M. De, Balk, B. M., & Nus, W. T. I. Van. (2009). On using DEA for benchmarking container terminals. *International Journal of Operations & Production Management*, 29(11), 1140–1155. http://doi.org/10.1108/01443570911000168

Kouzmin, A., Löffler, E., Klages, H., & Korac-Kakabadse, N. (1999). Benchmarking and performance measurement in public sectors: Towards learning for agency effectiveness. *International Journal of Public Sector Management*, *12*(2), 121–144. http://doi.org/10.1108/09513559910263462

KPMG. (2012). UK Banks : Performance Benchmarking Report, 62.

Kyrö, P. (2003). Revising the concept and forms of benchmarking. *Benchmarking: An International Journal*, *10*(3), 210–225. http://doi.org/10.1108/14635770310477753

Laisi, M., Hilmola, O.-P., & Sutela, M. (2012). North European companies\textbackslashtextbar!\textbackslashtextbar#39; relation with Russia and China: future outlook on transport flows. *Benchmarking: An International Journal*, *19*(1), 11–31. http://doi.org/http://dx.doi.org/10.1108/14635771211218326

Landscape, R. M. (2011). South African Maritime Safety Authority (SAMSA) Maritime Sector Skills Development Study, (September).

Lee, W.-S. (2008). Benchmarking the energy efficiency of government buildings with data envelopment analysis. http://doi.org/10.1016/j.enbuild.2007.07.001

Lee, Y. P., Zailani, S., & Soh, K. L. (2006). Understanding factors for benchmarking adoption: New evidence from Malaysia. *Benchmarking: An International Journal*, *13*(5), 548–565. http://doi.org/10.1108/14635770610690401

Lin, C. (2005). Service quality and prospects for benchmarking: Evidence from the Peru water sector. *Utilities Policy*, *13*(3), 230–239. http://doi.org/10.1016/j.jup.2005.04.002

Lobo, I., & Zairi, M. (1999). Competitive benchmarking in the air cargo industry: Part III. *Benchmarking: An International Journal*, *6*(4), 302–309. http://doi.org/10.1108/14635779910297406

Longbottom, D. (2000). Benchmarking in the UK: An empirical study of practitioner \nand academics. *Benchmarking*, 7(7), 98–117.

López, R. C., & Poole, N. (1998). Quality assurance in the maritime port logistics chain: the case of Valencia, Spain. *Supply Chain Management: An International Journal*, *3*(1), 33–44. http://doi.org/10.1108/13598549810200915

Love, R., Bunney, H. S., Smith, M., & Dale, B. G. (1998a). Benchmarking in water supply services: the lessons learnt. *Benchmarking for Quality Management & Technology*, *5*(1), 59–70. http://doi.org/10.1108/14635779810206812

Love, R., Bunney, H. S., Smith, M., & Dale, B. G. (1998b). Benchmarking in water supply services: the lessons learnt. *Benchmarking for Quality Management & Technology*, *5*(1), 59–70. http://doi.org/10.1108/14635779810206812

Lu, Y. (2014). Port Performance Benchmarking and Efficiency Analysis.

Lu, B., & Wang, X. (2012). Application of DEA on the measurement of operating efficiencies for east-Asia major container terminals, 2(1), 1–18.

Luecke, G. R., Li, Y., & Cuma, M. (2007). Using benchmarking to determine efficient usage of nodes in a cluster. *Benchmarking: An International Journal*, *14*(6), 728–749. http://doi.org/10.1108/14635770710834518 Magd. (2003). Benchmarking: achieving best value in public-sector organisations. Benchmarking: An International Journal, 10(3), 261–286. http://doi.org/10.1108/14635770310477780

Magnan, G. M., Fawcett, S. E., & Birou, L. M. (2006). Benchmarking manufacturing practice using the product life cycle.

Maguire, S., Koh, S. C. L., & Magrys, A. (2007). The adoption of e-business and knowledge management in SMEs. *Benchmarking: An International Journal*, *14*(1), 37–58. http://doi.org/10.1108/14635770710730928

Major International Ports. (2006), (December).

Mangan, J., Lalwani, C., & Gardner, B. (2004). Combining quantitative and qualitative methodologies in logistics research. *International Journal of Physical Distribution & Logistics Management*, *34*(7), 565–578. http://doi.org/10.1108/09600030410552258

Mann, S. W., Welch, S., & Mann, R. (2008). benchmarking and performance improvement resource.

Mark, G., & Argus, A. (2000). Some logistics realities in Indochina. *International Journal of Physical Distribution & Logistics Management*, *30*(10), 887–911. http://doi.org/10.1108/09600030010351273

Martins, A., Jorge, S., & Sá, P. (2013). Price regulation and cost accounting: the case of the Portuguese seaport sector. *International Journal of Law and Management*, *55*(2007), 444–463. http://doi.org/10.1108/IJLMA-08-2012-0030

Mason-Jones, R. and Towill, D. R. (1999). Article information: Int J Logistics Management.

Meade, P. H. (1994). A guide to benchmarking. Retrieved December 3, 2015, from http://quality.curtin.edu.au/local/docs/Guide_to_Benchmarking_Oct2007.pdf

Min, H., & Joo, S.-J. (2009). Benchmarking third-party logistics providers using data envelopment analysis: an update. *Benchmarking: An International Journal*, *16*(5), 572–587. http://doi.org/10.1108/14635770910987814

Ministry of Urban Development Government of India. (2010). Improving urban services through Service Level Benchmarking.

Mitchell, W. (2006). When two Worlds collide. *The New Scientist*, *192*(January 2010), 45–45. http://doi.org/10.1016/S0262-4079(06)61403-6

Mitra Debnath, R., & Shankar, R. (2008). Benchmarking telecommunication service in India. http://doi.org/10.1108/14635770810903169

Moffett, S., Anderson-Gillespie, K., & McAdam, R. (2008). Benchmarking and performance measurement: a statistical analysis. *Benchmarking: An International Journal*, *15*(4), 368–381. http://doi.org/10.1108/14635770810887203

Monteiro, P., de Noronha, T., & Neto, P. (2013). A differentiation framework for maritime clusters: Comparisons across Europe. http://doi.org/10.3390/su5094076

Moriarty, J. P. (2011). A theory of benchmarking. http://doi.org/10.1108/14635771111147650

Moriarty, J. P., & Smallman, C. (2009). En route to a theory of benchmarking. http://doi.org/10.1108/14635770910972423

Munisamy, S., & Singh, G. (2011). Benchmarking the efficiency of Asian container ports. *African Journal of Business Management*, 5(4), 1397–1407. http://doi.org/10.5897/AJBM10.1312

Nao, Audit Commission, Niao, & Wales Audit Office. (2007). Value For Money in public sector corporate services.

No, R. (2013). Maritime sector developments in the global markets. RetrievedDecember4,2015,from

https://www.utu.fi/en/units/tse/units/PEI/research/Documents/SmartComp Research Report October 2013 final.pdf

Norzaidi, M. D., Chong, S. C., & Salwani, M. I. (2008). Perceived resistance, user resistance and managers' performance in the Malaysian port industry. *Aslib Proceedings*, *60*(3), 242–264. http://doi.org/10.1108/00012530810879114

Notteboom *, T. E., & Rodrigue, J.-P. (2005). Port regionalization: towards a new phase in port development. *Maritime Policy & Management*, *32*(3), 297–313. http://doi.org/10.1080/03088830500139885

Nwanosike F, T. N.-S. (2012, Aug 10). EPrints. Retrieved from eprints web page: http://eprints.hud.ac.uk/1574

Nunes, B., & Bennett, D. (2010). Green operations initiatives in the automotive industry: An environmental reports analysis and benchmarking study. *Benchmarking: An International Journal*, *17*(3), 396–420. http://doi.org/10.1108/14635771011049362

Oecd, O. for E. C.-O. and D. (2002). Benchmarking Intermodal Freight Transport, 148. http://doi.org/10.1787/9789264175129-en

Office, H. (2015). DRY DOCKING PERFORMANCE BENCHMARKING STUDY Dry Docking Performance : New Challenges.

Omar Sharifuddin bin Syed-Ikhsan, S., & Rowland, F. (2004). Benchmarking knowledge management in a public organisation in Malaysia. *Benchmarking: An International Journal*, *11*(3), 238–266. http://doi.org/10.1108/14635770410538745

Paixão, A. C., & Bernard Marlow, P. (2003). Fourth generation ports – a question of agility? *International Journal of Physical Distribution & Logistics Management*, *33*(4), 355–376. http://doi.org/10.1108/09600030310478810

Panayides, P. M., Maxoulis, C. N., Wang, T.-F., & Ng, K. Y. A. (2009). A Critical Analysis of DEA Applications to Seaport Economic Efficiency Measurement. *Transport Reviews: A Transnational Transdisciplinary Journal*, 29(2), 183–206. http://doi.org/10.1080/01441640802260354 Panayides, P. M., & Song, D.-W. (2008). Evaluating the integration of seaport container terminals in supply chains. *International Journal of Physical Distribution & Logistics Management*, 38(7), 562–584. http://doi.org/10.1108/09600030810900969
Pandya, Chudasama, K., & Kiran. (2008). Measuring Efficiency of Indian Ports: An Application of Data Envelopment Analysis. *IUP Journal of Infrastructure*, 20.

Panwar, A., Nepal, B., Jain, R., & Yadav, O. P. (2013). Implementation of benchmarking concepts in Indian automobile industry – an empirical study. *Benchmarking: An International Journal*, 20(6), 777–804. http://doi.org/10.1108/BIJ-03-2012-0015

Paper, C., Ant, P., & Techn, G. I. (2015). Benchmarking analysis of European Ports and Terminals, (October).

Park, J. ., Lim, S. ., & Bae, H. . (2012). DEA-based port efficiency improvement and stepwise benchmarking target selection. *Information (Japan)*, *15*(12 C), 6155–6171. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84897538901&partnerID=40&md5=5d8dbd7e96f1cebeee33bfad57092aff

Peng Wong, W., & Yew Wong, K. (2008). A review on benchmarking of supply chain performance measures. Benchmarking: An International Journal (Vol. 15). http://doi.org/10.1108/14635770810854335

Ports, W., Planning, S., Analysis, S., Practices, B., & America, N. (2014). Wisconsin Commercial Ports Association Port Planning Benchmarking Study Wisconsin Ports Strategic Planning a Structural Analysis of Best Practices in North America, (August).

Presley, A., & Meade, L. (2010). Benchmarking for sustainability: an application to the sustainable construction industry. *Benchmarking: An International Journal*, *17*(3), 435–451. http://doi.org/10.1108/14635771080001426

Putkiranta, A. (2012). Benchmarking: a longitudinal study. *Baltic Journal of Management*, 7(3), 333–348. http://doi.org/10.1108/17465261211245481

Roso, V. (2008). Factors influencing implementation of a dry port. *International Journal of Physical Distribution & Logistics Management*, *38*(10), 782–798. http://doi.org/10.1108/09600030810926493S2092521209800035.pdf. (n.d.).

Sajjad, F., & Amjad, S. (2012). Role of Benchmarking in Total Quality Management : Case of Telecom Services Sector of Pakistan © Society for Business and Management Dynamics © Society for Business and Management Dynamics, *1*(8), 34–44.

Salem, M. S. M., & Administration, B. (2013). A Review of Benchmarking Implementation Problems: The Case of UAE Industrial Companies. Retrieved December 3, 2015, from http://www.jimsjournal.org/16 Mohamed S. M.pdf

Sarriera, J. M., Araya, G., Serebrisky, T., Briceño-Garmendía, C., & Schwartz, J. (2013). Benchmarking Container Port Technical Efficiency in Latin America and the Caribbean, (December). Retrieved from http://publications.iadb.org/bitstream/handle/11319/4702/intB0B9.PDF?sequence=1\nh ttp://publications.iadb.org/bitstream/handle/11319/4702/intB0B9.PDF?sequence=1

Saygin, D., Patel, M. K., & Gielen, D. J. (2010). Global Industrial Energy Efficiency Benchmarking. *An Energy Policy Tool*, (November). Retrieved from papers3://publication/uuid/D9FCA294-0A3B-44FD-9013-58ACB7510C4E

Shetty, S., Pitti, V., Satish Babu, C. L., Surendra Kumar, G. P., & Deepthi, B. C. (2010). Bruxism: A Literature Review. http://doi.org/10.1007/s13191-011-0041-5

Shipbuilding : Productivity & Efficiency Benchmarking. (2007), 26–29.

Shober, A. F., & Cutler, T. (2013). Benchmarking for improvement Editor 's note, (November), 1–57.

Simões, P., & Marques, R. C. (2010). Seaport performance analysis using robust nonparametric efficiency estimators. *Transportation Planning and Technology*, *33*(5), 435– 451. http://doi.org/10.1080/03081060.2010.502375

Smith, A. M. (2000). Using consumer benchmarking criteria to improve service sector competitiveness. http://doi.org/10.1108/14635770010379728

Society, E. A., & Studies, T. (2013). Container Port Operational Performance Assessment – A Rational Approach based on Internet Website Port Data Longjia CHU, *9*(2009), 1–13.

Souza, R. De, Tan, A. W. K., Othman, H., & Garg, M. (2011). A proposed framework for managing service parts in automotive and aerospace industries. *Benchmarking: An International Journal*, *18*(6), 769–782. http://doi.org/10.1108/14635771111180699

Stainer, A. (1997). Logistics - a productivity and performance perspective. *Supply Chain Management: An International Journal*, 2(2), 53–62. http://doi.org/10.1108/13598549710166104

Strojny, J. (2015). Implementation of the AHP and Benchmarking in Strategic Analysis of Polish Regions. *Procedia - Social and Behavioral Sciences*, *213*, 229–235. http://doi.org/10.1016/j.sbspro.2015.11.530

Talib, F., Rahman, Z., & Qureshi, M. N. (2010). The relationship between total quality management and quality performance in the service industry: a theoretical model. *Social Sciences*, *1*(1), 113–128.

Teeratansirikool, L., Siengthai, S., Badir, Y., & Charoenngam, C. (2013). Competitive strategies and firm performance: the mediating role of performance measurement. *International Journal of Productivity and Performance Management*, 62(2), 168–184. http://doi.org/10.1108/17410401311295722

Tongzon, J. L. (2006). Systematizing international benchmarking for ports. MaritimePolicy& Management,8839(July2012),37–41.http://doi.org/10.1080/03088839500000048

Tongzon, J. L. (2009). Port choice and freight forwarders. *Transportation Research Part E: Logistics and Transportation Review*, 45(1), 186–195. http://doi.org/10.1016/j.tre.2008.02.004

Ugboma, C., Ibe, C., & Ogwude, I. C. (2004). Service quality measurements in ports of a developing economy: Nigerian ports survey. *Managing Service Quality: An International Journal*, *14*(6), 487–495. http://doi.org/10.1108/09604520410569829

Universidade, S. A., Interior, B., Universidade, M. F., & Interior, B. (2002). Performance Evaluation of the Main Terminal Containers in the Iberian Seaports : a Benchmarking Approach, (October 2015).

Vagnoni, E., & Maran, L. (2008). Public sector benchmarking: an application to Italian health district activity plans. *Benchmarking: An International Journal*, *15*(3), 193–211. http://doi.org/10.1108/14635770810876557

Vorhies, D. W., & Morgan, N. a. (2005). Benchmarking Marketing Capabilities for Sustainable Competitive Advantage. *Journal of Marketing*, *69*(1), 80–94. http://doi.org/10.1509/jmkg.69.1.80.55505

Walter, C. K., & Poist, R. F. (2004). North American inland port development: international vs domestic shipper preferences. *International Journal of Physical Distribution* & *Logistics Management*, 34(7), 579–597. http://doi.org/10.1108/09600030410552267

Wanke, P. F., Barbastefano, R. G., & Hijjar, M. F. (2011). Determinants of Efficiency at Major Brazilian Port Terminals. *Transport Reviews*, *31*(5), 653–677. http://doi.org/10.1080/01441647.2010.547635

White, D. S., Gunasekaran, A., & Roy, M. H. (2012). Performance measures and metrics for the creative economy. *Benchmarking: An International Journal*, *21*(1), 46–61. http://doi.org/10.1108/BIJ-03-2012-0017

Williams, J., Brown, C., & Springer, A. (2012). Overcoming benchmarking reluctance: a literature review. *Benchmarking: An International Journal*, *19*, 255–276. http://doi.org/10.1108/14635771211224563 Woon, K. C. (2000). Assessment of TQM implementation productivity leaders. *Business Process Management Journal*, 6(4), 314–33–.

Wu, Y. C. J., & Goh, M. (2010). Container port efficiency in emerging and more advanced markets. *Transportation Research Part E: Logistics and Transportation Review*, *46*(6), 1030–1042. http://doi.org/10.1016/j.tre.2010.01.002

Wynn-Williams, & K.L.H. (2005). Performance assessment and benchmarking in the public sector: An example from New Zealand. *Benchmarking: An International Journal*, *12*(5), 482–492. http://doi.org/10.1108/14635770510619393

Yasin, M. M. (2002). The theory and practice of benchmarking: then and now.Benchmarking:AnInternationalJournal(Vol. 9).http://doi.org/10.1108/14635770210428992

Yasin, M. M., Wafa, M., & Small, M. H. (2004). Benchmarking JIT. *Benchmarking: An International Journal*, *11*(1), 74–92. http://doi.org/10.1108/14635770410520311

Yeo, G.-T., Roe, M., & Dinwoodie, J. (2011a). Measuring the Competitiveness of Container Ports: Logisticians' Perspectives. *European Journal of Marketing*, 45(3), 455–470. http://doi.org/10.1108/03090561111107276

Yeo, G.-T., Roe, M., & Dinwoodie, J. (2011b). Measuring the Competitiveness of Container Ports: Logisticians' Perspectives. *European Journal of Marketing*, 45(3), 455–470. http://doi.org/10.1108/03090561111107276

Zairi, M. (1996). Effective Benchmarking. Retrieved December 4, 2015, from http://www.imanet.org/docs/default-

source/thought_leadership/management_control_systems/effective_benchmarking.pdf? sfvrsn=2

Zairi, M., & Youssef, M. A. (1996). A review of key publications on benchmarking: part II. *Benchmarking for Quality Management & Technology*, *3*(1), 45–49. http://doi.org/10.1108/14635779610112458

Zhu, W., & Erikstad, S. O. (2011). Performance Indicators in Benchmarking of Maritime Logistics Chains. *Low Carbon Shipping*, (7491)

PROFILE OF THE AUTHOR

Shri A. Janardhana Rao obtained Master's Degree in Commerce and Law Degree from Andhra University. After completing F.I.C.W.A, he did his MBA from International Management Institute of India, New Delhi. He also did his Intermediate in Company Secretaryship and later he did Diploma in Labour Laws with Administrative Law from Annamalai University, Chennai. Currently, he is pursuing PhD in Ports & Shipping from the University of Petroleum and Energy Studies, Dehradun.

Shri Rao has a rich experience working in various capacities in MMTC Ltd. and Bharat Earth Movers Ltd. Presently, he is holding the post of Managing Director, Indian Ports Association, an apex body formed by the Major Ports of India since August 2008. At the age of 30 years, he became the youngest Head of Department of a Major Port. He served as Financial Adviser & Chief Accounts Officer of Kandla Port Trust for seven years, He was elevated and posted as Dy. Chairman of Cochin Port Trust where he served the Port for five years, and finally at the age of 42 years, he became the Chairman of Kandla Port Trust. He visited Ports far and wide in the world namely Europe, U.S., Singapore, South Africa, Iran & Euro-Asia. He was either Chairman or a member of several Committees of national importance. Major projects of port development were formulated and executed under his expertise and guidance in different Ports.

Illustratively, ICTT, LNG Project, SBM in Cochin, Bulk Terminals, Container Terminals, Satellite Port Tuna-Tekra in Kandla, PCS, ERP, Container Scanners for Major Ports in IPA apart from many Port infrastructure projects have been executed by him.

He also served as an Adviser (Sagarmala) for the Sagarmala Division of Ministry of Shipping during December 2015 to September 2016.

He is closely involved in policy decision making process in the maritime sector in the country. He is also instrumental in bringing out a vision document for Indian Port Sector viz. Maritime Agenda-2010 by the Ministry of Shipping. He is associated with various working groups on Ports & Shipping for the National Transport Development Policy Committee in formulating long term policy for transport sector of the country as a whole. He is involved in the conceptualizing, launching and in the implementation of a National Maritime Programme viz. "Sagarmala – a Coastal & Port led Development of India".

He is instrumental in all path breaking initiatives being taken by Ministry of Shipping, GOI. He is an expert in all Port matters. With his vast, rich and varied experience, he attained respectable stature in Indian Ports Sector. He is Chief Editor of port sector magazine 'Indian Ports' and also a member of Editorial Advisory Board of 'Maritime Gateway' magazine.

Although he started as a Finance executive, he gained insights in all other disciplines of management especially in Port Management, having served more than 26 years in Ports. He excelled in every post that he worked. He is solely a task and result oriented person and always delivers results related to any field.

He believes in decision making on time after evaluating the pros and cons and alternatives in any given situation. With his problem solving approach, he never fails in undertaking any complex issues. He has always excelled in executing all projects on time with precision. His vision is to build an ideal Port Sector in the county with international standards.

Research Paper Publication

"A Systematic Review of Literature on Bench-marking with an Aim to Probe Scope of the Applicability at Major Seaports of India" published in SCMS journal of Indian Management.

"GST in India - Impact on India's Growth and International Trade" published in FINANCIA - A Cross Functional International Journal of Finance UPES ISSN- 2456-9763