Name:									
Enrolment No:		UNIVERSITY WITH A PURPOSE							
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES								
	End Semester Examination, Dec' 2019								
	: Business Mathematics	Semest							
Program: BBA(Core) Time: 3									
Course code: M Instructions: Please maintain the sequence of answers as per the questions, Initial on			Iarks: 100						
		iswers as per the questions, initial one not ur graph sheets at last but leaving one pag							
answer		ur graph sheets at last but leaving one pag	je mside y	oui					
	SECTION A (10 * 2 Marks E		Each = 20 Marks)						
Q1.	The value of $y = 3x^2 + 2x - 5$ at x=2 is								
	A. 14								
	B. 12		2	CO1					
	C. 13								
Q2.	D. 11 Why we take log?								
Q2.	A. To make the tedious calculation ea	sier							
	B. To compare two or more extreme		2	CO1					
	C. To normalize the data	opposite ingules	-	001					
	D. All of the above								
Q3.	The condition of skew symmetric matrix i	S							
	A. $A = A^T$								
	B. $A = -A^T$		2	CO1					
	C. $A = aA^T$		_	001					
	D. $A = -A$								
Q4.	Which of the following is lower triangular	- matrix?							
v	$[1 \ 0 \ 0]$	[1 7 2]							
	A. $P = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 0 & 0 \\ 5 & 3 & 0 \end{bmatrix}$ B C $P = \begin{bmatrix} 0 & 2 & 4 \\ 4 & 0 & 8 \\ 5 & 3 & 0 \end{bmatrix}$ D.	$P = \begin{bmatrix} 1 & 7 & 2 \\ 0 & 3 & 8 \\ 0 & 0 & 4 \end{bmatrix}$ $P = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 6 & 0 \\ 5 & 2 & 0 \end{bmatrix}$							
		$\begin{bmatrix} 0 & 0 & 4 \end{bmatrix}$	2	CO1					
	$C P = \begin{bmatrix} 0 & 2 & 4 \\ 4 & 0 & 8 \end{bmatrix}$	$P = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 6 & 0 \end{bmatrix}$							
	$\begin{bmatrix} 0 & 1 \\ 15 & 3 & 0 \end{bmatrix}$ D.								
		LJ J JJ							
Q5.	Which of the following value you get if yo	bu Integrate $y = xe^{3x^2}$.							
	A. $\frac{1}{3}e^{3x^2} + c$ B. $\frac{1}{12}xe^{3x^2}$	$^{2}+c$							
	3 12		2	CO1					
	$C.\frac{1}{6}e^{3x^2}+c$ D. e^{3x^2}								
	6								

Q6.	Find the maximum point of this function $y=x^3 - 3x^2 - 24x + 6$ which maximizes the value of y A. X=4 B. X=-4 C. X=2 D. X=-2	2	C01	
Q7.	$P = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} Q = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \text{ Find PQ.}$ A. $PQ = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$ C $PQ = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$ B. $PQ = \begin{bmatrix} 50 \\ 10 \end{bmatrix}$ D. $PQ = \begin{bmatrix} 5 \\ 10 \end{bmatrix}$	2	CO1	
Q8.	 Which of the following condition is used to check the viability of system of linear equation. A. Hawkins Simon Condition B. Hawkins Pressure Condition C. Simon Peter Condition D. Michel Porter Condition 	2	C01	
Q9.	If two company has to be compared graphically where one company 1 has yearly turnover is Rs. 100000/- and other company 2 has yearly turnover is Rs. 1000000000000/- After applying logarithm what would be the value in the graph for both the company?A. For Company 1 it is 6 and for 2 nd company it is 14 B. For Company 1 it is 5 and for 2 nd company it is 13 C. For Company 1 it is 6 and for 2 nd company it is 13 D. For Company 1 it is 5 and for 2 nd company it is 12		CO1	
Q10.	Matrix $AA = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 4 \end{bmatrix}$ what is the value of AA^T A. $\begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$ C. $\begin{bmatrix} 1 & 3 \\ 4 & 26 \end{bmatrix}$ B. $\begin{bmatrix} 5 & 1 \\ 1 & 26 \end{bmatrix}$ D. $\begin{bmatrix} 5 & 3 \\ 4 & 26 \end{bmatrix}$	2	CO1	
	SECTION B (4* 5 Marks I			
Q11.	Differentiation $y = 3x^2 + 2x - 5$ at x=5 and find the value.	5	CO2	
Q12.	The total cost and total revenue of a firm are given by $C = x^3 - 12x^2 + 48x + 11$ and $R = 83x - 4x^2 - 21$. Find the output (i) When the revenue is maximum (ii) When profit is maximum.	5	CO2& CO3	
Q13.	Find the producers' surplus for the supply function $p = 3 + x^2$	5	CO2& CO3	

	When the price is 12.		
Q14.	Find the value of determinant $\begin{bmatrix} 2 & 5 & 4 \\ 1 & 4 & 3 \\ 6 & 8 & 10 \end{bmatrix}$	5	CO3
	Section D (3*10 - 30	Marks)	
Q15.	Test Hawkins-Simon condition for the viability/validity of the system:		
	Steel tools transportation		
	$A = \begin{array}{c} steel \\ tools \\ transportation \end{array} \begin{bmatrix} 0.2 & 0.3 & 0.2 \\ 0.4 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.2 \end{bmatrix}$	10	CO3
Q16.	10 watches are sold when the price is Rs. 80; 20 watches are sold when the price is Rs. 60. What is the demand equation? Assume the demand curve to be a straight line		CO3
Q17.	The average cost function (AC) takes the form $AC = \frac{4}{Q} + 2 - 0.3Q + 0.05Q^2$ and the		
	total revenue function takes the form $TR = 2Q^2 - \frac{Q^2}{12}$	10	CO3
	 (i) Find profit function for the given market at Q=4 (ii) Also, find marginal cost and marginal revenue. 		
	SECTION-D		Marks)
Q18.	Case StudyFinancial investment decision making is extremely difficult due to the complexity of the domain. Many factors could influence the change of share prices. Financial Genetic Programming is a genetic programming based forecasting system, which is designed to help users evaluate the impact of factors and explore their interactions in relation to future prices. Users channel into FGP factors that they believe are relevant to the prediction. Examples of such factors may include fundamental factors such as "price-earnings ratio", "inflation rate" and/or technical factors such as "5-days moving average", "63- days trading range breakout", etc. So in order to take decision about investment, an amount of Rs. 50000 is put into three investments at the rates of interest of 6%, 7% and 8% per annum respectively. The total annual income is Rs. 3580. If the combined income from the first two investment is Rs. 700 more than the income from the third, find the amount of each investment by using matrix Inverse method.		CO4