Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2019

Course: Econometrics Program: MBA IB/PSM Course code: MBCE 702 Semester: III Time: 3 Hours Max. Marks: 100

Instructions: Section A carries 20 marks; **Section B** carries 50 marks. Attempt any five in Section B; **Section C** carries 30 marks.

Section A

1.	Interval Estimators	[5]	CO1
2.	Total Sum of Squares	[5]	CO1
3.	Confidence Interval	[5]	CO2
4.	Type I Error	[5]	CO3
Sec	tion B (Attempt Any Five)		
1.	Explain the significance of stochastic disturbance term	[10]	CO3
2.	Explain the assumptions Underlying Classical Linear Regression Model.	[10]	CO1,C 02
3.	Following is the data of number of copiers sold (Y) and the number of sales calls (X). The basic empirical theory tells us, that among many variables, the number of copiers sold is a function of the number of sales calls made. Let us assume a mathematical representation of the above relation to be:- $Y = \beta 1 + \beta 2X$ Where number of sales calls(X) is an independent variable and copiers sold (Y) is a dependent variable.	[10]	CO1,C O2, CO3

		10	4				
		20	6				
		30	8				
		40	10				
		50	13				
		60	14				
		equation and b. Draw out t	The Slope ($\beta 2$) and nd interpret the result the differences betw	ılt. veen correlatior	n and regression.		
4.	_	characteristic of Norr from Standard Norma		scuss the simila	arities and	[10]	CO1,0 O2,C0 3
5.	What is Hy	pothesis testing? Expl	ain the procedure f	or testing a Hyp	oothesis.	[10]	CO1,0 O2
6.		n Econometrician pro e methodology?	ceed in their analys	is of an econor	nic problem? Explain	[10]	CO1,0 O2,C0 3
Sect	ion C (Each	sub part of question	1 carries 10 marl	(S)			
1.		ng data are the semes				[30]	CO1,C
	•			a difference in t	he mean tuition rates		02,C0 3
	for the three	e mentioned colleges?	2				
	Criti	cal F value for .05 sig	nificance level is 3 .	98.			
	Sc	hool of Business	School of La	W	School of Engineeri		
	1						
	10		8		7		

12	10	6	
10	8	7	
12		6	
L			
a) State the null a	nd the alternative hypoth	neses.	
b) Develop an AN	OVA table. What is the	value of test statistic?	
c) What is your de	ecision regarding the nul	hypotheses.	
c) What is your de	ecision regarding the nul	hypotheses.	