Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Business Mathematics Semester: I Program: BBA T &HM Course code: DSQT1001 Instructions:

Time: 03 Hours Max. Marks: 100

SECTION A						
	Attempt all questions	Marks	CO			
Q	Choose an appropriate answer.					
1.	 I. The members of the set S = {x x is the square of an integer and x < 50} (a) {0, 2, 4, 5, 9, 49, 12} (b) {0, 1, 4, 9, 16, 25, 36, 49} (c) {1, 4, 9, 16, 25, 36} (d) {0, 1, 4, 9, 16, 25, 36, 49} 	is				
	 II. If A and B are two matrices, then which of the following property is true (a) A + B ≠ B + A (b) (A^t)^t ≠ A (c) AB ≠ BA (d) all are true 	??				
	 III. We can add two matrices having real numbers A and B if their (a) order is same (b) rows are same (c) columns are same (d) elements are same 	20	CO1			
	 IV. Derivative of log x is (a) 1 (b) 1/x (c) 1/logx (d) None of the above 					
	V. Value of $\int ax^n dx$ (a) $a(\frac{x^{n+1}}{n+1}) + c$					

	(b) $nax^{n-1} + c$ (c) $a(\frac{nx^{n-1}}{n-1}) + c$ (d) Can't determined		
VI.	 If x, x+2, 2x are in arithmatic progression, then the value of x can be (a) 1 (b 4 (c) Both (a) and (c) (d) Can't determine 		
VII.	If $\begin{vmatrix} x & 2 \\ 4 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 2 & 8 \end{vmatrix}$, then value of x will be (a) 3 (b) 1 (c) The given relation is not true (d) Can't determine		
VIII.	If u and v are the functions of x then by product rule of differentiation (a) $\frac{d}{dx}(u,v) = \frac{d}{dx}u + \frac{d}{dx}v$ (b) $\frac{d}{dx}(u,v) = \frac{d}{dx}u - \frac{d}{dx}v$ (c) $\frac{d}{dx}(u,v) = u\frac{d}{dx}v + v\frac{d}{dx}u$ (d) $\frac{d}{dx}(u,v) = u\frac{d}{dx}u + v\frac{d}{dx}v$		
IX.	 Marginal cost is equal to (a) Rate of change of total cost (b) Rate of change of average cost (c) Both (a) & (b) (d) None of these 		
X.	If a, b, c are in geometric progression, then which of the following is true (a) 2b=a+c (b) b ² =a+c (c) b ² =ac (d) None of the above		
	SECTION B	<u> </u>	<u> </u>
Q Solv	ve any four questions.		
	I the rank of the matrix $A = \begin{bmatrix} 1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 3 \\ 1 & 3 & 4 & 1 \end{bmatrix}$.	5	CO2
3. Exp	lain the importance of mathematics in business.	5	CO4

4.	Find the derivative of $\left(x+\frac{1}{3}\right)(x-7)$ using product rule.	5	CO1
5.	Find two terms between $\frac{1}{3}$ and $\frac{1}{81}$ such that the series are in G.P.	5	CO4
6.	Integrate the function $ax^2 + bx + d$ with respect to x, where a, b and d are constants.	5	CO1
	SECTION-C		1
Q	Answer any four questions.		
3.	Find the local maximum and minimum values of the function $(2x^2 - 3x + 5)$.	7.5	CO3
4.	Find elasticity of demand of the function $x=100-5p$ at $p=15$.	7.5	CO2
6.	Find the second order derivative of $\left(4x^3 + \frac{3}{2}x^2 - \frac{2}{9}x + 4\right)$.	7.5	CO2
7.	Find the sum of first 10 terms of an increasing arithmetical progression, the sum of whose first 3 terms is 27 and the sum of their squares is 275.	7.5	CO4
8.	Find elasticity of the function $y=a\sqrt{x-b}$.	7.5	CO2
	SECTION-D		
Q	Answer the following question.		
9.	Integrate the following. a) $\int 2x(x+4)dx$ b) $\int_0^1 (x^2+1)dx$	10	CO2
10.	A manufacturer produces two types of products X and Y. Each products is first processed in machine M_1 and then sent to another machine M_2 for finishing. Each unit of X requires 20 minutes time on machine M_1 and 10 minute time on machine M_2 , whereas each unit of Y requires 10 minutes time on machine M_1 and 20 minutes time on machine M_2 . The total time available on each machine is 600 minutes and is fully utilized in the production of X and Y. Calculate the number of units of two types of products produced by constructing a matrix equation of the form AX=B and then solve it by using Cramer rule.	10	CO3
11.	(a) If $y=\frac{x}{x+2}$ find $\frac{dy}{dx}$. (b) If $y=(2x^2+3x-2)^7$ then find $\frac{dy}{dx}$ using chain rule.	10	CO2