Name:			S		
Enrolment No:					
	UNIVERSITY OF PETROLEUM A	ND ENERGY STUDIES			
D	End Semester Examination		· •		
0			ester: I e: 03 Hours		
				x. Marks: 100	
	pages:03				
	SECTION A (Answer ALL the questions.				
Q1.	Answer ALL the questions. Each carries ONE		Marks	CO	
A.	The value of $4A - 3B$ where $A = \begin{bmatrix} 2 & 6 \\ 3 & 1 \end{bmatrix}$ and B		043.5		
	(a) $\begin{bmatrix} 5 & 22 \\ 0 & 24 \end{bmatrix}$ (b) $\begin{bmatrix} 5 & 24 \\ 0 & -23 \end{bmatrix}$ (c) $\begin{bmatrix} 5 & 20 \\ -10 & 16 \end{bmatrix}$ (d)	$\begin{bmatrix} 5 & 4 \\ 5 & 12 \end{bmatrix}$	01M	CO1	
B.	If the rank of $\begin{bmatrix} 1 & 3 \\ k & 6 \end{bmatrix}$ is 1, the value of k is (a) 1 (b) 2 (c) 3 (d) 0		01M	CO1	
C.	Which of the following is a linear equation	(d) None	01M	CO2	
D.	(a) $x = y - 6$ (b) $y = (x + 2)^2$ (c) $y = 4x^2$ The value of $\int_0^2 (x^2 + 2) dx$ is (a) $-\frac{20}{6}$ (b) 0 (c) $\frac{20}{3}$ (d) None		01M	CO2	
E.	(a) $-\frac{20}{6}$ (b) 0 (c) $\frac{20}{3}$ (d) None The quantity $\frac{total revenue}{quantity of the commodity sold}$ is calle (a) Price (b) Discount (c) Average Revenu	d de (d) None	01M	CO2	
Q2.	Answer ALL the questions. Each carries THR				
A.	Let $A = \begin{bmatrix} 2 & x \\ 3 & y \end{bmatrix}$. If A is idempotent, the values of (a) $x = -\frac{2}{3}$, $y = 1$ (b) $x = \frac{2}{3}$, $y = -1$ (c) $x = 0$	x and y are y = 1 (d) <i>None</i>	03M	C01	
B.	The equation of the line joining the points $(-1, 0)$ (a) $2x + y = 2$ (b) $y = 2x + 2$ (c) $x = 2y + 4$) and (3,8) is	03 M	CO2	
C.	The value of $\int \frac{1}{x\sqrt{x}} dx$ is (a) $\frac{-2}{\sqrt{x}} + C$ (b) $\frac{2}{\sqrt{x}} + C$ (c) $\frac{\sqrt{x}}{2} + C$ (d) None		03 M	CO2	
D.	If the marginal revenue of a firm is given by MR revenue of the firm at 6 units of output is	$= 30 - 10x + x^2$, the total	03 M	CO3	
	(a) 76 (b) 72 (c) 60 (d) <i>None</i> The value of elasticity of demand η_d of the function	n r - 100 - 5n st n - 10			
E.	is (a) 5 (b) 0 (c) 1 (d) None	5n x - 100 - 5p at $p = 10$	03M	CO3	

	SECTION B		
01	(Answer ALL the questions. Each question carries FIVE marks. Total man	rks: 20)	1
Q3.	Show that $A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2 \end{bmatrix}$ satisfies the equation $A^2 - 3A + 2I_3 = 0$ where I_3 is the identity matrix of order 3.	5M	CO1
Q4.	Find $\frac{dy}{dx}$ when $y = u^2 + 2$, $u = v^2 + 2$ and $v = x^2 - x$.		CO2
Q5.	Find maxima, minima and the points of inflexion for the function $y = x^3 + 10x^2 + 25x - 40.$		CO3
Q6.	The marginal cost function of a firm is $MC = 5 + 3e^x$, where x denotes thousand units of output. Find (i) total cost C, if $C(0) = 250$ (ii) average cost AC and (iii) evaluate TC for 500 units of output.	5M	CO4
	SECTION C		
	(Answer ALL the questions. Each question carries SIX marks. Total mark	ks: 30)	1
Q7.	Using Gauss-elimination, solve the following system of equations. x + y + z = 6; x + 2y + 3z = 14; -x + y - z = -2	6M	C01
Q8.	$\frac{x + y + z = 6; x + 2y + 3z = 14; -x + y - z = -2}{\text{If } y = x^{x^{x^{*}}}, \text{ show that } \frac{dy}{dx} = \frac{y^{2}}{x(1 - y \log x)}.}$	6M	CO2
Q9.	Evaluate $\int (7x-2)\sqrt{3x+2} dx$	6M	CO3
Q10.	Evaluate $\int \frac{x-1}{(x+1)(x-2)} dx$	6M	CO3
Q11.	The demand and cost functions of a monopolist are given to be $x = 500 - \frac{1}{2}p$ and $C = x^3 - 59x^2 + 1315x + 2000$ respectively. Find his profit maximizing level of output and price.	6M	CO4
	SECTION-D	1 00	``````````````````````````````````````
	(Answer any THREE questions. Each question carries TEN marks. Total m	arks: 30)
Q12.	 Given the following national income model: C = a + bY, (a > 0, 0 < b < 1) I = d - eY, (d > 0, 0 < e < 1) Y = C + I (i) Write the above system in matrix form. (ii) Solve for the endogenous variables <i>C</i>, <i>I</i> and <i>Y</i>. (iii) What is the necessary condition for obtaining a positive, finite solution for <i>Y</i>. 	10M	CO4
Q13.	 (i) The price elasticity of demand of a commodity when price is Rs. 10 and quantity demanded is 25 units is given to be 1.5. Find the demand equation of the commodity on the assumption that it is linear. (ii) Find the elasticity of demand of the inverse demand function p = 3x² - 100x + 800 when x = 10. Approximate this demand function by a linear function near this point. 	10M	CO4

0.1.4	The short run production function of a manufacturer is given as		
Q14.	$x = 11L + 16L^2 - L^3.$		
	(i) Find the average product function, AP_L , the marginal product		
	function, MP_L , and show that $MP_L = AP_L$ where AP_L is maximum.		
	(ii) Find the value of <i>L</i> for which output is maximum.	10M	CO4
	(iii) Find the value of L at which the total product curve has a point of		
	inflexion and verify that MP_L is maximum at this point.		
	(iv) If the manufacturer sells the product at a uniform price of Rs. 10		
	per unit, find the maximum total revenue product.		
	(i) Obtain the demand function of a commodity whose elasticity of		
Q15.	demand is given by $\eta = a - bp$, where a and b are constants and		
	p denotes the price per unit of the commodity.		
	(ii) The marginal revenue function of a firm is given by $MR = 240 - 100$	10M	CO4
	4x. Find the total revenue function and the demand function. At		
	what level of output is the total revenue maximum? Find the		
	maximum total revenue.		