Name: Enrolment No:		15 UPES UNIVERSITY WITH A PURPOSE	
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES \quad End Semester Examination, December -2019 Course: Business Mathematics Semester: I Program: BBA LM Course code: DSQT1001 Instructions:		Time: 03 Hours Max. Marks: 100	
SECTION A			
		Marks	CO
Q	Choose an appropriate answer.		
1.	I. The members of the set $S=\{x \mid x$ is the square of an integer and $x<50\}$ is (a) $\{0,2,4,5,9,49,12\}$ (b) $\{0,1,4,9,16,25,36,49\}$ (c) $\{1,4,9,16,25,36\}$ (d) $\{0,1,4,9,16,25,36,49\}$ II. If A and B are two matrices, then which of the following property is true? (a) $\mathrm{A}+\mathrm{B} \neq \mathrm{B}+\mathrm{A}$ (b) $\left(\mathrm{A}^{\mathrm{t}}\right)^{\mathrm{t}} \neq \mathrm{A}$ (c) $\mathrm{AB} \neq \mathrm{BA}$ (d) all are true III. We can add two matrices having real numbers A and B if their (a) order is same (b) rows are same (c) columns are same (d) elements are same IV. Derivative of $\log x$ is (a) 1 (b) $1 / x$ (c) $1 / \log x$ (d) None of the above V. Value of $\int a x^{n} d x$ (a) $a\left(\frac{x^{n+1}}{n+1}\right)+c$	20	CO1

	(b) $n a x^{n-1}+c$ (c) $a\left(\frac{n x^{n-1}}{n-1}\right)+c$ (d) Can't determined VI. If $x, x+2,2 x$ are in arithmatic progression, then the value of x can be (a) 1 (b 4 (c) Both (a) and (c) (d) Can't determine VII. If $\left\|\begin{array}{ll}x & 2 \\ 4 & 3\end{array}\right\|=\left\|\begin{array}{ll}1 & 2 \\ 2 & 8\end{array}\right\|$, then value of x will be (a) 3 (b) 1 (c) The given relation is not true (d) Can't determine VIII. If u and v are the functions of x then by product rule of differentiation (a) $\frac{d}{d x}(u . v)=\frac{d}{d x} u+\frac{d}{d x} v$ (b) $\frac{d}{d x}(u . v)=\frac{d}{d x} u-\frac{d}{d x} v$ (c) $\frac{d}{d x}(u . v)=u \frac{d}{d x} v+v \frac{d}{d x} u$ (d) $\frac{d}{d x}(u . v)=u \frac{d}{d x} u+v \frac{d}{d x} v$ IX. Marginal cost is equal to (a) Rate of change of total cost (b) Rate of change of average cost (c) Both (a) \& (b) (d) None of these X. If a, b, c are in geometric progression, then which of the following is true (a) $2 b=a+c$ (b) $b^{2}=a+c$ (c) $b^{2}=a c$ (d) None of the above		
SECTION B			
Q	Solve any four questions.		
2.	Find the rank of the matrix $\mathrm{A}=\left[\begin{array}{cccc}1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 3 \\ 1 & 3 & 4 & 1\end{array}\right]$.	5	CO 2
3.	Explain the importance of mathematics in business.	5	CO4

4.	Find the derivative of $\left(x+\frac{1}{3}\right)(x-7)$ using product rule.	5	CO1
5.	Find two terms between $\frac{1}{3}$ and $\frac{1}{81}$ such that the series are in G.P.	5	CO4
6.	Integrate the function $a x^{2}+b x+d$ with respect to x , where a, b and d are constants.	5	CO1
SECTION-C			
Q	Answer any four questions.		
3.	Find the local maximum and minimum values of the function ($\left.2 x^{2}-3 x+5\right)$.	7.5	CO3
4.	Find elasticity of demand of the function $\mathrm{x}=100-5 \mathrm{p}$ at $\mathrm{p}=15$.	7.5	CO 2
6.	Find the second order derivative of $\left(4 x^{3}+\frac{3}{2} x^{2}-\frac{2}{9} x+4\right)$.	7.5	CO 2
7.	Find the sum of first 10 terms of an increasing arithmetical progression, the sum of whose first 3 terms is 27 and the sum of their squares is 275 .	7.5	CO4
8.	Find elasticity of the function $\mathrm{y}=a \sqrt{x-b}$.	7.5	CO 2
SECTION-D			
Q	Answer the following question.		
9.	Integrate the following. a) $\int 2 x(x+4) d x$ b) $\int_{0}^{1}\left(x^{2}+1\right) d x$	10	CO 2
10.	A manufacturer produces two types of products X and Y . Each products is first processed in machine M_{1} and then sent to another machine M_{2} for finishing. Each unit of X requires 20 minutes time on machine M_{1} and 10 minute time on machine M_{2}, whereas each unit of Y requires 10 minutes time on machine M_{1} and 20 minutes time on machine M_{2}. The total time available on each machine is 600 minutes and is fully utilized in the production of X and Y . Calculate the number of units of two types of products produced by constructing a matrix equation of the form $A X=B$ and then solve it by using Cramer rule.	10	CO
11.	(a) If $\mathrm{y}=\frac{x}{x+2}$ find $\frac{\mathrm{dy}}{\mathrm{dx}}$. (b) If $y=\left(2 x^{2}+3 x-2\right)^{7}$ then find $\frac{d y}{d x}$ using chain rule.	10	CO 2

