Name:				
Enrolment No:		UNIVERSITY WITH A PURPOSE		
		ROLEUM AND ENERGY STUDIES		
Course:	Quantitative Methods	xamination, December 2019 Se	mester: I	
Program	n: MBA (Energy Trading)	Tin	ne: 03 Ho	urs
Course	code: DSQT7001	Μ	ax. Marks	s: 100
	S	SECTION A	(20 Mark	s)
	Each question in section A is a multiple Read each question and choose the one	-choice question with four answer choices. best answer.	Marks	СО
1.	•			
	The percent of total variation of the depen independent variables X is measured by	dent variable Y explained by the set of		
	a) Coefficient of Correlationb) Coefficient of Skewness		2	CO1
	c) Coefficient of Determinationd) Standard Error of Estimate			
2.	A coefficient of correlation is computed to	be -0.95 means that		
	 a) The relationship between two v b) The relationship between two v c) The relationship between two v d) Correlation coefficient cannot between two v 	variables is strong and positive variables is strong and but negative	2	CO1
3.	In a Poisson probability distribution			
	 a) The mean and variance of the of b) The probability of success is always c) The number of trials is always d) It always contains a contingentiation 	less than 5	2	CO1
4.				
	If the occurrence of one event means that a	another cannot happen, then the events are		
	a) Independent		2	CO1
	b) Mutually Exclusive			
	c) Bayesian d) Empirical			

5.	Coefficient of Correlation values lies between		
	a) -1 and +1		
	b) 0 and 1	2	COL
	c) -1 and 0	2	CO1
	d) None of these		
6.	If two variables oppose each other then the correlation will be		
	a) Positive Correlation		
	b) Zero Correlation		~ ~ ~
	c) Perfect Correlation	2	CO1
	d) Negative Correlation		
7.	The Coefficient of Correlation r is independent of		
	a) Origin only		
	b) Scale of Measurement only	2	CO1
	c) Both change of origin and scale of measurement	-	
	d) None of these		
0	,		
8.	Two regression lines are parallel to each other if their slope is		
	a) Different		
	b) Same	2	CO1
	c) Negative	4	COI
	d) None of these		
9.	If X~N(55,49) then σ		
	a) 104		
	b) 49	2	CO1
	c) 55	2	
	d) 7		
10.	Normal Distribution is		
	a) Mesokurtic		
	b) Leptokurtic	2	CO1
	c) PLatykurticd) None of these		
	d) None of these		
	SECTION B	(20 Mar	ks)
Answe	r all the questions:		
11.	A person deposited 5000 in a savings bank account at the end of first year and		
	every succeeding year, he deposited □100 more than the preceding years. What amount has he deposited at the end of 20 th years?	5	CO1, CO2

12.	Explain types of relations with example.						5	CO1, CO2
13.	City residents were surveyed recently to determine readership of newspapers available. 50% of the residents read the morning paper, 60% read the evening paper, and 20% read both newspapers. Find the probability that a resident selected reads either the morning or evening paper or both the papers.					5	CO1, CO2	
14.	A random variable X has the following probability function							
	Value of X, 0 1 2 3							
	p(x)	0	k	2k	2k			
	i.Find k, ii.Evaluate P(X<6), and P(0 <x<5) iii.Determine the distribution function of X. iv.Calculate expectation of X [E(X)] which is also called mean of random number.</x<5) 						5	CO2
				N-C				
	demands for a ca	has two cars whicl ar on each day is dist	tributed a	s out day to day. T Is Poissin variate wit	th mean		10	
Answe	A car hire firm demands for a ca a) Calculate	has two cars which	tributed a ays on wh	out day to day. T S Poissin variate wi ich neither cas is us	th mean i ed.		10	,
	A car hire firm demands for a ca a) Calculate b) Find the	has two cars which ar on each day is dist the proportion of da	tributed a ays on wh n which se	out day to day. T S Poissin variate wi ich neither cas is us	th mean i ed.		10	CO2,
15.	A car hire firm demands for a ca a) Calculate b) Find the	has two cars which ar on each day is dist the proportion of days of proportion of days of	tributed a ays on wh n which so o is given	out day to day. T S Poissin variate wi ich neither cas is us	th mean and the sed .		10	CO1, CO2, CO3
15.	A car hire firm demands for a ca a) Calculate b) Find the Data for strawbe	has two cars which ar on each day is dist the proportion of days proportion of days or erry sale from a shop Daily Sales (numb	tributed a ays on wh n which so o is given	out day to day. T S Poissin variate wi ich neither cas is us ome demand is refu	th mean and the sed .		10	CO2,
15.	A car hire firm demands for a ca a) Calculate b) Find the	has two cars which ar on each day is dist the proportion of day proportion of days or erry sale from a shop Daily Sales (numb cases)	tributed a ays on wh n which so o is given	s out day to day. T is Poissin variate with ich neither cas is us ome demand is refu Number of Days	th mean and the sed .		10	CO2, CO3
15.	A car hire firm demands for a ca a) Calculate b) Find the Data for strawbe	has two cars which ar on each day is dist the proportion of days of proportion of days of erry sale from a shop Daily Sales (numb cases) 10	tributed a ays on wh n which so o is given	out day to day. T s Poissin variate with ich neither cas is us ome demand is refu Number of Days 15	th mean and the sed .			CO2, CO3
15.	A car hire firm demands for a ca a) Calculate b) Find the Data for strawbe Strawberry Sales During	has two cars which ar on each day is dist the proportion of days or erry sale from a shop Daily Sales (numb cases) 10 11	tributed a ays on wh n which so o is given	out day to day. T s Poissin variate wit ich neither cas is us ome demand is refu Number of Days 15 20	th mean and the sed .		10	CO2, CO3

	The coefficient of rank correlation of marks obtained by 10 students in English and Economics was found to be 0.5. It was later discovered that the difference in ranks in the two subjects obtained by one of the students was wrongly taken as 3 instead of 7. Find the correct coefficient of rank correlation.					10	CO1, CO2, CO3		
18.	A study has been proposed to investigate the relationship between the birthweight of male babies and their adult height. Using the following data, fit a regression line between birthweight of male babies and their adult height. What percentage of the variation in adult height is explained by this regression line?								
			Birthweight (lb)	Adult	Height(cm)			4.0	CO1,
			6		159			10	CO2,
			7		180				CO3
			6.5		156				
			8		161				
			8.2		181				
			7		160				
				SECTIO	ND			20 14	20)
19.		-	are interested in using		penditure or			30 Mar	
19.	develop followir R&D(ir	oment by a ng data by n lakhs of 1	are interested in usin firm to predict curr taking a random sar rupees) 5 years ago a n the current year:	ng past exp ent expen nple of fir	penditure or ditures on R ms, where X	&D. you K is the a	u got the mount on	30 Mar	
19.	develop followir R&D(ir lakhs of	oment by a ng data by n lakhs of 1	firm to predict curr taking a random sar upees) 5 years ago a	ng past exp ent expen nple of fir	penditure or ditures on R ms, where X	&D. you K is the a	u got the mount on	<u>30 Mar</u>	
19.	develop followir R&D(ir	oment by a ng data by n lakhs of n f rupees) in	firm to predict curr taking a random sar rupees) 5 years ago a n the current year:	ng past ex ent expen nple of fir nd Y is th	penditure or ditures on R ms, where X e amount sp	&D. you (is the a pent on I	u got the amount on R & D(in	<u>30 Mar</u>	
	develop followir R&D(ir lakhs of X Y	oment by a ng data by n lakhs of n f rupees) in 30 50	firm to predict curr taking a random sar rupees) 5 years ago a a the current year: 50 20 80 30	ng past expendent expendent expendent expendent expendent expendent expendent expendent expendent expension expensio	penditure or ditures on R ms, where X e amount sp 10 20	&D. you is the a cent on I 20	u got the mount on R & D(in 20		
	develop followir R&D(ir lakhs of X Y	oment by a ng data by n lakhs of n f rupees) in 30 50	firm to predict curr taking a random sar rupees) 5 years ago a n the current year: 50 20	ng past expendent expendent expendent expendent expendent expendent expendent expendent expendent expension expensio	penditure or ditures on R ms, where X e amount sp 10 20	&D. you is the a cent on I 20	u got the mount on R & D(in 20		C01,
	develop followir R&D(ir lakhs of X Y	oment by a ng data by n lakhs of n f rupees) in 30 50	firm to predict curr taking a random sar rupees) 5 years ago a a the current year: 50 20 80 30	ng past expendent expendent expendent expendent expendent expendent expendent expendent expendent expension expensio	penditure or ditures on R ms, where X e amount sp 10 20	&D. you is the a cent on I 20	u got the mount on R & D(in 20	<u>30 Mar</u>	CO1, CO2,
	develop followir R&D(ir lakhs of X Y	oment by a ng data by n lakhs of n f rupees) in 30 50	firm to predict curr taking a random sar rupees) 5 years ago a a the current year: 50 20 80 30	ng past expendent expendent expendent expendent expendent expendent expendent expendent expendent expension expensio	penditure or ditures on R ms, where X e amount sp 10 20	&D. you is the a cent on I 20	u got the mount on R & D(in 20		C01, C02, C03,
(a)	develop followir R&D(ir lakhs of X Y Calcula	oment by a ng data by n lakhs of n f rupees) in 30 50 	firm to predict curr taking a random sar rupees) 5 years ago a n the current year: 50 20 80 30 relation coefficient of	ng past expendent expendent expendent expendent ng past expendent expendent expendent expendent expendent expendent expension	penditure or ditures on R ms, where X e amount sp 10 20	&D. you is the a cent on I 20	u got the mount on R & D(in 20		CO1, CO2, CO3, CO4
(a)	develop followir R&D(ir lakhs of X Y Calcula	oment by a ng data by n lakhs of n f rupees) in 30 50 	firm to predict curr taking a random sar rupees) 5 years ago a a the current year: 50 20 80 30	ng past expendent expendent expendent expendent ng past expendent expendent expendent expendent expendent expendent expension	penditure or ditures on R ms, where X e amount sp 10 20	&D. you is the a cent on I 20	u got the mount on R & D(in 20	10	CO1, CO2, CO3,
19. (a) (b)	develop followir R&D(ir lakhs of X Y Calcula	oment by a ng data by n lakhs of n f rupees) in 30 50 	firm to predict curr taking a random sar rupees) 5 years ago a n the current year: 50 20 80 30 relation coefficient of	ng past expendent expendent expendent expendent ng past expendent expendent expendent expendent expendent expendent expension	penditure or ditures on R ms, where X e amount sp 10 20	&D. you is the a cent on I 20	u got the mount on R & D(in 20		CO1, CO2, CO3, CO4 CO1,
(a)	develop followir R&D(ir lakhs of X Y Calcula	oment by a ng data by n lakhs of n f rupees) in 30 50 	firm to predict curr taking a random sar rupees) 5 years ago a n the current year: 50 20 80 30 relation coefficient of	ng past expendent expendent expendent expendent ng past expendent expendent expendent expendent expendent expendent expension	penditure or ditures on R ms, where X e amount sp 10 20	&D. you is the a cent on I 20	u got the mount on R & D(in 20	10	CO1, CO2, CO3, CO4 CO1, CO2,
(a)	develop followir R&D(ir lakhs of X Y Calcula Find the If a firm	oment by a ng data by n lakhs of n f rupees) in 30 50 te the corn e regression n is chosen	firm to predict curr taking a random sar rupees) 5 years ago a n the current year: 50 20 80 30 relation coefficient of	ng past expendent expension expensio	penditure or ditures on R ms, where X e amount sp 10 20	&D. you is the about on I 20 40	u got the amount on R & D(in 20 50	10	CO1, CO2, CO3, CO4 CO1, CO2, CO3, CO4 CO1, CO4 CO1,
(a) (b)	develop followir R&D(ir lakhs of X Y Calcula	oment by a ng data by n lakhs of n f rupees) in 30 50 te the corn e regression n is chosen	firm to predict curr taking a random sar rupees) 5 years ago a a the current year: 50 20 80 30 relation coefficient of n equation of Y on Y	ng past expendent expension expensio	penditure or ditures on R ms, where X e amount sp 10 20	&D. you is the about on I 20 40	u got the amount on R & D(in 20 50	10	CO1, CO2, CO3, CO4 CO1, CO2, CO3, CO4 CO1, CO2,
(a) (b)	develop followir R&D(ir lakhs of X Y Calcula Find the If a firm	oment by a ng data by n lakhs of n f rupees) in 30 50 te the corn e regression n is chosen	firm to predict curr taking a random sar rupees) 5 years ago a a the current year: 50 20 80 30 relation coefficient of n equation of Y on Y	ng past expendent expension expensio	penditure or ditures on R ms, where X e amount sp 10 20	&D. you is the about on I 20 40	u got the amount on R & D(in 20 50	10	CO1, CO2, CO3, CO4 CO1, CO2, CO3, CO4 CO1,