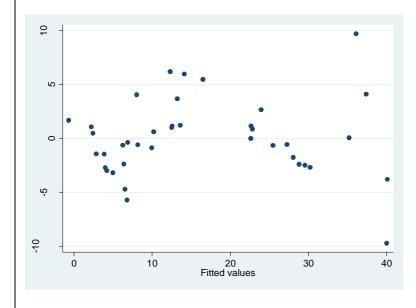
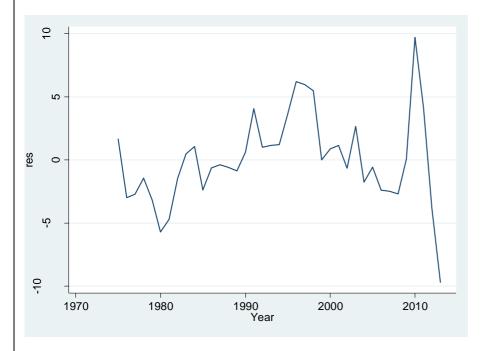
Iment No: UNIVERSITY WITH A F	UNIVERSITY WITH A PURPOSE					
UNIVERSITY OF PETROLEUM & ENERGY STUDIES DEHRADUN						
am/course: MBA OGSemester: IIIct: EconometricsMax. Marks: 100: ECON 8001Duration: 3 Har	°S					
Section A (attempt all) First write full form and then define the following (30 to 40 word only)						
ESS	[4]	CO1				
RSS	[4]	CO1				
TSS	[4]	C01				
BLUE	[4]	CO1				
OLS	[4]	CO1				
SECTION B Answer any four questions		Τ				
The regression result of Natural Gas Floduction (GF) is given below. State which explanatory variables are statistically and significantly affecting GP. $\boxed{ GP Coef. Std. Err. t P> t \\ GDPP 0156572 .0127679 -1.23 0.229 \\ DCF .4852146 .1718355 2.82 0.008 \\ EIM 1.44941 .3663004 3.96 0.000 \\ FDIP 7732869 1.427769 -0.54 0.592 \\ GCFR .0577847 .0779678 0.74 0.464 \\ IVAR .2376649 .2601368 0.91 0.368 \\ _COns -19.63859 4.848213 -4.05 0.000 \\ \hline \end{tabular}$	[5]	CO3, CO4				
	Imment No: UNIVERSITY OF PETROLEUM & ENERGY STUDIES DEHRADUN End Semester Examination-Dec 2019 am/course : MBA OG Semester : III et : Econometrics Max.Marks : 100 Duration : 3 Hb fpage/s : 5 Section A (attempt all) First write full form and then define the following (30 to 40 word only) ESS RSS RSS TSS BLUE OLS SECTION B Maxwer any four questions The regression result of Natural Gas Production (GP) is given below. State which explanatory variables are statistically and significantly affecting GP. GP Coef. Std. Err. t P> t GPP 0156572 .0127679 -1.23 0.229 DCF .44941 .3663004 3.96 0.000 FDP 7732869 1.427769 -0.54 0.592 GCFR .0577847 .0779578 0.74 0.464 FUM .144941 .3663004 .96 0.000 FDIP 7732869 1.427769 -0.54 0.592 GCFR .0577847 .0779578 0.74 0.464 FUM .2376649	Imment No: UNIVERSITY OF PETROLEUM & ENERGY STUDIES DEHRADUN End Semester Examination-Dec 2019 ran/course : IMB A OG Semester Semester it is feonometrics Max. Marks it is feonometrics Max. Marks it page/s : 5 Section A (attempt all) Trat write full form and then define the following (30 to 40 word only) ESS [4] RSS [4] BLUE [4] OLS [4] SECTION B Answer any four questions The regression result of Natural Gas Production (GP) is given below. State which explanatory variables are statistically and significantly affecting GP. Image colspan="2">Image colspan="2">(1) GPP - 0.0156572 .0127679 -1.23 0.229 [5] Image colspan="2">Image colspan="2">(1) GPP - 0.0156572 .0127679 -1.23 0.229 [5] Image colspan="2">Image colspan="2">(1) Image colspan="2">Image colspan="2">Image colspan="2">Image colspan="2">Image colspan="2">Image colspan="2">Image colspan="2">Image colspan="2">Image colspan="2">Image colspan="2" Image colspan="2">Im				


Q3.	From the regression result of crude oil production function, p-values are given below. State at what level independent variables are affecting crude oil production						[5]	CO3, CO4	
	significant	Oil Production		p > t	La	vel of Sig.			
		of Crude Oil		p > t 0.001	Lev	vel of Sig.			
		pita GDP		0.002					
		ry Throughputs							
		Reserves of C	rude Oil	0.345					
	Popula			0.124					
		n Emission one crude oil c		0.564					
Q4		sion equation for : Amount	or the followi of crude oil d omestic Produ	ng varial lemand				[5]	CO3, CO4
Q5.	0	y imports (% o 2010 US\$) (GE 				and the results	1		
	GDPP _cons	.0224264 -1.444897	.0010231	21.92 -1.78	0.000	.0203603 -3.08041	.0244925	[5]	CO3, CO4
	b) Int	st the hypothes ad why? erpret β_1 and β_2	2.				do you use?		
Q6.		VA table of one itical value of I	-	-		/.			
		SOURCE	$\frac{1(0, 23)-2.47}{SS}$	D		MSS			
		MODEL	2513371	6	1				
		RESIDUAL	2313371	0				[5]	CO3,
		TOTAL	2549153	31	1			[5]	CO4
	1	(i) RSS (ii) Deg ate the overall	gree of freedo	om for RS	SS, (iii) M	ean sum of squ	uares, (ii) F		

			SE	CTION C	1				
		two questions							Γ
Q7.	equivalent) (C (GP), Domest net (% of ener	GP) is estimated ic credit provid gy use) (EIM), formation (ann	using facto ed by finan Foreign dir	ors such as cial sector ect investr	GDP pe (% of G ment, net	– tonnes (Milli er capita (constan DP) (DCF), End inflows (% of C ndustry, value a	nt 2010 US\$) ergy imports, GDP) (FDIP),	[15]	
	Source	55	df	MS		Number of obs	= 39		
	Model Residual	5564.44289 487.629289	6 927 32 15.	. 407148 2384153		F(6, 32) Prob > F R-squared Adj R-squared	= 0.0000 = 0.9194		CO3,
	Total	6052.07218	38 159	. 265057		ROOT MSE	= 3.9036		CO4
	GP	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]		
	GDPP DCF EIM FDIP GCFR IVAR _CONS	0156572 .4852146 1.44941 7732869 .0577847 .2376649 -19.63859	.0127679 .1718355 .3663004 1.427769 .0779678 .2601368 4.848213	-1.23 2.82 3.96 -0.54 0.74 0.91 -4.05	0.229 0.008 0.000 0.592 0.464 0.368 0.000	0416646 .1351971 .7032801 -3.681557 1010305 2922164 -29.51408	.0103502 .8352321 2.195539 2.134983 .2165998 .7675462 -9.763103		
Q8.	(ii) Int Oil consumption oil export (ex)	, per capita GE	nated using P (pgdp) a	oret R ² , (iv crude oil	price (p)	, crude oil impor	rt (im), crude	[15]	CO3, CO4
		ession Results:							
	Source Model Residual	55 7938423.38 123989.991		MS 7684.68 5.51694		Number of obs F(5, 29) Prob > F R-squared	= 371.34 = 0.0000 = 0.9846		
	Total	8062413.37	34 237:	L29.805		Adj R-squared Root MSE	= 0.9820 = 65.387		
	oc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]		
	p im ex pgdp co2 _cons	-3.834641 .6252913 1236515 .0050046 1.122187 1068.624	.8662552 .0466814 .0271815 .0024767 .2407524 161.3615	-4.43 13.39 -4.55 2.02 4.66 6.62	0.000 0.000 0.053 0.000 0.000	-5.606331 .5298171 1792438 000061 .6297929 738.6027	-2.06295 .7207655 0680591 .0100701 1.614581 1398.645		
	. ,	Ty Explained Su That Total sum of	-			um of square (R	SS) and		

	t	•			• 1	s testing? Do the hypotheses e not impacting oc		
Q9.	9. State and explain Gauss-Markov Theorem.						[15]	CO3, CO4
				Section D				
	Answer	the question						
Q10	Answer	the questions bas	sed upo	on the following r	regression	results.	[30]	CO2, CO3, CO4
	Source	SS	df	MS		Number of $obs = 39$ F(6, 32) = 60.8	-	
Model Residual				927.407148 15.2384153		F(6, 32) = 60.8 Prob > F = 0.000 R-squared = 0.919 Adj R-squared = 0.904	D 4	
	Total	6052.07218	38	159.265057		Root MSE = 3.903		
	GP	Coef.	Std.	Err. t	P> t	[95% Conf. Interval]	-	
	GDPP DCF EIM FDIP GCFR IVAR _CONS	0156572 .4852146 1.44941 7732869 .0577847 .2376649 -19.63859	.0127 .1718 .3663 1.427 .0779 .2601 4.848	3355 2.82 3004 3.96 7769 -0.54 9678 0.74 1368 0.91	0.229 0.008 0.000 0.592 0.464 0.368 0.000	0416646 .010350 .1351971 .835232 .7032801 2.19553 -3.681557 2.13498 1010305 .216599 2922164 .767546 -29.51408 -9.76310	L 9 3 8 2	

(i) Identify the presence of heteroscedasticity from the following post estimation results and interpret the results.



Breusch-Pagan / Cook-Weisberg test

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of GP
chi2(1) = 7.82
Prob > chi2 = 0.0052
```

(ii) Identify the presence of autocorrelation from the following post estimation results and interpret the results.

Graphical Method

Durbin's Alternative Test

Durbin's alter	native test for autoco	rrelation	
lags(p)	chi2	df	Prob > chi2
1	17.228	1	0.0000
	HO: no seria	l correlation	

Breusch-Godfrey LM test

Breusch-Godfre	y LM test for autocor	relation	
1ags (<i>p</i>)	chi2	df	Prob > chi2
1	13.931	1	0.0002
	HO: no seria	al correlation	