Name: Enrolment No:		1 UPES UNIVERSITY WITH A PURPOSE	
SECTION A (Answer ALL the questions. Total marks: 20)			
Q1.	Answer ALL the questions. Each carries ONE mark. Total Marks =5	Marks	CO
A.	The value of $4 A-3 B$ where $A=\left[\begin{array}{ll}2 & 6 \\ 3 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 4 & 9\end{array}\right]$ is (a) $\left[\begin{array}{ll}5 & 22 \\ 0 & 24\end{array}\right]$ (b) $\left[\begin{array}{cc}5 & 24 \\ 0 & -23\end{array}\right]$ (c) $\left[\begin{array}{cc}5 & 20 \\ -10 & 16\end{array}\right]$ (d) $\left[\begin{array}{cc}5 & 4 \\ 5 & 12\end{array}\right]$	01M	CO1
B.	If the rank of $\left[\begin{array}{ll}1 & 3 \\ k & 6\end{array}\right]$ is 1 , the value of k is (a) 1 (b) 2 (c) 3 (d) 0	01M	CO1
C.	Which of the following is a linear equation (a) $x=y-6$ (b) $y=(x+2)^{2}$ (c) $y=4 x^{2}$ (d) None	01M	CO2
D.	The value of $\int_{0}^{2}\left(x^{2}+2\right) d x$ is (a) $-\frac{20}{6}$ (b) 0 (c) $\frac{20}{3}$ (d) None	01M	CO2
E.	The quantity $\frac{\text { total revenue }}{\text { quantity of the commodity sold }}$ is called (a) Price (b) Discount (c) Average Revenue (d) None	01M	CO2
Q2.	Answer ALL the questions. Each carries THREE marks Total Marks =15		
A.	Let $A=\left[\begin{array}{ll}2 & x \\ 3 & y\end{array}\right]$. If A is idempotent, the values of x and y are (a) $x=-\frac{2}{3}, y=1$ (b) $x=\frac{2}{3}, y=-1$ (c) $x=0, y=1$ (d) None	03M	CO1
B.	The equation of the line joining the points $(-1,0)$ and $(3,8)$ is (a) $2 x+y=2$ (b) $y=2 x+2$ (c) $x=2 y+4$ (d) None	03 M	CO2
C.	The value of $\int \frac{1}{x \sqrt{x}} d x$ is (a) $\frac{-2}{\sqrt{x}}+C$ (b) $\frac{2}{\sqrt{x}}+C$ (c) $\frac{\sqrt{x}}{2}+C$ (d) None	03 M	CO2
D.	If the marginal revenue of a firm is given by $M R=30-10 x+x^{2}$, the total revenue of the firm at 6 units of output is (a) 76 (b) 72 (c) 60 (d) None	03 M	$\mathrm{CO3}$
E.	The value of elasticity of demand η_{d} of the function $x=100-5 p$ at $p=10$ is (a) 5 (b) 0 (c) 1 (d) None	03M	$\mathrm{CO3}$

SECTION B

(Answer ALL the questions. Each question carries FIVE marks. Total marks: 20)

Q3.	Show that $A=\left[\begin{array}{ccc}1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2\end{array}\right]$ satisfies the equation $A^{2}-3 A+2 I_{3}=0$ where I_{3} is the identity matrix of order 3.	$\mathbf{5 M}$	$\mathbf{C O 1}$
Q4.	Find $\frac{d y}{d x}$ when $y=u^{2}+2, u=v^{2}+2$ and $v=x^{2}-x$.	$\mathbf{5 M}$	$\mathbf{C O 2}$
Q5.	Find maxima, minima and the points of inflexion for the function $y=x^{3}+10 x^{2}+25 x-40$.	$\mathbf{5 M}$	$\mathbf{C O 3}$
Q6.	The marginal cost function of a firm is $M C=5+3 e^{x}$, where x denotes thousand units of output. Find (i) total cost C, if $C(0)=250$ (ii) average cost $A C$ and (iii) evaluate $T C$ for 500 units of output.	$\mathbf{5 M}$	$\mathbf{C O 4}$

SECTION C

(Answer ALL the questions. Each question carries SIX marks. Total marks: 30)

Q7.	Using Gauss-elimination, solve the following system of equations. $x+y+z=6 ; x+2 y+3 z=14 ;-x+y-z=-2$	6M	CO1
Q8.	If $y=x^{x^{x^{\varepsilon^{\infty}}}}$, show that $\frac{d y}{d x}=\frac{y^{2}}{x(1-y \log x)}$.	6M	$\mathrm{CO2}$
Q9.	Evaluate $\int(7 x-2) \sqrt{3 x+2} d x$	6M	CO3
Q10.	Evaluate $\int \frac{x-1}{(x+1)(x-2)} d x$	6M	$\mathrm{CO3}$
Q11.	The demand and cost functions of a monopolist are given to be $x=500-\frac{1}{2} p$ and $C=x^{3}-59 x^{2}+1315 x+2000$ respectively. Find his profit maximizing level of output and price.	6M	CO4
SECTION-D(Answer any THREE questions. Each question carries TEN marks. Total marks: 30)			
Q12.	Given the following national income model: $\begin{array}{ll} C=a+b Y, & (a>0,0<b<1) \\ I=d-e Y, & (d>0,0<e<1) \\ Y=C+I & \end{array}$ (i) Write the above system in matrix form. (ii) Solve for the endogenous variables C, I and Y. (iii) What is the necessary condition for obtaining a positive, finite solution for Y.	10M	CO4
Q13.	(i) The price elasticity of demand of a commodity when price is Rs. 10 and quantity demanded is 25 units is given to be 1.5 . Find the demand equation of the commodity on the assumption that it is linear. (ii) Find the elasticity of demand of the inverse demand function $p=3 x^{2}-100 x+800$ when $x=10$. Approximate this demand function by a linear function near this point.	10M	$\mathrm{CO4}$

Q14.	The short run production function of a manufacturer is given as $x=11 L+16 L^{2}-L^{3}$. (i) Find the average product function, $A P_{L}$, the marginal product function, $M P_{L}$, and show that $M P_{L}=A P_{L}$ where $A P_{L}$ is maximum. (ii) Find the value of L for which output is maximum. (iii) Find the value of L at which the total product curve has a point of inflexion and verify that $M P_{L}$ is maximum at this point. (iv) If the manufacturer sells the product at a uniform price of Rs. 10 per unit, find the maximum total revenue product.	10M	CO4
Q15.	(i) Obtain the demand function of a commodity whose elasticity of demand is given by $\eta=a-b p$, where a and b are constants and p denotes the price per unit of the commodity. (ii) The marginal revenue function of a firm is given by $M R=240-$ $4 x$. Find the total revenue function and the demand function. At what level of output is the total revenue maximum? Find the maximum total revenue.	10M	CO4

